
IPv6: Now You See Me, Now You Don’t
Matthew Dunlop∗† Stephen Groat∗† Randy Marchany† Joseph Tront∗

∗Bradley Department of Electrical and Computer Engineering
†Virginia Tech Information Technology Security Office

Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
Email: {dunlop,sgroat,marchany,jgtront}@vt.edu

Abstract—Current implementations of the Internet Protocol
version 6 (IPv6) use stateless address auto configuration (SLAAC)
to assign network addresses to hosts. This technique produces a
static value determined from the Media Access Control (MAC)
address as the host portion, or interface identifier (IID), of the
IPv6 address. Some implementations create the IID using the
MAC unobscured, while others compute a onetime hash value
involving the MAC. As a result, the IID of the address remains
the same, regardless of the network the node accesses. This IID
assignment provides third parties (whether malicious or not) with
the ability to track a node’s physical location by using simple tools
such as ping and traceroute. Additionally, the static IID provides
a means to correlate network traffic with a specific user through
simple traffic analysis. We examine the techniques used to create
autoconfigured addresses. We also discuss how these techniques
violate a user’s privacy. The serious breaches in privacy caused by
SLAAC need to be addressed before deployment of IPv6 becomes
widespread. To that end, we provide a detailed taxonomy of
different methods for obscuring IPv6 autoconfigured IIDs.

Index Terms—IPv6 addressing, privacy protection

I. INTRODUCTION

The next generation of Internet protocol, the Internet Pro-
tocol version 6 (IPv6), implements new features based on
the existing Internet Protocol version 4 (IPv4). One major
change, and the driving force behind IPv6, is the address
architecture. The address space in IPv4 is limited to 32 bits.
Unallocated addresses in IPv4 are quickly being depleted and
will be exhausted by early to mid 2011 [6], [13]. To combat
the shortage of addresses in IPv4, IPv6 employs 128-bit
addresses. With the current number of Internet-ready devices
on the network, the immense address space provided by IPv6
is sparsely populated. However, as new classes of devices
become interconnected and networked, manually managing
subnets becomes complex and time consuming.

One solution being used to solve the problem of subnet
management in IPv6 is stateless address auto configuration
(SLAAC). SLAAC allows an administrator to configure the
network and subnet portion of the address, while each device
automatically configures the host portion, or interface identifier
(IID), of the address. The IID is often formed by extending
the 48-bit Media Access Control (MAC) address to 64 bits,
spanning half of the IPv6 address.

Using a node’s MAC address in the IID has serious unin-
tended consequences to a user’s privacy. While the observa-
tion that this addressing scheme could allow an attacker to
analyze payload, packet size, and packet timing was made
in RFC 4941 [11], the privacy implications that arise from

stateless address generation have not been addressed. The issue
is not only that the MAC address is used as the IID, but also
that the IID remains static. As a result, no matter what network
the node accesses, the IID remains the same. Consequently,
simple network tools such as ping and traceroute permit
tracking a node’s geographic location from anywhere in the
world. All the cyber-stalker needs to know is the location of
the subnet.

Such “cyber-stalking” is not possible in IPv4. In IPv4, a
node’s MAC address is restricted to the local subnet. Addi-
tionally, a node’s location is often obscured through the use
of the Dynamic Host Configuration Protocol (DHCP), which
leases host addresses based upon availability. Furthermore,
the deployment of carrier-grade Network Address Translation
(NAT) in IPv4 has the unintentional benefit of protecting a
host’s identity by placing it within a private address space,
which is not globally addressable.

With IPv6, a user’s privacy can also be violated through
the monitoring of network traffic. Traffic analysis can be used
to deduce an identity by correlating traffic captures from
a specific IID. This analysis is possible in IPv4, but only
for short periods of time, since DHCP addresses change. In
contrast, a static IID permits correlation of a specific user’s
data over multiple sessions. The deterministic IPv6 addresses
that globally tie users to each of their packets make this
correlation possible. Once an attacker is able to deduce a
user’s identity and location, the attacker can then target the
user for identity theft or other related crimes. Using static IIDs
to monitor traffic for identity theft is one of many potential
privacy exploits of deterministic stateless IPv6 addressing.

