
Semantic Service Management for Enabling Adaptive and Evolving Processes

Johannes Fähndrich, Tobias Küster, and Nils Masuch

DAI-Labor
Technische Universität Berlin

Berlin, Germany
e-mail: {firstname.lastname}@dai-labor.de

Abstract—With the rise of new paradigms like the Internet of
Things, where thousands of devices and services of different
providers are to be connected to complex processes, service-
oriented approaches come to the fore. However, current solutions
still lack of comprehensive methodologies how to dynamically
manage and combine services to fulfil the given goals. In
this paper we present a semantic-based service management
methodology that enables the semantic description of services and
provides an automatic service discovery and composition solution
at design- and runtime. Furthermore, we present development
tools that support the usage of semantic web technologies and
we describe an execution environment where the approach is
embedded. We conclude with an evaluation scenario from an
e-mobility research project.

Keywords–Semantic Service Enhancement; Semantic Service
Matching; Automated Service Composition; Model Transformation;
BPMN Processes; OWL-S; Semantic Service Descriptions

I. INTRODUCTION

The ever increasing digitalization of our societies leads to
a vast amount of new possibilities, but also challenges. In the
meantime, many companies, administrations and devices share
their data or functionalities with others via application pro-
gramming interfaces (APIs) or services respectively. Examples
are the smart home or the transportation domain. In the first
case, many different devices, such as smart meters and house-
hold appliances are addressable and can be regulated remotely.
In the second case, the market is being extended by new
services, such as car-sharing, bike-sharing and ride-sharing
offers, which are provided digitally and where the user can
find, reserve and unlock the most appropriate one via an API.
Furthermore, the vehicles themselves can be configured via
services and the environment is also becoming more digitized
(charging-stations, parking spots, traffic analysis services, etc.).
And even more sophisticated is the approach of the Internet of
Things (IoT) which intends to connect services across domain
borders.

However, in all cases there are some huge challenges that
have to be overcome in order to exploit their potential. At
first there is the requirement of finding a service. Different
approaches like Universal Description, Discovery and Integra-
tion (UDDI) have been proposed, but none really has made it
into the market. Second, there is the need for interoperability.
Since a homogeneous data environment in open, extensible
platforms is unrealistic, automated mapping solutions between
models or ontologies respectively are one potential approach.
And finally, due to the increasing amount of services, there is
a strong requirement for automatic interpretation of services
and their composition to value-added functionalities.

Especially for the last challenge, semantic technologies
are an appropriate approach by providing structured data to
machines. However, this does not come without a price. The
management overhead can be immense especially for devel-
opers not familiar with semantic technologies. Therefore it
was our goal to develop a semantic-based service management
methodology that considers the whole life-cycle of semantic
services including more sophisticated algorithms for automa-
tion. More concretely, we provide development tools for model
transformation, for the semantic description of services and
their deployment in order to set up a service. Furthermore,
we propose how to find and match services at design-time
and how to easily integrate them either to Java code or into a
Business Process Model and Notation (BPMN) editor. Based
upon that we developed comprehensive matching and service
composition techniques that can be used both at design-time
and at runtime.

This paper is structured as follows: In Section II, we
present the different components that constitute our approach
to semantic service engineering, and in Section III we show
how those components are combined to form a holistic devel-
opment method for semantic services and their composition. In
Section IV, we demonstrate how the different components and
the method have been applied in a research project in the e-
mobility domain. Finally, we present some related approaches
in Section V before we conclude in Section VI.

II. COMPONENTS

First, we will describe the several components that make up
our approach to semantic service engineering. We subdivided
this section into three parts: First, we will have a look at
the fundamental aspects, i.e., the semantic service matcher
and planner, and describe their behaviour in detail. Then,
we introduce different tools that help in the development of
semantic services and in their aggregation and orchestration
to complex, value added processes. Finally, we present the
execution environment, making use of a multi-agent frame-
work while at the same time being fully interoperable with
existing Web Services Description Language (WSDL) and
Representational State Transfer (REST) services.

A. Semantic Service Core
Since the beginning of research in semantic service match-

ing, matchmakers have matured in precision and recall [1].
Thus, the focus of service matching has shifted to the inte-
gration of non-functional parameters and formal modelling of
system properties. The development on the Service Matcher
that had the best Normalised Discounted Cumulative Gain

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

(NDCG) value in the last S3 contest in 2012 [1], called
SeMa2, has been focused on formalising and distributing the
architecture of SeMa2 and enabling a learning mechanism to
customise the matching results to a given domain. We start
this section by describing how we modelled the architecture,
the matching probability, its aggregation and which parameters
for the learning can be extracted. For an even more detailed
discussion about SeMa2, we refer to [2].

