
A Complementary Approach for Transparent NAT Connectivity

Lucas Clemente Vella, Lásaro Camargos, and Pedro Frosi Rosa
Computing Faculty

Federal University of Uberlândia
Minas Gerais, Brazil

Email: lvella@comp.ufu.br, {lasaro, frosi}@facom.ufu.br

Abstract—NAT has been responsible for the survival of
IPv4 and in essence should not be left out in IPv6. NAT
are virtually transparent to client-server applications that
generally do not require special configuration to work properly.
However, P2P applications are responsible for generating about
half of Internet traffic and require special settings on home
routers to support outside connections. This paper presents
a complement to the UPnP IGD protocol, including changes
in the core of the Linux operating system, to make NAT
traversal transparent to home and small office users in the
use of P2P applications or in providing services to the outside
world. Our approach overcomes some of the major limitations
of NAT solutions, by extending existing standard behaviours.
In the proposed solution, current applications need no changes
once the transparency is provided through the improvement
made in the network related system calls. Tests using a
reference implementation and network applications supports
the feasibility of the approach.

Keywords-Network Address Translation; NAT traversal; UPnP;
home networks.

I. INTRODUCTION

Network Address Translation (NAT) is a commonly used
tool to bridge Local Area Networks (LAN) to the Internet,
effectively allowing multiple clients to share one valid
Internet link. In the usual setup, there is a single public
IP address, which can be reached from outside the LAN,
and multiple private IP addresses used by the local clients
to communicate among themselves. When a local client
tries to reach an Internet host, the device in the role of
Internet gateway (usually, a small router) performs the
necessary address translations, so the message is transparently
forwarded via the single public address.

For the network usage pattern of conventional client appli-
cations, where the client always initiates the communication
with a server, NAT is transparent. Once the first contact is
made from inside the LAN, the Internet gateway is able to
automatically handle the responses from the server, turning
the translation step invisible to most ordinary TCP/IP clients.

While restricted to servers and datacenters in the dawn of
the Internet, programs who wait for incoming connections
are increasingly more frequent to the users of NAT, namely
the home and office Internet users, specially with the great
popularity of Peer-to-Peer (P2P) software. To these programs,
NAT is not totally transparent and requires explicit network

configuration in the gateway to be able to receive external
requests.

In order to let P2P and server applications receive connec-
tion from the Internet in the presence of NAT, a technique
known as NAT traversal must be implemented. The burden of
implementing NAT traversal, however, is placed either on the
user, that must have the expertise to configure his equipment,
or in the software developer, who must support the protocol
to configure the router, increasing the development cost.

We argue that NAT transparency should be taken one step
further, and the role of traversing NAT should be pushed
inside the network stack, being performed by the operating
system. In this paper we present a proof of concept extension
to the Linux operating system to provide transparent NAT
traversal through the standard network API.

In Section II some related work is reviewed. In Section III
the proposed integration of NAT traversal with the network
stack is explained. In Section IV the reference implementation
is detailed along with its protocols. Section V enumerates
the test cases for the implementation and its results. Finally,
Section VI draws some conclusions and proposes directions
on which this work might be improved.

II. BACKGROUND

With the usage of NAT in home and office gateways,
services provided internally are not readily accessible from
the outside. This problem has spawn a number of solutions,
that targets various levels of abstraction in the network stack.

A. Other Home Network Solutions

The HomeDNS [1] approach works on the level of
resource names, with emphasis on HTTP services, which are
common for multimedia streaming applications. It provides a
dynamic Domain Name Service (DNS) solution that is able
to reference, from the external network, the multiple services
available inside the home network, which in turn are used to
build the URLs for the HTTP requests. This work concerns
itself with augmenting to the Internet the reach of HTTP
services targeted at the LAN. Differently, ours addresses
connectivity issues of any TCP or UDP applications already
targeted to the Internet.

Next to HomeDNS, the solution presented in [2] provides
means to expose local services of home networks in remote

227Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

EJEC
T

DVD
-RWDVD
-RW

USB

SATA

PH
ON

E
MI
C

LIN
E-
IN

AUD
IO

POWER

CAR
D

REA
DER

NumLock
Caps

Lock
Scroll

Lock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-

+Scroll
Lock

ScrnPrint
SysRq

Pause
Break

Home

End
Page

Down

Page
Up

Insert

Delete
Enter

End

Home
PgUp

PgDn

Del.