We will show why deterministic addresses have serious
privacy implications and why this issue should be addressed
before IPv6 is deployed globally. First, we provide background
on IPv6 in Section II. Section III describes how the deter-
ministic IID is formed. We discuss the privacy implications in
Section IV. In Section V, we provide our taxonomy of methods
for hiding users’ IIDs. In Section VI, we discuss future work.
We conclude in Section VII.

II. BACKGROUND

The tremendous growth of the Internet has created the need
for a new version of the Internet Protocol. Despite the advent
of technologies such as NAT, IPv4 will soon be unable to
support the addresses needed. Increasing the address space was
the main motivation for developing IPv6. Researchers saw the

18

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Fig. 1. IPv6 128-bit address format

need for more address space, however, as an opportunity to
improve upon an already successful IPv4.

A. Benefits of IPv6

As previously discussed in Section I, IPv6 was primarily
developed to support more address space in the Internet. An
IPv4 address, consisting of 32 bits, provides approximately
4.2 billion possible address combinations. This address space
is not sufficient to support the emerging myriad of Internet-
capable devices. Therefore, the IPv6 address was expanded
to 128 bits. This new address size allows for 2128 possible
addresses, approximately 5 · 1028 addresses for every one of
the 6.8 billion people [17] in the world.

In addition to the larger address space, IPv6 was designed
with five other main improvements. The first is simplifying the
header format to 40 bytes. The second improvement makes
the number of IP options extensible by moving the options
out of the header and into the payload of the packet. Third,
the protocol was designed to be extendible, allowing for
the future definition of additional options. Flow labeling, the
fourth improvement added to IPv6, allows for classification
of packets belonging to particular flows. With flow labels,
each router can determine which flow a packet belongs to and
prioritize the packets appropriately. The fifth and final major
improvement in IPv6 is the integration of authentication and
encryption into the protocol stack. In IPv4, Internet Protocol
security (IPsec) [9] was developed as an add-on so IPv4 did
not have to be redefined. As a result, there are inefficiencies
with its implementation. IPv6 solves this by integrating IPsec.

B. Stateless IPv6 Addressing

The large size of the IPv6 address space requires a new
network address configuration architecture to simplify network
administration. For this reason, IPv6 combines a Neighbor
Discovery Protocol (NDP) [12] with SLAAC to allow for
nodes to self-determine their IP addresses. Designed as a
replacement for the Address Resolution Protocol (ARP), NDP
facilitates nodes within a particular subnet learning of other
nodes on the link using Internet Control Message Protocol
version 6 (ICMPv6) messages. Once an NDP message is
received, the node uses the network portion of the address to
configure the first 64 bits of its IPv6 address. For the last 64
bits, the node automatically configures an address, designated
as the IID of the address. The final step combines the 64-
bit network address with the 64-bit host address to form a
complete 128-bit IPv6 address (See Fig. 1).

NDP and SLAAC eliminate the need for DHCP addressing
services currently implemented on the majority of IPv4 net-
works. DHCP implements a client-server architecture in which

Fig. 2. 64-bit Extended Unique Identifier (EUI-64) format

a DHCP server assigns addresses to clients and keeps state
of which addresses have been assigned to particular clients.
DHCP also exists for IPv6 in the form of DHCPv6. The
sparse address space and the ease of address autoconfiguration,
however, make DHCPv6 addressing an unnecessary service.
The extra expense and network complexity involved in DHCP
addressing have been removed with NDP and SLAAC.