1) Architecture of a modern Service Matcher: The service
matching task can be broken down into subtasks like matching
the inputs of the request and the advertisement, or comparing
their textual descriptions. In the SeMa2 architecture each of
these subtasks has been explicitly encapsulated in a so called
expert which can be distributed following the agent paradigm.

Figure 1. Expert System of the SeMa2. High-level experts are composed of
low-level experts, all contributing to the Matching Result.

As shown in Figure 1, the SeMa2 consists of 28 different
experts, which are dependent from each other (edges of the
graph). The “Matching Result” represents the overall result
of a matching request. It is also defined as an expert as
it aggregates the results from the opinions of four types
of experts: the text similarity expert, comparing the textual
descriptions of a service, the in- and output parameter expert
looking at the parameters and results of the services, the effect
structure expert evaluating the similarity of effects, and the rule
reasoning expert which evaluates whether the precondition and
effect rules are satisfied with the same parameters. Each of
those experts uses other experts to help forming its opinion,
expressing the matching score of one aspect of a service. Thus,
each expert encapsulates such a scoring method, which can be
reused by multiple experts or extended with new scoring as
the architecture evolves.

2) Probabilistic model of opinion: The different opinions
of the experts are formalised by utilising the results of Mor-
ris [3], as probabilities pi(R,A). As an expert i observes
aspects of a request R and advertisement A and calculates
their distance. We can abstract this opinion as pi(Θ|d) where
Θ is the subject of interest and d are the observations. pi(Θ|d)
could be interpreted as a degree of belief of Θ observing data
d. For more details see [2].

To aggregate the opinions of the different experts, an
Opinion Pool is used. Here, a weighted mean of the opinions
is created, for which we chose a weighted arithmetic mean
called linear opinion pool [4] in a previous work [2]. This
arithmetic mean has been generalised by Genest [5] to be able

to use weights in the interval [−1, 1] in a more general class
of linear opinion pools. With this formalisation, the quality of
the different aspects can be weighted during the aggregation.
Choosing those weights is done during the learning phase.

3) Learning Semantic Service Matcher: Selecting weights
for each experts instances (SeMa2 for now has 128 experts
instances), we do not only assess the performance of the expert,
but also the quality of the description of the service, the
ontologies of the domain and if present specific description
aspects of a domain. These interdependencies are the reason
why we are unable to learn the performance of an expert in
general and reuse the weights for other matching domains.

For the learning, SeMa2 implements different standard
learning mechanisms, reaching from genetic algorithms im-
plemented with the Watchmaker Framework [6] to simulated
annealing [7]. For the statistical evaluation the Semantic Web
Service Matchmaker Evaluation Environment (SME2) tool [8]
is used, calculating the NDCG of each expert and adapting
its weight according to the optimisation strategy used during
the learning. As a drawback, this ability to adapt to the
domain makes an offline learning phase necessary, where a test
collection of example services needs to be defined, including
a relevance rating for the training set of service to be used by
the SME2 tool.

4) Semantic Services Planner: The ability to automatically
compose services to reach a given goal is called service
planning [2]. The service planner based on the SeMa2 utilises
the service matcher for three tasks: first, to reason about effects
and preconditions to find applicable service. Second, to reason
on parameter selection for grounding the services and third, to
apply the execution of a service to reach a new state.

Name: ServicePlan
Input: Sstart, Sgoal, Services Output: Service Composition

1: path← []
2: Closed← ∅
3: Open← {Sstart}
4: while s← StateSearch.next(Open) do
5: if s 6∈ Closed then
6: if s = Sgoal then
7: return reconstructPath(path + [s])
8: end if
9: grounded← ServiceSearch.UsefulServices(s)

10: if grounded 6= ∅ then
11: succ← {execute(s, g) | g ∈ grounded}
12: Open← Open ∪ succ \ Closed
13: path← path + [s]
14: end if
15: Closed← Closed ∪ {s}
16: end if
17: end while
18: return failure

Figure 2. Service Planner algorithm

The algorithm in Figure 2 describes a standard planning
approach applied to service planning. Here, the contribution is
a planning in the service world without translating the service
to the Planning Domain Description Language (PDDL) or
similar to solve the planning problem.

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

The search used is defined in the function State-
Search.next(Open). Depending on the implementation of the
state search, the next state to be extended is selected. Here
an A∗ or equivalent algorithm can be used. In each state
s that will be extended next, the selection of the services
and their grounding is formalised in the function Service-
Search.UsefulServices(s). Here a set of grounded services is
selected, which define the transition to the following open
states. The state transition function is given by execute(s, g),
where the output and the effect of a service are integrated
into the given state s. This is a theoretical execution, since
the execution at runtime includes backtracking and a context
sensing mechanism to sense the effect of a service. After
extending a multitude of nodes during the search of the state
space, the function reconstructPath(path) reduces the path
from the goal to the start state to a minimal call of services.