Ins

F1 F2 F3 F4
F5 F6 F7 F8

F9 F10 F11 F12

Esc
1 2 3 4 5 6 7 8 9 0(

)
*

&
^

%
$

#
@

!
`~

-_ =+ \|

Ctrl

Ctrl
Alt

A S D F G H J K L

Caps
Lock

;: '"

Z X C V B N M

Shift

Shift

/?
.>

,< Alt Gr

Q W E R T Y U I O P [{]}

Tab

LCD-Pro

SELECT

MENU

-
+

EJEC
T

DVD
-RW DVD
-RW

USB

SATA

PH
ON
E

MI
C

LIN
E-
IN

AUD
IO

POWER

CAR
D

REA
DER

NumLock
Caps

Lock
Scroll

Lock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-

+ Scroll
Lock

Scrn Print
SysRq

Pause
Break

Home

End
Page

Down

Page
Up

Insert

Delete
Enter

End

Home
PgUp

PgDn

Del .

Ins

F1F2F3F4
F5F6F7F8

F9F10F11F12

Esc
1234567890 (

)
*

&
^

%
$

#
@

!
` ~

- _= +\ |

Ctrl

Ctrl
Alt

ASDFGHJKL

Caps
Lock

; :' "

ZXCVBNM

Shift

Shift

/ ?
. >

, <Alt Gr

QWERTYUIOP[{] }

Tab

LCD-Pro

SELECT

MENU

-
+

ISP

LAN 1

Peer 1

Peer 2

Peer 3

Web Server Peer 4

EJEC
T

DVD
-RW DVD
-RW

USB

SATA

PH
ON
E

MI
C

LIN
E-
IN

AUD
IO

POWER

CAR
D

REA
DER

NumLock
Caps

Lock
Scroll

Lock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-

+ Scroll
Lock

Scrn Print
SysRq

Pause
Break

Home

End
Page

Down

Page
Up

Insert

Delete
Enter

End

Home
PgUp

PgDn

Del .

Ins

F1F2F3F4
F5F6F7F8

F9F10F11F12

Esc
1234567890 (

)
*

&
^

%
$

#
@

!
` ~

- _= +\ |

Ctrl

Ctrl
Alt

ASDFGHJKL

Caps
Lock

; :' "

ZXCVBNM

Shift

Shift

/ ?
. >

, <Alt Gr

QWERTYUIOP[{] }

Tab

LCD-Pro

SELECT

MENU

-
+

LAN 2

Peer 5

Peer 6

Ctrl
Fn

Alt

Alt Gr

Ctrl

Shift

Z

X

C

V

B

N

M

,

.

/

A

S
D

F

G

H

J

K

L

;
'

Q

W

E

R

T

Y

U

I

O

P

[

]

1

2
3

4

5
6

7
8

9
0

-
=

!

@

#

$

%

^

&

*

(

)

_

+

4

5

6

*

{

}

7

8

9

/

1

2

3

_

0

\

|

:

"

<

>

?

.

+

`
~Esc

F1

F2

F3

F14
F5

F6

F7

F8

F9

F10
F11

F12

Caps LockTab

NumLk
Scr Lk SysRqPrtSc BreakPause

Ins

Del

Backspace

Enter

Shift

Home

Pg Up

Pg Dn

End

$

€

Figure 1. Reachability among peers behind NAT

guest networks. The work is specially focused on UPnP
media servers and services targeted to the inside network,
which access is intentionally restricted by the local network
and requires tight control on its exposure. The difference of
our solution it that ours is targeted to services that should be
externally exposed, but are not due to the network topology.

In [3], some requirements of home gateways are identified.
The work tries to address the issues found at home networks
by designing a new home gateway, that is, a replacement
for the gateways that we currently find in the market. It
would provide the means to access internal services from
the Internet, but would not dive into details on how it should
be done with existing applications behind NAT, except that
saying that UPnP IGD protocol could be, in the future, used
to perform NAT traversal. Our approach is more pragmatic
in that we solve only one problem, namely, NAT traversal,
and do so without pushing for new equipment.

B. Internet Protocol v.6 (IPv6)

It has become a common practice among Internet Service
Providers (ISP) to assign a single IP addresses to small
customers, such as households and small offices. While
the practice is somewhat justified by the IPv4 address
exhaustion problem, it is possible that even with the eventual
widespread adoption of IPv6 [4] (which eliminates the
exhaustion problem) the ISP may still assign single addresses
to their Small Office/Home Office (SOHO) customers. The
Brazilian Internet Steering Committee (CGI.br) states, in a
website dedicated to IPv6 adoption, that this is an acceptable
practice [5]. In such a scenario, if multiple clients are to
connect to the Internet, then there must be a way to share one
valid Internet link with these clients; the Network Address
Translation has become the de facto standard for doing so.

If NAT is still to be useful in an IPv6 world, then NAT
drawbacks will persist, and the solution presented in this work
will still be relevant, even without the address exhaustion
problem.