III. DETERMINISTIC IID

Due to the current accepted definition of SLAAC on most
operating systems, the IID of a node’s IPv6 address is de-
terministic across networks. For the last 64 bits, the node
automatically configures an address based upon the MAC
address of its network interface. By extending the 48-bit MAC
address to 64 bits through the EUI-64 format [7], the IID of
an IPv6 address is created. The EUI-64 format splits the 48-
bit MAC address into two 24-bit halves. The 16-bit hex value
0xFFFE is inserted between the two halves to form a 64-bit
address. Also, the universal/local flag, located at bit seven of
the 64-bit host portion, is set to universal. Fig. 2 illustrates
this process.

While different operating systems configure IPv6 addresses
differently, no current operating system implementations of
IPv6 stateless addressing dynamically obscure the IID of all
IPv6 addresses on the system. OS X and common Linux
distributions, such as CentOS and Ubuntu, follow the EUI-
64 format. The MAC address appears virtually unaltered in
the IPv6 address. The Windows operating system obscures
the host portion of an IPv6 address according to RFC 4941
and sets a temporary address [11], [16]. Windows operating
systems, however, also carry another IPv6 address used for
neighbor solicitation. This other IPv6 address contains an IID
that is obscured but never changes, regardless of the subnet
the node connects to. Not dynamically obscuring a user’s
host portion for all of the IPv6 addresses associated with a
system threatens a user’s privacy. The static IID currently
implemented in major operating systems can be linked to a
particular node, even as the node changes networks.

19

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Many mobile devices, such as Android and iPhone, sup-
port IPv6 in WiFi. Their implementations follow the EUI-64
format, providing these mobile devices with static IIDs that
are easily tracked on their WiFi connections. Since most users
frequently carry their mobile devices and leave them on and
connected, the ability to track a user is increased dramatically.
While the need to address the privacy concerns in Mobile IPv6
has been identified [3], [10], [14], it does little good until
the privacy concerns due to IID tracking are addressed. Since
Mobile IPv6 would only be applied to the cellular connections
and the majority of these wireless devices also deploy WiFi,
users can still be tracked through their wireless devices as they
move between different WiFi networks. Therefore, address
privacy must be dealt with for all connections of a mobile
device to assure complete privacy.

IV. PRIVACY IMPLICATIONS

The static IID created by the EUI-64 format and the
Windows operating systems compromises a user’s privacy.
Creating a static IID from a MAC address allows nodes to be
logically and geographically tracked as they travel to different
networks. Since the EUI-64 format results in a deterministic
IID, users can be tracked on a network by scanning different
subnets and searching for the MAC-generated IIDs. Using
simple commands such as ping and traceroute, the location of a
user can be determined with reasonable geographic accuracy.
Even the Windows obscuration of the IID within the IPv6
address does not protect a user. By locally capturing a user’s
traffic once, a specific user can be paired with the determin-
istically obscured IID and tracked with the same technique of
searching subnets as used for unobscured host addresses. Since
the obscuration occurs independent of the network, a Windows
host carries the same obscured IID between networks.

By monitoring the traffic on a network over an extended
period of time, a single user’s traffic can be identified and an-
alyzed. Armed with this data, a third party (whether malicious
or not) can potentially tie a device to its actual user. As the user
crosses different subnets, traffic can be collected and correlated
by examining the static IID. This vulnerability to tracking
does not typically apply when using IPv4. Most medium to
large IPv4 networks implement DHCP, which changes user
addresses randomly. As a result, DHCP logs are needed to tie
traffic sniffed from a network with a particular user. Due the
to the deterministic IID in IPv6 SLAAC, simple filters could
be created to filter the traffic of a single user on any subnet.
This would allow an interested party to identify and monitor a
user’s on-line activity through traffic analysis. In a dual-stack
implementation where a node uses a mixture of IPv4 and IPv6,
special ICMPv6 Neighbor Solicitation messages can provide
an interested party with the IPv4 address linked to an IPv6
address. This correlation allows for traffic collection to extend
to IPv4 for a single session.

Tracking users or monitoring their on-line activity is not
the only concern. If it was known that location or traffic
monitoring was occurring, a malicious host could spoof the
IID of an innocent node. The malicious node could then

masquerade as the innocent node and create false traffic or
locations using the innocent node’s IID.