The complexity of algorithm 2 depends on the imple-
mentation of the state search and state pruning mechanism,
being the heuristic which selects useful services, including the
complexity of the service matcher used. In general, the worst
case complexity of such an algorithm is exponential [9, p.72].

By planning on services we accept a number of challenges:

• Service Grounding checks all parameters of services to
be executed next and creates all combinations of indi-
viduals that fit those parameters. These combinations
lead to multiple (possibly infinite) grounded services
out of one service description. Here the challenge lies
in the selection of continuous parameters.

• Output Integration into the state poses a challenge
since it is not clear how a service without effect
can influence the state. One example of such services
are information providing services, which are not
world altering services [10]. Thus, here we create an
assertion of the class of the output, creating an appro-
priate individual, equivalent to the “AgentKnows” of
Doherty et al. [11].

• Semantic Web Rule Language built-ins (SWRLb) are
mathematical extensions like “greater than”, string
manipulations or description of time. Additionally,
lists are modelled in SWRLb but are not supported
by reasoners like Pellet [12].

• Semantic Web Rule Language XML Concrete Syn-
tax (SWRLx) is an extension to the Semantic Web
Rule Language (SWRL) allowing to model individual
creation, creation of classes and properties. This is
vital to the service planning, because service execution
might create individuals or classes, which can not be
modelled without SWRLx built-ins.

B. Development Tools
The method for semantic service management and devel-

opment makes use of two development tools, which are both
implemented as Eclipse plugins [13] and thus can seamlessly
be integrated into the developer’s usual workflow.

1) Semantic Service and Ontology Manager: In order to
be able to integrate intelligent planning algorithms, the envi-
ronment has to come up with the necessary infrastructure. One
essential requirement in this respect is the semantic description
of functionalities or services. Since current standards such as
the Web Ontology Language for Web Services (OWL-S) [14]

are not easy to describe from scratch, we developed a plug-in
called Semantic Service Manager (SSM) [15], providing a set
of features supporting a semi-automatic description of services.
The core of SSM is an Ontology Manager, which enables
the developer to include and utilize Web Ontology Language
(OWL) ontologies for the application in semantic service
descriptions. However, since many development approaches
use other languages to specify the domain of concern, such
as the Eclipse Modeling Framework (EMF), the Ontology
Manager also provides a transformation process from EMF
to OWL.

Based on the Ontology Manager the developer is then able
to describe the service according to name, description, input
and output parameters and finally preconditions and effects.
The latter ones can be described via the Semantic Web Rule
Language (SWRL) and for this purpose SSM comes with a
syntax highlighting editor and structure parser. The description
can then be utilized in different ways. Either it can be deployed
to a semantic service repository (see Section II-C), it can
be sent to a BPMN process (see next paragraph), or it can
be linked to a service of the multi-agent framework JIAC V
(Java-based Intelligent Agent Componentware, version 5) [16].
With these options at hand, the developer can easily connect
semantic descriptions to services and is able to deploy them
immediately.

The second purpose of the SSM is the search and utilization
of existing and running services within a distributed environ-
ment. Therefore the SSM provides a Service Discovery View
where the developer can define (incomplete) parameters of a
service and search the platform directory using the SeMa2

matcher. The developer can also adapt the weightings of the
different matching techniques used. After selecting one of the
services they can either be pushed to the Visual Service Design
Tool (VSDT) to use it within a BPMN process, or a code
inclusion function can be triggered that inserts the service call
code into the open Java window.

2) Visual Service Design Tool: While basic services are
usually implemented in the form of Java classes or equivalent,
for service compositions business process modelling notations
have proven useful. Using the VSDT, existing semantic ser-
vices can be orchestrated to complex processes [17] using the
BPMN notation [18].

The VSDT integrates with the Semantic Service Manager
view in the way that services from the SSM can be imported
into the VSDT. With a single click in the User Interface
(UI), an according service description is added to the currently
opened VSDT process, together with data types representing
the different ontology concepts. That service can then be used
in a service task and combined with other services to a complex
process.

Next, those processes can be exported to executable lan-
guages such as BPEL (Business Process Execution Language)
processes [17] or JIAC agent behaviours [19], being the
execution environment used in this approach. In the case
of JIAC agents, VSDT processes can either be compiled to
JIAC beans, encapsulating an accordant behaviour, or they
can be interpreted directly. In this work, we will focus on
the interpreting approach, as further described in the following
section.

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

C. Execution Environment

The services are executed as part of a JIAC multi-agent sys-
tem. This way, each service is running on an individual agent,
providing an adequate level of modularity and encapsulation.
The environment also provides interfaces to other types of
(web) services, such as SOAP (Simple Object Access Protocol)
and REST, which can be integrated transparently with JIAC.