C. NAT Transparency

NAT is an abstraction. One network element, the Internet
gateway, is aware of the abstraction and hides the address
translation complexity behind the standard interface of
UDP/TCP and IP. Network applications unaware of NAT
are functional as long as they do not need to expose any
service to the external network. Upon this need, the effect
of being behind NAT is felt.

Consider the Fig. 1, depicting a directed graph whose
reachability from one node to another means the ability of
this node to initiate a communication with the other via the
Internet. While Peer 1 needs are nothing but to access the
Web Server, the NAT taking place on LAN 1 router will
not be felt. There is no problem, either, if Peer 2 wants
to download a file via some P2P application from Peer 4,
because, since it is a initiative from Peer 2, it will be able
to open the needed TCP connection to Peer 4. The problem
occurs on the opposite. By its own initiative, Peer 4 will
not be able to establish the TCP connection of the P2P
application to Peer 2, because the farthest Peer 4 can address
is the LAN 1 router. Worse, Peers 1, 2 and 3 are invisible to
Peer 5 and 6 (and vice-versa) on a P2P environment. Same
problem if Peer 3 tries to join a game session hosted by
Peer 6, because it has nowhere to send the first UDP packet
that would let it into the game, once Peer 6 IP address is
masqueraded by LAN 2 router.

To counter these problems, the router must be configured
to follow-up TCP connection attempts or unknown UDP
packets to specific hosts and ports inside the network, and

228Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

this host is the one running the application responsible to
deal with the request. One should note that this is not simply
IP routing, since the destination address of the IP datagram
is the one of the gateway itself (which is public), not the
one of the application’s host (which is private).

Listening applications are those that either expect for the
incoming of TCP connections or the first contact from the
remote UDP peers. The need of some listening applications to
be externally reachable started to weaken the NAT abstraction.
The widespread use of NAT made it a concern to users
and developers of those applications. It is now common
to find applications implementing protocols to configure
automatically gateway equipments on regarding NAT. It is
also common to find advanced P2P users aware of the issue
and experienced in manual NAT traversing setup.

The current scenario is that there are NAT-aware users
running NAT-aware applications on top of unaware oper-
ating systems communicating through an Internet gateway
implementing the NAT technique; whose design goal is to
be invisible. As stated by NAT’s RFC:

“Basic Network Address Translation or Basic NAT
is a method by which IP addresses are mapped from
one group to another, transparent to end users.” [6]

D. UPnP and NAT Traversing

Listening applications’ developers found in the protocol
commonly known as UPnP the means to hide the complexity
of NAT traversing from their users. UPnP, which stands for
Universal Plug and Play, is a set of protocols for discovery
and automatic configuration of home networks. Initially
developed by Microsoft [7], it is now maintained by the
industry consortium named UPnP Forum [8].

UPnP protocols are built on top of HTTP and its UDP
version, HTTPU, where its messages are XML based. As
such, UPnP protocols are application level protocols, with
relatively high overhead and complexity. This design choice
renders unpractical the implementation of the protocols in
low-level software, like operating system kernels, because the
software stack providing those base technologies are often
unavailable at this level.

Among the provided protocols, there is the UPnP Internet
Gateway Device Protocol (UPnP IGD), whose goal is to con-
trol and configure small network gateways. Despite numerous
security flaws in many and popular implementations [7], [9],
[10], it became the most well supported NAT traversing
mechanism by applications and routers. The competing NAT-
PMP [11] protocol, despite being much simpler, is young
and still does not have the availability of UPnP IGD among
off-the-shelf devices.

UPnP IGD Protocol plays an important role in SOHO
local networks, because it is the protocol being simply
referred as UPnP by the listening applications implementing
it, rendering it one of the most common NAT traversal
techniques available.

The term UPnP is also commonly used to refer to a
functionality present in networked multimedia applications.
This usage of the term is a shorthand for UPnP Audio/Video,
which is another set of protocols developed by the same UPnP
initiative targeted to multimedia streaming, but is otherwise
unrelated to the UPnP IGD, which is the one relevant to this
work.

When using UPnP, the listening applications inside the
network shares the same TCP or UDP address space,
allocated in the gateway. Thus, if one application exposes one
TCP port to the Internet, another LAN application willing to
listen on the Internet must choose another port. This usually
does not results in a port scarcity issue, since UPnP is meant
to be used in small home and office networks. The 16 bit
address of a port is often enough to serve all the Internet
applications of these small networks.

The same port can not be shared between applications,
as it is done with port multiplexing by some NAT devices.
Port multiplexing uses extra previously known information,
such as source port and address, to demultiplex an incoming
message. When listening to the new connections, there is
no such previous information available when an unknown
packet arrives, thus the only mean to identify the intended
receiver inside the network is the port.

