
A High-level Network-wide Router Configuration Language

Miroslav Sveda Michal Sekletar Tomas Fidler Ondrej Rysavy
Faculty of Information Technology

Brno University of Technology,
612 66 Brno, Czech Republic

e-mail:{sveda, xsekle00, xfidle01, rysavy}@fit.vutbr.cz

Abstract—In this short paper, we discuss the design of a high-
level network-wide router configuration language. At its current
stage of development, the language enables us to specify basic
routing and security configurations. A declarative nature of the
language is supposed to be intuitive to network administrators.
We have developed an experimental compiler that produces
configuration files for Cisco routers. The contribution of the
paper consists of the description a language for configuration
programming and the demonstration of its capabilities on several
examples.

Index Terms—network configuration management; routing
configuration; access control lists

I. INTRODUCTION

Configuration languages for network devices enable to de-
fine every aspect of their functionality. Network administrators
can thus write a network configuration that meets the required
functionality for different and often very specific requirements.
These languages have a simple declarative form. A network
configuration consists of configuration files of all devices
in a network. The difficulty in implementation of a correct
network configuration stems from the necessity to create
several separate configuration files that need to be consistent.

To overcome the difficulty in delivering consistent set of
configuration files, device vendors provide tools implementing
configuration wizards, web configuration interfaces or configu-
ration generators. These tools may simplify basic configuration
tasks but usually do not provide any additional mechanisms to
guarantee configuration consistency and correctness. An alter-
native approach is to use high-level configuration languages.

This idea is behind the design of Nettle language [1], which
is a domain-specific high-level language for BGP configu-
rations. The other example is the Flow-based Management
Language by Hinrichs et al. [2], which is a declarative policy
language supposed for developing configurations for enterprise
networks. It covers ACL, VLAN, NAT, policy routing and ad-
mission control features. However, the specified configuration
is compiled only for the NOX platform. Our motivation is to
define a high-level router configuration language that can be
compiled to common router configuration languages of devices
deployed in present enterprise networks.

In this short paper, we present the design of a high-
level network configuration language. Currently, the language
allows us to specify a limited set of network configurations,
which includes network address assignment, static and dy-
namic routing and basic security. We also implemented an
experimental compiler that produces IOS configuration files
for Cisco routers. To be practically usable, the language

needs to support other configuration features and to generate
configuration for other network devices.

The structure of the paper is as follows. The next section
describes a syntax of the language and illustrates its usage
on simple examples. Section III briefly describes an imple-
mentation of the language compiler and the IOS configuration
generator. Finally, section IV concludes the paper by summa-
rizing the current state and discussing the future development.

II. THE LANGUAGE

The language consists of a set of simple declarative state-
ments and an embedded expression language. The statements
are grouped in different configuration sections depending on
their purposes. Currently, we have defined and implemented
rather a small subset of such language, which we present in
this paper on a series of examples specifying network devices,
routing areas, network areas, network connections, routing
options and security policies.

The expressions can be embedded in declarations. In ex-
pressions we can refer to declared elements and predefined
methods. In the future we plan to extend the language with
possibility of defining user methods. It is important to note that
these expressions represent the side effect free computations.
The proposed expression syntax reassembles the syntax of
object-oriented languages. We use dot notation to access fields
of objects and call their methods. Usually, an expression is to
be evaluated to a collection, a simple value or a structure,
which can be inferred by type checking. Types of results have
to conform to expected types of surrounding contexts. Decla-
rations define attributes that can be accessed from expressions
as shown in several examples in the rest of this section.

Each declaration block specifies a certain part of a network
configuration, e.g., routing, address assginement, etc. To be
treat as a programming language statement, it can be viewed
as a macro definition, which evaluates to a corresponding
program block. For instance, a device list from the next
subsection can be viewed as the following list definition1:
var Devices = new[] {
new Router("Austin", "A", "cisco_2811"),
new Router("Dallas", "D", "cisco_2811"),
new Router("Houston", "H", "cisco_2811")

};

Another characteristic of the language is that for specifying
packet forwarding and filtering, a flow-based description [2]
is employed.