1) JIAC V Multi-agent Framework: The execution environ-
ment is based on JIAC V, a multi-agent framework also incor-
porating many aspects of service-oriented architectures [16].
The agents are situated on agent nodes (runtime containers).
Each agent’s behaviours and capabilities are defined in sev-
eral agent beans, providing different general and application-
specific functions (see Figure 3).

Figure 3. Components of a JIAC multi-agent system and individual agents
(adapted from [20])

Complementary to message-based communication, one of
the core mechanics of JIAC agents is to expose actions.
Depending on its scope, an action can be found and used by
other components of the same agent, by other agents on the
same node, or by any agent on the network. Each JIAC agent
node has a directory of known agents and actions, both on
the same node as well as on other nodes, that can be used
for querying and finding specific agents and actions using
according templates. Given just the name, or the inputs and
outputs of an action, the directory will find and return an action
that matches that template (if such an action exists), which can
then be used for creating an according intention.

For integration with other services, the WSDL- and REST-
services integration beans can be used. Those components do
both have two effects: First, all the JIAC actions accessible via
the directory will be exposed to the outside world as according
WSDL or REST services, respectively, and second, additional
JIAC actions will be created and exposed, representing each
of the WSDL and REST services known to those beans. Thus,
JIAC agents can seamlessly and transparently be integrated
with both, REST and WSDL services.

Integrating the semantic service matcher into JIAC was
very natural and straightforward. Whenever a semantic service
template (as opposed to a plain JIAC action template) is passed
to the directory, the directory will delegate it to the semantic
service matcher bean, which will return the best matching
service. To the agent invoking the service, it is fully transparent
whether it is a standard JIAC action or a semantic service.

In order to utilize the service matching and planning
functionalities within the JIAC environment it was necessary
to extend the existing action model for agents by means of
a semantic service description model. The model is oriented
towards the OWL-S standard dividing information into Profile,
Process and Grounding parts. The latter can either reference

JIAC action information but it can also define WSDL or REST
attributes.

Loosely coupled to the JIAC environment is the Semantic
Service Repository. Each platform can host multiple of these
repositories, where the developer can deploy and manage its
service descriptions. As this seems pretty static on first sight,
we included a mechanism in which only in cases when a
service is running and recognised by the directory, the linked
service descriptions are considered for matching.

2) JIAC based BPMN Interpreter: One of several
application-independent components for JIAC agents is the
process interpreter bean, enabling the agent to interpret and
execute BPMN processes created with the VSDT.

The process interpreter bean is composed of three layers:
First, the process interpreter bean itself provides actions for
adding processes to be interpreted and for managing already
running processes. Also, it acts as an interface to the agents,
providing functionality for sending and receiving messages
and invoking other actions from within the BPMN processes.
Finally, it exposes all the processes (that have an according
start event) as actions so they can be used by other agents.

Whenever a process diagram is added to the process engine
bean for interpretation, an interpreter runtime is created, which
is responsible for each process spawned from this process
diagram. It keeps track of events and creates a new instance of
that process whenever an event corresponding to the respective
start event occurs. Different volatile process instances are
responsible for running the processes spawned by the runtime,
executing the different activities and keeping track of the
current state of the process, i.e., which activities are ready
for execution, as well as the values of the different process
variables.

Making use of JIAC’s communication and service infras-
tructure, the interpreted processes can automatically make use
of other JIAC actions, and – if the respective proxy beans
are present – of WSDL and REST services. If the semantic
service matcher is installed in the node, it is automatically
used for finding services according to the templates used in
the processes. The current state of the interpreter bean – the
active runtimes, their respective process instances, and their
internal states – can be monitored using a simple UI, also
providing an interface for manually starting processes and for
the processes to interact with the user, e.g., for BPMN user
tasks, or for querying missing service parameters.

III. METHODOLOGY FOR SEMANTIC SERVICE
DEVELOPMENT

In the following, we will sketch a process of how the differ-
ent components introduced in the last section are used together
to form a methodology of semantic service engineering. At its
base, the method is similar to other software- and service engi-
neering methodologies, but combines those with requirements
for and contributions of semantic services. An overview of the
methodology is shown in Figure 4, using the BPMN notation,
and highlighting how the different components are used in the
stages of the process. In the following, we will describe the
different steps in more detail.