Not only UPnP IGD, the de facto standard technique
employed as NAT traversal, but also NAT-PMP and other
techniques have the drawback of needing support in a per-
application basis, a cost paid by the developer. Not all
applications have the UPnP feature, especially the legacy ones.
Developers may lack the resources to implement the feature
in a project, but even if they do, it is an extra functional
requirement to be taken into account.

III. THE PROPOSED APPROACH

In order to make NAT transparent to listening applications,
they must be able to use the bare TCP/IP interface of the
operating system to wait for contact from the outside network,
in the same way client applications may just connect. There
should be no extra cost in the development of listening
application related specifically to NAT traversal. Users and
developers of client applications need not to worry if the
host is behind a NAT, neither should listening applications’
developers and users.

To achieve this goal, operating systems must be aware
of the NAT issue. Since they are already responsible for
interfacing with the sockets API, the one used by the
applications to reach the TCP/IP functionality, it has all
the means to automatically manage the gateway in place of
the application or, in worse cases, the user.

A. Connection and Disconnection

Upon a bind() system call made on a TCP or UDP
socket, the operating system may use the same protocols
that applications explicitly use to forward the ports on the

229Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

gateway to themselves. Since UPnP or other NAT traversal
technique is to be implemented by the operating system,
this burden is then taken from the application. In the same
way the operating system abstracts away the complexities of
TCP/IP, it shall also take care of any NAT traversal employed.

When the execution flow is returned to the application by
bind(), the operating system shall have already attempted
to forward the requested port on the router. The return value
is dependant on the outcome of this attempt. In case the port
is being used by another host, port forwarding operation fails
and the operating system must also fail the system call. This
way the application can perform its default behavior in case
of port already in use.

Upon the closing of the socket, either explicit or by process
exit, the operating system must automatically remove the
port association in the gateway. Unlike the creation of a
port forwarding, the removal operation shall be performed
asynchronously. Since port forwarding removal can not affect
the outcome of the close() or exit() operation, there
is no need to synchronize them.

Applications that automatically forward ports may fail to
cleanup their associations on the gateway when no longer
needed. It may be so either in case of application crash
or because of bad implementation of the port forwarding
protocol. A beneficial side effect of our approach is that,
since the port forwarding is automatically managed by the
network infrastructure, the needed cleanup is performed as
long as the system is running, even if the application crashes.

B. Security

The proposed automatic management of NAT traversal
targets end-user applications. Due to security concerns, it is
important that system daemons and servers which require fine
administrative control, such as FTP, HTTP, Telnet and SSH
are not automatically exposed to the external network. For
this reason, associations made by processes on UDP or TCP
ports bellow 1024 should be filtered and not configured on
the router. The services previously mentioned are by default
bound to these ports, and privileges given by the system
administrator are needed to use them. Since no common
user’s application shall use the privileged ports, the activity
on them is out of our scope.

Applications may also choose what IP address available in
the system to use when binding a socket. As a placeholder
meaning any address available, an application may use the
fake address 0.0.0.0 (aliased as INADDR_ANY in POSIX sys-
tems). Applications that choose to bind to specific interfaces
usually know their intended peers and hold fine control of
the network topology, often being manually configured on
what IP interfaces to use. Upon this case, we consider that
association not generic enough to be automatically forwarded
by the gateway, even if the specified address is the route
to the gateway. Internet applications do not try to restrict
their reachability. If they are to be seen in the Internet, their

logical choice of IP interface is any (or 0.0.0.0). Should a
program or user try to control the connectivity by choosing
what interface to use, then we shall not take this control by
automatically exposing it on the external network.

One may question that, being the task of opening ports on
the router automatic, the system would be more vulnerable
to viruses and malicious software. With our approach
implemented, a virus would be able to expose the system to
the external network, when otherwise the system would only
be exposed to the internal network. This is not indeed the
case, and a virus might well find its route through a NAT
in the same way a legitimate application could do, simply
by implementing the same protocol that we use, with no
different clearance.

IV. THE IMPLEMENTATION

Our reference implementation consists of an extension
to the Linux kernel, together with an ancillary user space
daemon to handle the gateway configuring protocol [12],
resembling a microkernel architecture where system functions
are performed by isolated special processes. It only affects
applications using sockets API to access to either UDP or
TCP on top of IPv4.

This is fundamentally different from other UPnP IGD
solutions for GNU/Linux, such as LinuxIGD [13], Pseu-
doICSD [14] and MiniUPnPd [15], in a way that these
packages are just plain userspace applications that implements
the server part of the protocol, i.e. they are used to turn a
GNU/Linux NAT router into a UPnP enabled gateway. The
focus here is to implement the client side operated by the
kernel, and UPnP server implementation is out of scope.