1We use C# syntax in this example representation.

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

A. Device List

A device configuration group enumerates all devices in the
configured network. A device declaration assigns a specific
device type to each router, which tells the compiler what
generator should be used for generating a configuration file.
The compiler can be extended by custom generators for new
platforms and models.
Devices {

Router Austin[A] cisco_2811;
Router Dallas[D] cisco_2811;
Router Houston[H] cisco_2811;

}

The presented configuration snippet declares three routers
appearing in Texas area and specifies their hardware platforms.
Together with the full router name we may provide its short
name that can be used for referring to the router from other
places of the configuration file. For the language of expres-
sions, this declaration defines a collection called Devices,
which consists of three objects of type router. Router class
is one of the classes derived from Device abstract class.
Another derived classes could be Switch, Gateway, etc.

Currently, a device type specification consists of an enu-
meration of all device’s interfaces, as shown in the following
example:
Device cisco_2811 {

PORT Serial0/0/0 s0/0/0;
PORT Serial0/0/1 s0/0/1;
PORT FastEthernet0/0 fa0/0;
PORT FastEthernet0/1 fa0/1;

}

A device type specification is compiled into a plug-in
module that is used by the language compiler for generating
a device configuration for the specified device type.

B. Area List

The purpose of an area list is to define routing areas. Each
routing area consists of routers which run the same instance
of a routing protocol. The following is a definition of three
different areas:
Areas {

AREA {A, D, H} {A} RIP Texas;
AREA {A,Tampa,M,T} {A,T} EIGRP Florida;
AREA {R,S,T} {T} OSPF Washington;

}

Each area declaration consists of a list of area routers,
a list of border routers, a definition of a routing protocol
and a name of the area. A non-empty intersection of sets of
border routers denotes routers where the redistribution between
routing protocols can be configured. The redistribution options
are stipulated in a routing configuration section.

C. Network List

A network list enumerates all destination networks. Each
network declaration defines a network address and a network
name, as shown in the following example:
Networks {

Intermediate 192.168.1.0/30 Dallas-Austin;

EndUser 192.168.2.0/24 management;
EndUser 192.168.3.0/24 servers;

}

The network list does not include interconnecting networks
except if these networks are significant from the viewpoint
of routing or security configurations. The unspecified inter-
connecting networks are listed in a connection configuration
block.

D. Connections

Connections among routers and destination networks are
specified in a connection list. Point-to-point and point-to-
multipoint connections can be distinguished. Following exam-
ple contains several kinds of connections:

Links {
A.s0/0/0 -> D.s0/0/0 Austin-Dallas;
A.fa0/0 -> TERM management;
D.fa0/1 -> DEFAULT ISP;
Tampa.fa0/0 -> SWITCH Florida-Net;
Miami.fa0/0 -> SWITCH Florada-Net;

}

A connection is specified by its endpoints and its name. An
endpoint is either a router interface or one of the following
keywords:

• DEFAULT denotes that the connection represents a de-
fault gateway for the network,

• TERM denotes that a router interface is connected to a
destination network and there are no other routers in this
network, and

• SWITCH denotes a router interface connected to a port
of a switch.

Note that addresses of interfaces are generated automatically
by the compiler. For interconnecting networks these addresses
are taken from the pool of addresses that can be defined by
the user.

E. Routing

A dynamic routing configuration is implicitly defined by
specifying routing areas. In a routing configuration block,
static routing, redistribution and other routing related options
can be defined to customize the network routing. A fol-
lowing example shows redistribution of routing information
from Florida routing instance to Texas routing instance. The
redistribution is performed at Austin router, which runs both
routing protocols. All routing information on end user net-
works maintained by the EIGRP in Texas routing domain will
be copied to the RIP with a specified metric.