V. POSSIBLE SOLUTIONS

There are three primary classifications for protecting a user’s
IID from tracking and monitoring. The most straightforward
classification is dynamic obscuration of the IID. The second
classification is third party address assignment. The final
classification is address tunneling.

A. IID obscuration

There are two methods proposed for obscuring the IID when
using stateless generation of IPv6 addresses. The first method
uses cryptographically generated addresses (CGAs) [2]. The
second method uses privacy extensions for static IIDs [11].

1) Cryptographically Generated Addresses: CGAs are IPv6
IIDs that are generated by hashing a sender’s public key
and other parameters [2]. Although CGAs can be used with
multiple applications, they were originally designed to work
with the SEcure Neighbor Discovery (SEND) protocol [1]
to prevent denial of service attacks. Since CGAs obscure a
sender’s IID, they could prevent tracking a user through their
autoconfigured IPv6 address. There are, however, a number
of disadvantages to using CGAs for dynamically obscuring an
IPv6 IID.

The main disadvantage to using CGAs is the cryptographic
cost of CGA generation. In order to generate a CGA, the
sender must apply the SHA-1 hash algorithm to the CGA
parameters a minimum of two times. The CGA parameters
consist of the concatenation of a pseudo-random number, the
sender’s public key, nine zero octets, and optional fields. The
first hash calculation generates Hash2. The ease of achieving
an acceptable Hash2 value depends on the strength of the
security parameter (Sec). The Sec is a three-bit value used to
determine how many leading zeros Hash2 must contain. Hash2
must have 16 · Sec leading zeros. If it does not, a pseudo-
random number is incremented and Hash2 is recalculated.
Hash2 continues to be recalculated until this condition is met.
This can result in a large number of hash calculations. In fact,
RFC 3972 states that on average it takes O(216·Sec) iterations
to generate a CGA [2].

After Hash2 is successfully calculated, Hash1 is calculated
using the CGA parameters with the final pseudo-random
number used to generate Hash2. The left-most 64 bits of the
SHA-1 output are used as the IID with the exception of bits 0-
2, 6 and 7 used for other purposes. Duplicate address detection
is conducted as required [1]. If a collision occurs, a collision
count field is incremented and Hash1 is recalculated. This is
repeated at most three times after which, CGA calculation
stops [2]. It is possible that after all of these hash calculations
no CGA will result and the process will need to start anew.

These repeated hash calculations require minimal overhead
for the average personal computer, but are likely infeasible for
most handheld devices due to limited power and computational
capability. To help mitigate this cost, RFC 3972 discusses that
CGAs can be precomputed or offloaded to more powerful

20

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

computers [2]. This solution, however, does not help a user
connecting to a network for the first time, which is not uncom-
mon when roaming with a handheld device. Additionally, the
CGA generation cost makes it prohibitive for users to generate
new CGAs. Thus, CGAs for subnets will be deterministic.

There are two possible implementation alternatives to re-
duce the cost of CGA generation. The first involves setting
Sec = 0. By setting Sec = 0, Hash2 is not required to have
any leading zeros. This means that the calculation of Hash2
is not required [2]. The problem with this alternative is that
the CGA becomes susceptible to a brute-force attack. If the
CGA is used only to prevent IPv6 address tracking, this may
not be a concern. However, if the intent is to also protect the
IID from denial of service or address spoofing, this alternative
is not acceptable.

The second implementation alternative is to omit the subnet
prefix from CGA generation [2]. By omitting the subnet prefix,
senders need only calculate the CGA once. The same CGA can
be used for multiple subnets without having to go through the
expensive CGA generation for every subnet. The downside is
that the IID is again deterministic across multiple subnets. This
alternative maintains the benefit of protection against brute-
force attack through the security parameter, but leaves senders
vulnerable to address tracking.