We choose Linux because of its popularity and its source
code availability that allows us to do the kind of low-level
modification needed. The protocol we use to traverse NAT is
the UPnP IGD Protocol, because it is the most well supported
by small routers.

A. Changes to Kernel

Inside the kernel, every call to the POSIX system call
bind() performed on a TCP/UDP IPv4 socket is intercepted.
The calls made to privileged ports or to specific IP interfaces
are ignored by the automatic port forwarding mechanism.
Otherwise, packets to the given port arriving at the Internet
gateway must be forwarded to our host. The kernel delivers
the bind request to the helper user space daemon responsible
for setting up the forwarding. The calling process is put into
a sleep state while awaiting the answer from the user space
daemon. When the answer arrives, the process is awaken and
deals with it. The bind() system call may then resume,
failing or succeeding in according to the answer received.

To avoid a race condition, the port is preallocated internally
before the control is given to the daemon. Otherwise, at least
one scenario could lead to an inconsistent state. Consider
it: process A tries to bind to address 0.0.0.0 on TCP port

230Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

6881, and is put to sleep while awaits the answer from the
daemon, then process B tries to bind to address 127.0.0.1 on
TCP port 6881. If the TCP port 6881 was not preallocated
to process A, the bind on process B succeeds before process
A receives its answer from userspace. When A receives the
answer, the bind() call will no longer be able to succeed
as the port is already in use, but it would have already been
successfully configured on the gateway for a process that
can no longer answer on it.

Linux provides a number of different ways of communi-
cating between kernel space and user space. In order to pass
the bind request on to the daemon, we choose to use the
Netlink protocol. Netlink is a Linux specific protocol on top
of sockets API and network stack, meaning the applications
can use it through the usual socket related system calls. It
is not a true network protocol, processes may use it only to
communicate with the kernel or other processes in the same
host.

Netlink was chosen for the sake of simplicity. It is very
easy to add a custom protocol on top of Netlink, providing
a well definite interface for user level programs, as well as
for kernel code. For our purpose, we defined a new protocol
called NETLINK_NAT_PASS.

Other kernel ⇔ userspace communication methods are
not as fit for our purpose as it is Netlink. For instance: we
can not use system calls because they are unidirectional,
and unlike Netlink, requests can not be sent from kernel
to userspace as required by our architecture. Also, unlike
procfs [16], sysfs [17] and other similar file based interfaces,
Netlink require no changes on the filesystem, since it have
its own namespace.

The processes awaiting for the daemon are placed in a
linked list, that is traversed when an answer is issued by the
daemon. There is no explicit guarantee that the first made
request will be the first answered by the daemon, but that is
the likely scenario, with no indications on how it could be
otherwise. Since process are queued in the list in the same
order they are sent to the daemon, when an answer arrives
it will probably be referent to the first process in the list,
making the search practically constant.

B. User Space Daemon

Because of the complexity of UPnP IGD Protocol, being
a high-level application protocol on top of web services
and HTTP, we choose to use it from user space instead of
directly inside the kernel. The daemon we called Natbinder
is responsible for controling the gateway via UPnP IGD.
To build this daemon we used the UPnP IGD Protocol
implementation from the MiniUPnPc routines library [15].

Upon startup, the daemon searches the network for some
UPnP enabled Internet Gateway Devices and gets its local
host private IP address. This address is used to construct the
UPnP requests.

User Process

Linux Kernel

Natbinder Daemon

Internet Gateway

System Calls

Netlink NAT_PASS

UPnP IGD

Figure 2. Logical communication stack

After verifying that it is able to reach the gateway, the
daemon registers itself on the broadcast channel 0 of the
NETLINK_NAT_PASS protocol with a Netlink socket. In
this channel it will listen for kernel messages regarding IPv4
binding activities of the processes.

On a bind() attempt by a process, the action Ad-
dPortMapping is issued to the gateway. Among the responses
specified by the UPnP standard [18] we may receive, two are
of particular interest: code 0, meaning success and code 718
(ConflictInMappingEntry), meaning that the port requested
by the process was already in use by another host. In those
cases, the answers given to the kernel are, respectively, to
proceed successfully or to fail the bind.

In case we receive a different answer, it is treated as an
exceptional condition, which the system is unprepared to
handle and unable to further help the binding process or the
user. In this case, the message sent back to kernel is that the
daemon ignored the bind request. The practical effect is the
same as processed successfully, since forbidding the process
to use the port will do no good in this case. The exceptional
condition is logged by the daemon for manual investigation
of the system administrator.

C. The Protocol

The definition of a new protocol on top of Netlink was
fairly simple, being a matter of picking a free protocol
number in the netlink.h header file and aliasing the name
NETLINK_NAT_PASS to this number. Thus, most of the
work on creating the protocol lies in defining its vocabulary
and the behavioural interaction between kernel and daemon.