A. Ontology Engineering
The first step in creating semantic services is to model the

ontology that will be used for describing the service’s inputs,

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

Figure 4. Semantic Service Management and Development Process, as a BPMN process, and associated components: Green: Semantic Service Core; Blue:
Development Tools; Red: Execution Environment.

outputs, precondition and effect, if any. This is particularly
important, since one of the main motivations for semantic
services is for those services to be easily findable, reusable,
and composable with other services; thus, whenever possible
it should be the aim to reuse, or, if necessary, extend existing
ontologies, instead of creating new ones. This step is also
concerned with mapping the ontological concepts, for example
described in OWL, to a representation that is closer to the ser-
vice implementation, e.g., Java classes (or vice versa, starting
with Java classes and generating according OWL ontologies).

The new or modified ontologies are then uploaded to a
server hosting a repository of known ontologies, so they can
be used in the next step, as well as in other services. There
is no specific tool for this step in our method. Ontologies can
be created, e.g., with Protégé,[21] or generated from existing
Java classes or EMF models [22].

B. Creating Semantic Service Description

Next is the creation of the semantic service description
itself, defining the “contract” of the service. Of course, this
step is not particular for semantic services, but is a common
practice for all of service- and software engineering. The major
difference is that besides name, textual description, input and
output parameter, also the preconditions and effects of a service
can be defined. Especially the latter, which in our approach can
be described with the semantic rule language SWRL, extend
the attributes of a service in a way that matching or planning
processes can deduce its purpose and its formal prerequisites.
However, as describing semantic terms can be challenging, we
paid attention to provide a user-friendly editor with syntax-
highlighting, auto-completion and validation parser. Currently
missing, but contemplated is the integration of several QoS
attributes, making the selection of services also sensitive to
non-functional aspects.

The new service description is uploaded to a service
repository, adding it to the list of services usable by the
semantic service matcher and planner. In our method, the SSM
tool is used for creating the service descriptions using OWL-
S. Existing ontologies can be browsed (but not edited) for
selecting concepts for input and output, while preconditions
and effects are specified using SWRL. The finalized service

description can then be deployed to the repository and an ac-
cordant stub for the service implementation can be generated.

C. Service- and Process Engineering
The bulk of the service development process is occu-

pied with engineering the service’s implementation. While
the service’s method declaration can be generated from the
semantic service description, its body has to be implemented
by a developer. Here, we can differentiate two main activities:
Identifying and integrating existing services, and developing
the logic that combines those services to a new service, or
process, with added value.

There are three ways how services can be searched, identi-
fied, and imported into the currently developed process, using
the SSM tool:

• The service can be searched for, using a semantic
service template, and the service best matching the
template is integrated into the current service.

• In case no single service satisfies the template, the
semantic service planner can be used to automatically
find a service composition that, as a whole, matches
the template; the individual services of that composi-
tion are then integrated into the current service in the
appropriate sequence.

• Instead of searching services at design time, the tem-
plate that would be used for matching the service can
itself be integrated into the current service, deferring
the search and matching process to runtime.

Of course, there is also a fourth case: That no service or
service composition can be found that fulfils the template. In
this case, a new service has to be created, thus starting the
service development process again.

The service logic can be created in two ways: Either in
the form of a Java method, or, using the VSDT, as a BPMN
process, which is later either mapped to Java (JIAC agent
beans) or interpreted directly. Which one to choose mainly
depends on the ratio of service reuse to “original” service logic:
In case the new service is mainly a composition of existing
basic services, they can very well be modelled visually as
business processes, but if they contain complex calculations
or make extensive use of third-party libraries (that are not

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

available as services), then implementing the services in plain
Java is the better choice.

D. Testing the Implementation against the Specification
The last step before deployment is testing, to ensure that

the services’ implementations comply with their semantic
descriptions. Of course, testing plays a well-established role
in software engineering and is not particular to semantic ser-
vice development. However, the presence of formal semantic
descriptions impose both an obligation and an opportunity for
(automated) unit testing.

On the one hand, while even a regular function or service
that does not comply with its documentation is always a
nuisance, a semantic service that violates its stated effect could
threaten the functionality of the entire system it is embedded
in, as automated planners will rely on that information. On
the other hand, since the intended behaviour of the service has
already been specified in its precondition and effect, writing
the actual tests becomes very straightforward.

While this is currently not implemented in our approach, it
would also be possible to automatically generate unit tests from
the semantic service description, particularly the service’s pre-
conditions and according effects. For this, the input parameters
can be generated, setting all attributes that are not specified in
the precondition randomly; then, the expected output can be
inferred from the service’s effect, thus testing the actual result
of the service invocation against the expected value.

In case the service does not comply with the tests (i.e.,
with its stated preconditions and effects), the usual course
of action is, of course, to fix the service. However, in some
cases this may also expose flaws in the service’s input, output,
precondition and effect (IOPE) descriptions. In this case, the
process has to backtrack and update the semantic service
description and adapt or extend the service’s implementation
accordingly.