Even if users do change their CGA every time they connect
to a subnet, they can still be tracked. Senders using CGAs
send their CGA parameters along with their IPv6 address
for verification purposes. The CGA parameters contain the
users’ public key. Unless senders also generate new public
keys for every connection, they can be tracked through their
CGA parameters.

An additional disadvantage of using CGAs is that an at-
tacker can easily impersonate or slander a user by forming
a CGA claiming to be the target. Asymmetric key pairs are
self-generated to eliminate the key management infrastructure.
As a result, anyone can generate a key pair and claim to be
someone else. RFC 3972 claims that CGAs protect against
address spoofing [2]. This is only true in the case where an
attacker attempts to hijack an existing session between two
nodes. An attacker is free to initiate new sessions claiming to
be someone else. By doing this, an attacker can make it appear
as if a target is behaving in a certain way to others who are
monitoring the target on the network. Spoofing is common in
IPv4, but CGAs in IPv6 make a spoofed address appear more
authentic.

Requiring the use of public keys to form CGAs is another
drawback. One of the strengths of stateless autoconfiguration
of IPv6 addresses is that it is transparent to users. Requiring
users to generate asynchronous key pairs removes this trans-
parency. Many users do not have asynchronous key pairs or
even understand the concept. As a result, most users will not
implement CGAs to obscure their addresses.

The remaining vulnerabilities do not affect tracking of users,
but how an attacker can take advantage of flaws in CGAs to
achieve malicious results. For instance, a man-in-the-middle
can cause all data checks to fail by modifying any of the

CGA parameters sent with the IPv6 address. This can be
accomplished by changing the collision count to a number
greater than two, because the collision count is only valid for
values of 0-2. An attacker also can hijack a connection by
finding a CGA hash collision. Only 59 bits (64 bits minus
bits 0-2, 6, and 7) of the SHA-1 hash are used for the CGA.
Using the birthday attack [15], a collision can be found in
259/2 guesses on average.

Despite the numerous disadvantages of CGAs, there are
several advantages. The primary advantage is, of course, that
CGAs obscure a sender’s IID. Even if senders do not go
through the costly procedure of computing a new CGA every
time they connect to a network, they will at least have a
different deterministic CGA for every subnet. This will make
an attacker’s attempt at tracking a target much more difficult.
In order for an attacker to track a target, the attacker will need
to know the sender’s CGA on every subnet. Another benefit
of using CGAs is that they require no key management infras-
tructure [2]. Since CGAs can use user-generated asymmetric
key pairs, there is no need for a certification authority, making
CGAs scalable.

2) Privacy Extensions: The privacy extensions proposed in
RFC 4941 provide another way to obscure the IPv6 IID. Where
the goal of CGAs is primarily to provide security of IPv6
addresses for the SEND protocol as discussed in Section V-A1,
the goal of implementing privacy extensions is to prevent
an attacker from correlating network traffic with a particular
user. Privacy extensions produce a random IID by hashing the
concatenation of a user’s IID and a 64-bit “history value.”
This “history value” is initially generated from the rightmost
64 bits of a hashed random number. Subsequently, the “history
value” becomes the previously calculated 64-bit hash result.
The random IID is formed using the leftmost 64 bits of the
resultant hash calculation with the “u” bit (bit 6) set to zero for
local scope. Duplicate address detection is then performed on
the random IID to detect duplicate IIDs on the local network.
If a duplicate IID is detected, a new “history value” is formed
and the process is repeated [11].

Using privacy extensions to obscure a user’s IID is much
more appealing than using CGAs for several reasons. First,
the cryptographic cost is much lower. Assuming no duplicate
address is detected, privacy extensions require only one hash
calculation by the sender at IID generation and none by
the receiver. With CGAs, the sender requires on average
O(216·Sec) hash calculations to generate a CGA, and the
receiver is required to complete two hashes to verify the CGA.
The cryptographic cost of using privacy extensions is more
feasible, allowing a node to change their IID often.