Messages of NETLINK_NAT_PASS can be split into two
categories: one can be either request or response. The two
request type messages, which are always sent by the kernel,
are PORT_BIND and PORT_CLOSE. Each message takes
four parameters: a sequence number, that will identify the
request within the kernel; the IP address of the request (must
be 0.0.0.0 to be relevant); the requested port number (greater
than 1023 to be relevant) and the transport protocol used
(either TCP or UDP).

The response type messages are always issued by the
daemon to the kernel in response to a request message. They

231Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

Waiting
for

Daemon

Free

Bound

relevant bind()

send PORT_BIND

SUCCEEDED | IGNORED
return success

cl
os
e(
)

| e
xi
t(
)

se
nd

 P
OR
T_
CL
OS
E

FAILED

return failure

n Ports

(a) Kernel ports’ state machine

UPnP response
send SUCCEEDED,

FAILED or IGNORED

Waiting
for

Gateway
Idle

PORT_BIND | PORT_CLOSE
UPnP request

Events
From

Kernel

Natbinder Daemon

(b) Natbinder daemon’s state machine

Figure 3. Protocols’ behavioural automata

can be either SUCCEEDED, FAILED or IGNORED. Each
response takes as parameter the sequence number of the
request that originated it, so the kernel can match each
received response with a pending request.

The whole communication dynamics can be seen as a
layered architecture, as shown in Fig. 2. In this perspective,
the top layer are the user processes, which are served by the
kernel. The kernel provides services to the user processes via
system calls, and in turn is served by the Natbinder daemon,
layered beneath it. In this layer our newly defined protocol
NETLINK_NAT_PASS is used as the interface the daemon
uses to provide the services to the kernel. In the lowest layer,
the Internet gateway serves the daemon via the UPnP IGD
protocol.

Inside the kernel, there is a three-state automaton for every
port (see Fig. 3a). This automaton reacts from system calls
events relevant to port forwarding (as discussed in Subsection
III-B), and requests services from the daemon. The bind()
event triggers a PORT_BIND request for the daemon to
perform the port forwarding, and the automaton is hold
on state “Waiting for Daemon” until receiveis a response
message (or upon timeout). When terminating a port usage
with PORT_CLOSE, the automaton waits for no response,
resuming immediately.

On the daemon, the requests from the kernel are serialized
by the Netlink protocol, being handled sequentially. As show
in Fig. 3b, for every request message arriving, there is one
request made via UPnP to the gateway. Upon each response
received, a corresponding response type message is issued
back to the kernel, using the same sequence number given
in the request.

D. Error Handling

It is very important that an application do not hang too
long while waiting for the bind() to conclude. Since the

kernel have no control on the status of processes listening
on the broadcast channel of NETLINK_NAT_PASS, two
precautions are taken inside the kernel. First, before issuing
the PORT_BIND request, kernel checks if there are any
listeners on the broadcast channel. If there are none, the
ordinary procedure of port binding is resumed.

As a system daemon, Natbinder is expected to run on
system startup, but if for some reason it is not running, maybe
because of a bug or because it was explicitly shutdown by
the user, that check on kernel side will ensure bind() calls
will be served normally (i.e. without the automatic NAT
traversal feature).

There may also be the case the PORT_BIND request
was already issued by the kernel, but the daemon stopped
answering due to a bug or network error. To avoid letting the
user process blocked indefinitely, inside the kernel there is
a timeout of half second on waiting for the response. After
that, bind() will resume as if it had received the IGNORE
message as response.

Having the daemon up and running, we cannot fully trust
on the gateway reliability. Configurations made by Natbinder
on the gateway are volatile, so if the user simply manually
restart a modem working as the Internet gateway, all NAT
configurations previously performed are lost. Also, UPnP
IGD implementation on devices might have its own issues.
For instance, the gateway used during the development of
this work had a maximum limit of 32 ports simultaneously
forwarded via UPnP IDG. Port mapping requests after this
limit would fail with an unknown error code, what will
generate an IGNORED response to the kernel.

To counter this kind of problems, concerning the gateway
reliability, the daemon holds the ideal state of all port
mappings managed by itself. Periodically, it checks the
gateway state and compares it with its own ideal state. If

232Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

they are divergent, the daemon tries to make the necessary
changes to match the gateway state with the ideal state.
This way, if a port mapping was not possible because of an
unknown error, ideally it should have been mapped, so the
ideal state will hold this port mapping. Upon the periodical
check on the gateway, this pending port mapping will be tried
again. Considering the previously mentioned case where the
gateway was restarted, the daemon will find no port mapping
entries on the gateway, so it will try to register all of them.