E. Deployment and Runtime Monitoring
The final step is to deploy the new service to the runtime

environment. Depending on whether the service has been
implemented directly as a Java class (e.g., a JIAC agent bean
exposing an accordant action), or in the form of a BPMN
process diagram orchestrating different existing services, the
deployment process is slightly different.

• In case the service has been implemented directly in
Java and is meant to be a basic service to be used as
a building block for other services, it is best to create
a new agent exclusively for that service and to deploy
it to the runtime server.

• In case of a service composition created as a BPMN
process, the process diagram can be deployed to an
already running process interpreter agent. This way,
deployment and undeployment is very dynamic, and
the interpreter also provides basic capabilities for
runtime monitoring and user interaction. Alternatively,
the process can also be automatically translated to Java
code and deployed as in the above mentioned case.

In both cases, the services are deployed to the JIAC runtime
environment and can be invoked as actions, and searched for
using the semantic service matcher. Using the WSDL and
REST integration beans, the services will also be exposed as

WSDL or REST services, respectively, and can transparently
use other services available in those formats.

IV. THE EMD USE CASE

In the project EMD (Extendable and adaptive E-Mobility
Services), a use case within the transportation domain was
constructed to demonstrate the use of the developed tools, the
methodology, and the basic services, as depicted in Figure 5.
Starting from the fundamental services, like reading the sched-
uled meetings from a calendar, getting the state of charge
of a vehicle, scheduling the charging, or searching charging
stations, this example constructs an adaptive extended service
with the goal of supporting home visiting nurses during their
daily rounds. Here, the idea is that if the state of charge of an
electric car does not suffice for the whole schedule of visits for
the day, the application will provide an alternative means of
transportation for just enough time to charge the vehicle. This
will lead the nurse to a few appointments via an intermodal
route (including public transport, car or bike sharing vehicles,
walking, taxis or any mobility service available). Finally, she
returns to her vehicle when the vehicle’s charging process has
finished.

Figure 5. Example usecase for an extendible, adaptive mobility service. Top:
VSDT editor showing process diagram; bottom: SSM view.

The search of the mobility providing services is the adap-
tive part of the service: Depending on the available services
and the context of the user (e.g., carrying heavy equipment)
the appropriate services are given to an intermodal routing ser-
vice. Integrating the SeMa2 service matcher into the service
(shown as the “Search E-Mob Service”) component, allows
us to dynamically change the services which are used for the
intermodal routing.

Describing all services semantically using the SSM allows
the SeMa2 to find fitting services at runtime. The semantic
description of the services is done with the entities of the
domain ontology created during the project. Since the whole
process should not be composed automatically but using the
VSDT editor to describe the interconnection of the service,
the SeMa2 is also part of the design process, finding existing
service to be integrated into the developed process.

The service planner can then be used to create a first
service composition which can be adapted using the VSDT.
During the development the process can be debugged during
its execution via the built-in BPMN process interpreter of the
VSDT. This allows the inspection of the exchanged messages

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

and the developer has the ability to add or remove specific
services or to integrate transformation of the exchanged data
formats.

V. RELATED WORK

The foundation for an effective management of semantic
services lies in a well-elaborated formalism for the semantic
description of services. In this respect, a lot of research has
been done and has led to a variety of approaches, some of them
being lightweight, others coming up with a complete frame-
work solution. The authors in [23] give a detailed overview
about existing solutions, such as OWL-S, Semantic Annota-
tions for WSDL and XML Schema (SAWSDL) or the Web
Service Modeling Ontology (WSMO). Since the composition
of services, which is an essential part of our framework, highly
relies on formal expressions for preconditions and effects, we
analysed OWL-S as the most suitable one embedding the rule
language SWRL.

A comprehensive overview about approaches building upon
these formalisms, such as development tools, matching and
planning algorithms and the execution environment, is not
feasible for this publication, therefore we refer to our related
publications for this. Within the remaining section we shortly
focus on other projects that present concepts for semantic
service management.

The project Mercury [24] focused on automatic service
discovery based on the user context. For the semantic de-
scription of the services different standards such as OWL-
S and SAWSDL are supported. The project provides tool
support for the user requests and enables the developer to
insert the found services into a process chain. In contrast to
our approach, Mercury can consider different semantic service
formats, however, the user request does not allow to describe
formal preconditions or effects, but is solely focusing on key
words. Klan et al. [25] propose relevant requirements to an
efficient semantic service management with respect to service
matching. Furthermore, they define an evaluation methodology
rating the results provided by semantic matchers according
to user requirements. Within the project DIANE [26] a new
service description model has been proposed that especially
focuses on the expression of state transitions after service
invocations. Furthermore, it provides the instance-based de-
scription of service requests, which makes the reasoning
process more realistic. In contrast to that, Karastoyanova et
al. [27] focus on the problem of semantic service management
from a BPMN process perspective, providing an architecture
for Semantic Business Process Management. They cover the
whole lifecycle using the WSMO technology for the semantic
part. However, what is missing in this work is an approach
for automated service composition at runtime. The Framework
PORSCE II [28] uses AI planning techniques like LPG-td [29]
which implements a graph plan algorithm, to automatically
create service composition, with the drawback of transforming
the composition problem to a standard PDDL planning prob-
lem and thus losing the expressiveness of OWL and SWRL.