The use of privacy extensions does not require the use
of a public key [11]. As a result, implementation of privacy
extensions are more transparent to the user. Additionally, there
are no required accompanying parameters that can be used to
link a sender to the random IID.

Privacy extensions are more effective at obscuring IIDs than
CGAs because of the lifetime of a generated IID. Having
users generate new IIDs when they connect to new subnets

21

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

effectively masks users’ activities on the Internet, but it
does nothing for users that never migrate from a particular
subnet. A CGA user that never moves between subnets (e.g.,
a desktop computer) would not necessarily ever generate a
new random IID. The privacy extensions specification uses
a TEMP VALID LIFETIME parameter to set the maximum
amount of time a random IID can be used before needing to be
regenerated [11]. This feature improves on DHCP addresses
that may last months or longer.

Implementing random IIDs through privacy extensions does
have disadvantages. Just as with CGAs, IID collisions are
possible [11]. Since only 64 bits of the hash calculation are
used, the chance of hash collisions increases. Similar to CGAs,
the generation process terminates after a set number of IID
collisions.

As mentioned previously, privacy extensions specify several
different parameters to limit the time a random IID is valid.
The default values of these parameters are set too long. The
TEMP PREFERRED LIFETIME parameter is set to one day
and specifies the preferred life of a random IID. The default
value of TEMP VALID LIFETIME is one week. An applica-
tion can force an address to use TEMP VALID LIFETIME
rather than TEMP PREFERRED LIFETIME. Additionally,
RFC 4941 states that a new random IID should be computed
when connecting to a new subnet [11]. It does not state that
this must be done. Users choosing not to change IIDs and
accepting the default expiration times could be monitored for
up to a week at a time before an attacker needs to reestablish an
identity pairing. Fortunately, RFC 4941 allows users to modify
these defaults.

An unfortunate side-effect of privacy extensions is that
IIDs are obscured from everyone, including network admin-
istrators. Combined with frequently changing and obscured
IIDs, privacy extensions make fault isolation and debugging
difficult [11]. With CGAs, public keys are tied to addresses.
When DHCP is used, system administrators can track changes
in addresses, while still protecting a user’s identity.

CGAs are more robust than privacy extensions in that they
can protect a sender’s address from spoofing once a session
has been initiated. Since there is no verification process im-
plemented by privacy extensions, an attacker can easily inject
new traffic claiming to be the sender. However, preventing this
type of malicious activity is not one of the design goals of
privacy extensions. This type of attack, however, is mitigated
by frequently changing a user’s IID.

B. Third Party Address Assignment

DHCPv6 provides third party address assignment for
IPv6 [5]. Instead of allowing a client to configure his/her
own address, a DHCP addressed network requires a DHCP
server in order for a client to get an address on a network.
DHCP addresses are leased to clients when they connect to
the network. If the network is not overloaded with clients, a
client may receive the same DHCP address each time he/she
connects. For heavily populated networks, clients may receive
different addresses each time they connect.

There are several advantages to using DHCPv6. First,
DHCPv6 provides IIDs that are not necessarily tied to a user.
A user may receive a different DHCPv6 address each time
he/she connects. Whereas collisions were possible with the
address obscuration techniques discussed in Section V-A, a
properly configured DHCPv6 server should not issue dupli-
cate addresses. Although DHCPv6 can operate without any
cryptographic cost for address generation or verification, it is
worth noting that DHCPv6 can be configured to use optional
authentication [5]. DHCPv6 authentication uses shared keys
which, although more cryptographically efficient, do not scale
well.

Despite these advantages, DHCPv6 does not necessarily
protect a user’s identity well because the IPv6 address space
is sparsely populated. As a result, there will likely be little
competition for addresses when connecting to even the most
populated subnets. Therefore, users should expect to get the
same address each time they connect to the network. This
may change over time as more devices connect to the net-
work, and the address space becomes more densely populated.
However, the DHCPv6 specification promotes static addresses.
Unless specifically requested by the client using the Identity
Association for Temporary Addresses (IA TA) option, the
client will be issued a non-temporary address [5]. A static
address, whether generated by the client itself or issued by
a DHCP server, exposes the user to monitoring. If IA TA is
implemented, it would be provided through the use of privacy
extensions discussed in Section V-A2.