V. USE CASES

To test the approach some existing applications that would
benefit from it were chosen to build test case scenarios. The
first test was performed with the P2P application rTorrent [19],
a BitTorrent client working over TCP. The second test was
performed with the game OpenArena [20], whose netwoking
multiplayer is done via UDP. Both of the previusly mentioned
application are not prepared to handle NAT automatically.
The third test was performed with Transmission [21], another
BitTorrent client which is able to perform automatic port
forwarding.

In the first test, with rTorrent, the program was configured
to use ports in the range from 10000 to 10009, and five
instances of it were executed. The odd port numbers of this
range were already taken in the gateway by another host
in the network, so only the 5 remaining even ports were
available to be used externally. All five instances were able
to execute and properly bind to each one of the remaining
ports. All five were able to receive incoming connections
from the Internet. As expected, if a sixth instance is executed,
it is unable to find a suitable port and exits with the error
message: “Could not open/bind port for listening: Address
already in use.”

There is a mechanism inside rTorrent, similarly to other
applications, including OpenArena, that was designed to
find an available port on what to operate. The approach
implemented in this work was conceived so not to disrupt
such behavior. In this case, some ports where already taken in
the gateway, but since they were presented to the application
as ports already used by the TCP stack, its own port finding
mechanism was able to devise an usable port.

The second test was performed by running the standalone
server of OpenArena, which by default wait for players on
UDP port 27960, and then opening the client and creating
another multiplayer game rood, which will use the next
available UDP port: 27961. Both ports were correctly and
automatically exposed to the Internet, and both removed
when the application closed. External clients were able to
connect.

The Transmission test was performed by executing it with
our automatic port forwarding mechanism disabled, then the
program was killed, simulating a crash. Since it implemented
the UPnP protocol, it was able to automatically forward its
port on the gateway, but when it was killed, it was not given

time to cleanup, so its entry persisted on the gateway. With
the automatic port forwarding, the port was forwarded all
the same, despite the redundant work performed both by
the application and our daemon, but when it was killed, the
daemon still cleaned it up on the gateway.

VI. CONCLUSION AND FUTURE WORKS

In this work, we presented a new approach to NAT
traversal, including its architecture and reference imple-
mentation. The architectural choices are closely related to
the technologies used. Were we using a less common but
simpler protocol like NAT-PMP, our architecture would also
be simpler.

It is hard to measure the real benefit of our approach, being
it subjective when concerning user experience and useful to
software developers mostly after its widespread adoption. In
any case, as a future work we expect to survey the benefits
of its usage with a group of volunteering users.

To reach a public of users and probable volunteers, our
implementation will be integrated with Ubuntu, a popular
GNU/Linux distribution. At first via a third party package
maintained in Ubuntu’s Personal Package Archives (PPA).
Eventually, depending on community acceptance, into main-
line Ubuntu.

As a Linux kernel modification, the implementation shall
be submitted for inclusion into the official kernel distribution.
Among other factors, the inclusion will be subject on the
community acceptance of the concept idea, and the code
stability asserted by the early testers.

Using the reference implementation, any OS based on
Linux could easily support the approach, even Android, which
is a mobile OS but still subject to the common networks
behind NAT.

To make our implementation more user friendly, we
plan to include a Graphical User Interface (GUI) for the
daemon integrated with the system shell. Being a separated
application, each system could have its own GUI that provides
the better integration with its environment. In Ubuntu,
such GUI would be and extension of the NetworkManager
application, providing seamless desktop integration. Through
this GUI, the user would be able to monitor the status of the
automatically forwarded ports on the router.

The approach is not limited to our architecture or specific
implementation, and could be done by vendors or third party
software providers of other platforms and operating systems,
including Windows, MacOS, Playstation, &c. The approach
could also be implemented over other protocols, like IPv6,
should NAT prove to still be useful with it.

In matters of network transparency in the operating
systems, network interfaces are virtual enough abstraction.
On Linux, besides the real Ethernet devices with associated
IP addresses, there are virtual interfaces for loopback, VPN’s,
PPP, tunnels, &c. In a future work, the approach proposed
here could be generalised as another virtual network interface,

233Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

managed by a NAT client network driver, which would have
as address the shared public IP. A bind to it would be
automatically forwarded. An interface like this seems more
naturally fit.

ACKNOWLEDGMENT

This research was sponsored in part by a grant from
CAPES. L. C. V. would like to thank Leonardo de Sá Alt
and Rodrigo Queiroz Saramago for their invaluable help in
understanding the inner workings of the Linux kernel.

REFERENCES

[1] P. Belimpasakis, A. Saaranen, and R. Walsh, “Home dns:
Experiences with seamless remote access to home services,”
in World of Wireless, Mobile and Multimedia Networks, 2007.
WoWMoM 2007. IEEE International Symposium on a, June
2007, pp. 1 –8.