VI. CONCLUSION

In this paper, we presented a semantic service management
methodology that covers the phases of service description
modelling and deployment as well as service discovery and
composition, both at design-time and at runtime, in order

to generate adaptive and flexible systems in service-oriented
environments. Most of the phases are supported by tools
reducing the development effort. Furthermore, we presented an
inclusion mechanism into a BPMN process environment called
VSDT, where service templates can be specified within the
process structure and dynamically matched to concrete services
at runtime. Our whole approach has been included into a real
environment, where services from the electric mobility domain
have been linked to complex processes.

In the future, we will address the challenges for service
composition that were formulated in Section II-A4. Among
others, we intend to complete the integration of the specifi-
cation for the description language SWRL and to facilitate
the semantic annotation of services by further elaborating our
tools. In doing so, we see a good opportunity to foster the us-
age of service planning approaches in real world applications.

ACKNOWLEDGEMENTS

This work is funded by the German Federal Ministry of
Economic Affairs and Energy under the funding reference
number 16SBB007A.

REFERENCES

[1] M. Klusch, U. Küster, A. Leger, D. Martin, and M. Paolucci,
“5th International Semantic Service Selection Contest - Performance
Evaluation of Semantic Service Matchmakers,” Nov. 2012, last
access: 2016/03/07. [Online]. Available: http://www-ags.dfki.uni-sb.de/
∼klusch/s3/s3c-2012-summary-report.pdf

[2] J. Fähndrich, N. Masuch, H. Yildirim, and S. Albayrak, “Towards
Automated Service Matchmaking and Planning for Multi-Agent Sys-
tems with OWL-S – Approach and Challenges,” in Service-Oriented
Computing – ICSOC 2013 Workshops. Cham: Springer International
Publishing, 2014, pp. 240–247.

[3] P. A. Morris, “Combining expert judgments: A Bayesian approach,”
Management Science, vol. 23, no. 7, 1977, pp. 679–693.

[4] M. Stone, “The opinion pool,” The Annals of Mathematical Statistics,
vol. 32, no. 4, 1961, pp. 1339–1342.

[5] C. Genest, “Pooling operators with the marginalization property,” The
Canadian Journal of Statistics/La Revue Canadienne de Statistique,
vol. 12, no. 2, 1984, pp. 153–163.

[6] D. Dyer. Watchmaker Framework. Last access: 2016/05/11. [Online].
Available: http://watchmaker.uncommons.org/ (2006)

[7] W. L. Goffe, G. D. Ferrier, and J. Rogers, “Global optimization of
statistical functions with simulated annealing,” Journal of Econometrics,
vol. 60, no. 1-2, Jan. 1994, pp. 65–99.

[8] M. Klusch and P. Kapahnke. The Semantic Web Service Matchmaker
Evaluation Environment (SME2). Last access: 2016/05/11. [Online].
Available: http://projects.semwebcentral.org/projects/sme2/ (2008)

[9] M. Ghallab, D. S. Nau, and P. Traverso, Automated Planning: Theory
& Practice, D. E. M. Penrose, Ed. Morgan Kaufmann, 2008.

[10] H. Saboohi and S. A. Kareem, “A resemblance study of test collec-
tions for world-altering semantic web services,” in Int. MultiConf. of
Engineers and Computer Scientists (IMECS), vol. I, 2011, pp. 716–720.

[11] P. Doherty, W. Lukaszewicz, and A. Szalas, “Efficient Reasoning Using
the Local Closed-World Assumption,” in Agents and Computational
Autonomy. Springer Berlin Heidelberg, Jan. 2003, pp. 49–58.

[12] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical owl-dl reasoner,” Web Semant., vol. 5, no. 2, Jun. 2007, pp.
51–53. [Online]. Available: http://dx.doi.org/10.1016/j.websem.2007.
03.004

[13] E. Foundation. Eclipse. Last access: 2016/05/11. [Online]. Available:
http://www.eclipse.org/ (2016)

[14] D. Martin et al., “OWL-S: Semantic Markup for Web Services,”
Website, Tech. Rep., Nov. 2004. [Online]. Available: http://www.w3.
org/Submission/2004/SUBM-OWL-S-20041122/

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

http://www-ags.dfki.uni-sb.de/~klusch/s3/s3c-2012-summary-report.pdf
http://www-ags.dfki.uni-sb.de/~klusch/s3/s3c-2012-summary-report.pdf
http://watchmaker.uncommons.org/
http://projects.semwebcentral.org/projects/sme2/
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://www.eclipse.org/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

[15] N. Masuch, C. Kuster, and S. Albayrak, “Semantic service manager–
enabling semantic web technologies in multi-agent systems,” in Pro-
ceedings of the Joint Workshops on Semantic Web and Big Data
Technologies, INFORMATIK 2014, Stuttgart, Germany, 2014, 2014,
pp. 499–510.