Even if temporary addresses are requested, an attacker may
still be able to monitor a user. For example, the server controls
how often a client’s address changes, not the client. The client
does have the option to specify a preferred-lifetime and a valid-
lifetime, but the timing of an address change is ultimately de-
termined by the server. Additionally, communications between
client and server use what is called a DHCP Unique Identifier
(DUID). The DUID is a globally unique value that should
never change [5]. The DUID is used in many of the DHCP
exchange messages and could be used by an attacker to track
a target’s presence on a network. Once the attacker locates the
user, the attacker can monitor the DHCP exchanges to harvest
the IPv6 address. The scope of this attack is limited to the
subnet of the user, the DHCP server, or any relays.

A final downside to using DHCPv6 versus stateless address
autoconfiguration is that it must be managed. This could add
a tremendous burden on network administrators as more and
more devices connect to the network. DHCPv6 also increases
the chances of incorrect configuration, which may lead to other
vulnerabilities.

C. Address Tunneling

Address Tunneling can be achieved through the use of
Internet Protocol Security (IPsec). IPsec is not a very compre-
hensive method to use for masking IPv6 addresses, but it can
provide excellent obscuration from external attackers. IPsec
provides authentication and/or encryption to network layer
packets. For the purposes of obscuring IPv6 addresses, we re-

22

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Fig. 3. IPv6 packet encrypted using IPsec in tunnel mode

fer only to the encryption aspect provided by the encapsulating
security payload (ESP) as illustrated in Figure 3. Specifically,
ESP used in tunnel mode provides address obscuration. When
used in tunnel mode, ESP encrypts the entire IPv6 packet
and provides a new IPv6 header, complete with new source
and destination addresses [8]. The new source and destination
addresses are those of the endpoints of the tunnel. It should
not be possible for devices external to the tunnel to learn the
true identity of the sender or receiver. The tunnel endpoints
are typically network gateway devices. Although it is possible
for the sender and receiver to act as tunnel endpoints in
IPv6, this technique would gain very little privacy. A host
acting as its own tunnel endpoint would be easy to link as
the actual target host. The ability to link to the target host
can be prevented by using one of the obscuration techniques
described in Section V-A after applying ESP. Using IPsec for
this purpose, however, would then be pointless.

There are three main benefits to using IPsec in tunnel
mode to obscure IPv6 addresses. As mentioned previously,
the sender’s address is hidden from those external to the
tunnel. Second, the cryptographic burden of encryption and
decryption is offloaded to the gateway devices. This makes
address obscuration feasible for devices limited by battery or
computational power, such as handheld devices and sensors.
Also, since the address used is that of the gateway devices,
there are no address collisions as there were in the address
obscuration techniques discussed in Section V-A.

Unfortunately, IPsec in tunnel mode does not provide any
address protection from an attacker inside the sender’s or
receiver’s subnets. Since address obscuration does not occur
until the packet reaches the gateway, an attacker monitoring
the subnet will have no trouble monitoring users through their
IIDs. This does, however, limit the scope of the attack to the
two subnets mentioned.

Perhaps an even bigger issue is the requirement for a
key management infrastructure. Wide-scale deployment of
IPsec requires a global trust model in place as well as a
management infrastructure [4]. In today’s infrastructure, only
those networks with security requirements utilize IPsec. It
is not reasonable to assume that networks would implement
IPsec for address obscuration purposes.

VI. FUTURE WORK

The next phase of our research is to design and implement
an address obscuration technique. Each of the techniques
described in Section V has associated shortcomings. Those that
obscure the IPv6 IID, are not feasible for resource constrained
devices. Third-party address assignment and address tunneling
have scope limitations. Our technique is designed to minimize

computational complexity while avoiding scope limitations,
thus being feasible for power-constrained devices. We also
plan to test the validity and overhead of our design using our
campus-wide IPv6 production network.