[2] A. Haber, J. De Mier, and F. Reichert, “Virtualization of
remote devices and services in residential networks,” in Next
Generation Mobile Applications, Services and Technologies,
2009. NGMAST ’09. Third International Conference on, Sept.
2009, pp. 182 –186.

[3] V. Pankakoski, “Experimental design for a next generation
residential gateway,” Master’s thesis, Aalto University, School
of Science and Technology, 2010, retrieved: Dec., 2011.
[Online]. Available: http://lib.tkk.fi/Dipl/2010/urn100389.pdf

[4] S. Deering and R. Hinden, “Internet Protocol, Version 6
(IPv6) Specification,” RFC 2460 (Draft Standard), Internet
Engineering Task Force, Dec. 1998, updated by RFCs 5095,
5722, 5871.

[5] Ipv6.br faq. Núcleo de Informação e Coordenação
do Ponto BR. Retrieved: Dec., 2011. [Online].
Available: http://www.ipv6.br/IPV6/MenuIPV6FAQ#Que
tamanho de bloco IPv6 devo f

[6] P. Srisuresh and K. Egevang, “Traditional IP Network Address
Translator (Traditional NAT),” RFC 3022 (Informational),
Internet Engineering Task Force, Jan. 2001.

[7] A. Hemel, “Universal plug and play: Dead simple or simply
deadly?” in System Administration Network Engineering, 2006,
May 2006.

[8] Upnp forum. Retrieved: Dec., 2011. [Online]. Available:
http://upnp.org/

[9] J. Blokhuis, “Universal plug and play vulnerabilities in
eventing,” University of Amsterdam, Tech. Rep., 2009.

[10] Upnp hacks: Hacking universal plug and play. Retrieved:
Dec., 2011. [Online]. Available: http://www.upnp-hacks.org/

[11] S. Cheshire, M. Krochmal, and K. Sekar, “NAT Port Mapping
Protocol (NAT-PMP),” Internet-Draft, Internet Engineering
Task Force, 2008, retrieved: Dec., 2011. [Online]. Available:
http://tools.ietf.org/id/draft-cheshire-nat-pmp-03.txt

[12] Natbinder. Retrieved: Dec., 2011. [Online]. Available:
http://www.gitorious.org/natbinder

[13] Linux upnp internet gateway device. Retrieved: Dec., 2011.
[Online]. Available: http://linux-igd.sourceforge.net/

[14] Pseudo ics daemon. Retrieved: Dec., 2011. [Online]. Available:
http://pseudoicsd.sourceforge.net/

[15] Miniupnp project homepage. Retrieved: Dec., 2011. [Online].
Available: http://miniupnp.free.fr/

[16] The /proc filesystem, Documentation/filesystems/proc.txt,
contained in Linux source code distribution.

[17] sysfs – The filesystem for exporting kernel objects,
Documentation/filesystems/sysfs.txt, contained in Linux
source code distribution.

[18] UPnP IGD WANIPConnection, UPnP Forum Std., Rev.
2.0, Sept. 2010, retrieved: Dec., 2011. [Online]. Available:
http://upnp.org/specs/gw/igd2/

[19] The libtorrent and rtorrent project. Retrieved: Dec., 2011.
[Online]. Available: http://libtorrent.rakshasa.no/

[20] Openarena. Retrieved: Dec., 2011. [Online]. Available:
http://www.openarena.ws/

[21] Transmission. Retrieved: Dec., 2011. [Online]. Available:
http://www.transmissionbt.com/

234Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

http://lib.tkk.fi/Dipl/2010/urn100389.pdf
http://www.ipv6.br/IPV6/MenuIPV6FAQ#Que_tamanho_de_bloco_IPv6_devo_f
http://www.ipv6.br/IPV6/MenuIPV6FAQ#Que_tamanho_de_bloco_IPv6_devo_f
http://upnp.org/
http://www.upnp-hacks.org/
http://tools.ietf.org/id/draft-cheshire-nat-pmp-03.txt
http://www.gitorious.org/natbinder
http://linux-igd.sourceforge.net/
http://pseudoicsd.sourceforge.net/
http://miniupnp.free.fr/
http://upnp.org/specs/gw/igd2/
http://libtorrent.rakshasa.no/
http://www.openarena.ws/
http://www.transmissionbt.com/

	Introduction
	Background
	Other Home Network Solutions
	Internet Protocol v.6 (IPv6)
	NAT Transparency
	UPnP and NAT Traversing

	The Proposed Approach
	Connection and Disconnection
	Security

	The Implementation
	Changes to Kernel
	User Space Daemon
	The Protocol
	Error Handling

	Use Cases
	Conclusion and Future Works
	Acknowledgment
	References