[16] M. Lützenberger, T. Konnerth, and T. Küster, “Programming of multi-
agent applications with JIAC,” in Industrial Agents – Emerging Appli-
cations of Software Agents in Industry, P. Leitão and S. Karnouskos,
Eds. Elsevier, 2015, pp. 381–400.

[17] T. Küster and A. Heßler, “Towards transformations from BPMN to
heterogeneous systems,” in Business Process Management Workshops,
ser. LNBIP, D. Ardagna, M. Mecella, and J. Yang, Eds. Springer Berlin
Heidelberg, 2009, vol. 17, pp. 200–211.

[18] OMG, “Business process model and notation (BPMN) version 2.0,”
Object Management Group, Specification formal/2011-01-03, 2011.

[19] T. Küster, M. Lützenberger, and S. Albayrak, “A formal description of
a mapping from business processes to agents,” in Engineering Multi-
Agent Systems, ser. LNAI, M. Baldoni, L. Baresi, and M. Dastani, Eds.
Springer International Publishing, 2015, vol. 9318, pp. 153–170.

[20] T. Küster, A. Heßler, and S. Albayrak, “Towards process-oriented
modelling and creation of multi-agent systems,” in Engineering Multi-
Agent Systems, ser. LNAI, F. Dalpiaz, J. Dix, and M. B. van Riemsdijk,
Eds. Springer International Publishing, 2014, vol. 8758, pp. 163–180.

[21] Stanford. Protégé. Last access: 2016/05/11. [Online]. Available:
http://protege.stanford.edu/ (2016)

[22] E. Foundation. Eclipse Modeling Framework (EMF). Last access:
2016/05/11. [Online]. Available: https://eclipse.org/modeling/emf/
(2016)

[23] A. Barros and D. Oberle, Handbook of Service Description: USDL and
Its Methods. Springer Publishing Company, Incorporated, 2012.

[24] K. Opasjumruskit, J. Expósito, B. König-Ries, A. Nauerz, and
M. Welsch, “Service discovery with personal awareness in smart
environments,” Creating Personal, Social, and Urban Awareness through
Pervasive Computing, 2013, pp. 86–107.

[25] F. Klan and B. König-Ries, “A user-centered methodology for the
evaluation of (semantic) web service discovery and selection,” in
Proceedings of the 4th International Conference on Web Intelligence,
Mining and Semantics (WIMS14). ACM, 2014, p. 18.

[26] U. Küster, B. König-Ries, M. Klein, and M. Stern, “Diane: A
matchmaking-centered framework for automated service discovery,
composition, binding, and invocation on the web,” International Journal
of Electronic Commerce, vol. 12, no. 2, 2007, pp. 41–68.

[27] D. Karastoyanova et al., “A reference architecture for semantic busi-
ness process management systems,” in Multikonferenz Wirtschaftsin-
formatik, 2008, pp. 1727–1738.

[28] O. Hatzi, D. Vrakas, and N. Bassiliades, “The PORSCE II framework:
Using AI planning for automated semantic web service composition,”
Knowledge Engineering Review, vol. 28, no. 02, 2013, pp. 137–156.

[29] A. Gerevini, A. Saetti, I. Serina, and P. Toninelli, “LPG-TD: a fully
automated planner for PDDL2.2 domains,” in Proc. of 14th Int. Conf. on
Automated Planning and Scheduling (ICAPS-04) International Planning
Competition abstracts, 2004.

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

http://protege.stanford.edu/
https://eclipse.org/modeling/emf/

	Introduction
	Components
	Semantic Service Core
	Architecture of a modern Service Matcher
	Probabilistic model of opinion
	Learning Semantic Service Matcher
	Semantic Services Planner

	Development Tools
	Semantic Service and Ontology Manager
	Visual Service Design Tool

	Execution Environment
	JIAC V Multi-agent Framework
	JIAC based BPMN Interpreter

	Methodology for Semantic Service Development
	Ontology Engineering
	Creating Semantic Service Description
	Service- and Process Engineering
	Testing the Implementation against the Specification
	Deployment and Runtime Monitoring

	The EMD Use Case
	Related Work
	Conclusion
	References