VII. CONCLUSION

IPv6 is a definite improvement over IPv4, allowing more
devices to connect to the Internet using globally unique
addresses. SLAAC, however, violates a user’s privacy and
needs to be addressed before IPv6 is deployed. A number of
different methods can be used to obscure a user’s IID from
monitoring. Each method comes with its associated benefits
and shortcomings. Currently, the privacy extensions outlined
in RFC 4941 [11] appear to provide the best balance of
both. Privacy extensions provide an unmanaged solution to
address obscuration with low cryptographic cost. However, the
current lack of computational power of many handheld devices
combined with possible address collisions are likely obstacles
to implementing this algorithm. Regardless of which solution
is implemented, some method of obscuring IIDs should be
deployed as part of operating systems and embedded devices
to protect the privacy of users.

REFERENCES

[1] J. Arkko, J. Kempf, B. Zill, and P. Nikander. SEcure Neighbor Discovery
(SEND). RFC 3971 (Proposed Standard), Mar. 2005.

[2] T. Aura. Cryptographically Generated Addresses (CGA). RFC 3972
(Proposed Standard), Mar. 2005. Updated by RFCs 4581, 4982.

[3] C. Castelluccia, F. Dupont, and G. Montenegro. A simple privacy
extension for mobile IPv6. In Mobile and Wireless Communication
Networks, IFIP TC6 / WG6.8 Conference on Mobile and Wireless
Communication Networks (MWCN 2004), pages 239–249, Oct. 2004.

[4] A. Choudhary. In-depth analysis of IPv6 security posture. In The
5th International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom 2009), pages 1 –7, Nov.
2009.

[5] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney.
Dynamic Host Configuration Protocol for IPv6 (DHCPv6). RFC 3315
(Proposed Standard), July 2003. Updated by RFCs 4361, 5494.

[6] A. Gonsalves. IP addresses predicted to be exhausted in 2011. Infor-
mationWeek, July 2010.

[7] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC
4291 (Draft Standard), Feb. 2006.

[8] S. Kent. IP Encapsulating Security Payload (ESP). RFC 4303 (Proposed
Standard), Dec. 2005.

[9] S. Kent and K. Seo. Security Architecture for the Internet Protocol.
RFC 4301 (Proposed Standard), Dec. 2005.

[10] R. Koodli. IP Address Location Privacy and Mobile IPv6: Problem
Statement. RFC 4882 (Informational), May 2007.

[11] T. Narten, R. Draves, and S. Krishnan. Privacy Extensions for Stateless
Address Autoconfiguration in IPv6. RFC 4941 (Draft Standard), Sept.
2007.

[12] T. Narten, E. Nordmark, W. Simpson, and H. Soliman. Neighbor
Discovery for IP version 6 (IPv6). RFC 4861 (Draft Standard), Sept.
2007.

[13] Remaining IPv4 address space drops below 5%. Available at: http:
//www.nro.net/media/remaining-ipv4-address-below-5.html/, Oct. 2010.

[14] Y. Qiu, J. Zhou, F. Bao, and R. Deng. Protocol for hiding movement
of mobile nodes in Mobile IPv6. In 62nd IEEE Vehicular Technology
Conference, volume 2, pages 812 – 815, Sept. 2005.

[15] W. Stallings. Cryptography and network security (2nd ed.): principles
and practice. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[16] Introduction to IP version 6. Available at: http://download.microsoft.
com/download/e/9/b/e9bd20d3-cc8d-4162-aa60-3aa3abc2b2e9/ipv6.
doc accessed on 24 May 2010.

[17] U.S. & World population clocks. Available at: http://www.census.gov/
population/www/popclockus.html/ accessed on 4 Mar 2010.

23

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