Routing {
REDISTRIBUTE Florida -> Texas
END_USER_NETWORK METRIC 5;

}

Keyword END_USER_NETWORK selects what information
is to be redistributed. In the presented example, all destination
networks will be redistributed. At this position an arbitrary
predicate that selects a set of redistributed networks can be
used. For instance, we may write the following configuration:

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

Routing {
REDISTRIBUTE Florida -> Texas
{Networks.Select(n => n.Name.StartsWith("D"))}
METRIC this.Network.Name.Length;

}

The redistribution predicate selects all networks which
names begin with letter ’D’. It means that when compiling
and generating output for this statement, the expression is
evaluated and replaced with a set of networks satisfying this
condition. This configuration uses a weird policy for setting
metrics. For each network, a metric is set to a value which
equals to the length of its name. While this particular example
is not very useful in practice, it demonstrates the use of
this statement that refers to an object in which scope this
expression occurs.

A purpose of a static routing configuration is to define pre-
ferred paths for network traffic. This is defined separately for
each destination network. An example of static configuration is
presented for HoustonNet. The static routing configuration
consists of a subset of network links.
Routing {

STATIC HoustonNet
{ Austin -> Houston,

Tampa -> Austin,
Miami -> Tampa }

}

It is also possible to apply a predefined algorithm to
compute the best paths with respect to given criteria. The
following configuration snippet demonstrates this approach:
Routing {

STATIC HoustonNet
SpanningTree(HoustonNet).Edges.Select
(e => e.Contains(Austin|Houston|Tampa|Miami))

}

For computing the set of links we use SpanningTree
algorithm, which computes a minimum spanning tree for
HoustonNet. Then resulting set of links are filtered and only
links which begin or end in one of four specified routers are
kept in the configuration.

F. Security
Routers implement security policy by filtering traffic ac-

cording to filtering rules maintained in access control lists
(ACL). The configuration language is able to specify a security
policy and the compiler generates ACLs and assigns them to
appropriate interfaces.

First, a set of interesting flows is enumerated in a flow
declaration block:
Flows {

Web tcp any:any -> public:80;
Mail (s => tcp any:any -> s:25);

}

Currently, flows are represented as tuples consisting of five
components, namely, protocol type, source address, source
port, destination address and destination port. Flows can be
parametrized as can be seen in the case of Mail flow.

In filtering section, it is specified, which flows are permitted
or denied on a particular link. In the following example, only

web and mail traffic is permitted. Mail flow is instantiated with
TexasMail server.
Filtering {
Austin-Dallas {
allow Web,
allow Mail(TexasMail),
implicit deny

}
}

While flow-based security management brings a benefit of
simplifying the implementation of security policy, it does not
guarantee the correctness and consistency, because one still
needs to pair filters with network locations. Along the line
of proposals described in [3], [4], [5], [6], we would like to
research the possibility to infer security implementations from
high-level security policy specifications. Currently, we have
attempted to apply techniques for filter consistency verification
[7], [8], [9]. We implemented a simple tool, which reports
conflicts for the given set of ACL rules. The employed method
is based on work reported in [10].

III. IMPLEMENTATION NOTES

We have implemented an experimental compiler and a
configuration generator in the C++ language. Except the STL
library, the compiler depends on the BOOST library, which
provides data types and methods for manipulating advanced
data structures. The configuration processing consists of the
following steps:

1) Parsing an input configuration and generating a network
configuration object model. This model is a structured
description of parsed configuration amenable to further
analysis.

2) Evaluation of expressions in the object model. The
expressions are replaced with results yielded from their
evaluation. After evaluating all expressions we obtain a
concrete model.

3) Optional static analysis of the model. For instance, we
may run an ACL conflict detection algorithm.

4) Generation of device configurations using plugins for
registered device types. Based on the model, the tool
generates for every known device its partial configura-
tion by using the corresponding plugin.

Currently, the tool contains plugins only for a few devices and
the expression language has a very limited form. In the future,
we plan to extend the tool in both directions.

IV. SUMMARY

In this short paper, we presented work in progress, which
aims at the definition of a high-level network configuration
language and the implementation of its compiler. The compiler
produces device configuration files and it is extensible for
different vendors and different router models. As it can be seen
from the brief language description, the current state provides
the basic functionality. The language is able to describe an
enterprise network as a collection of devices and routing
areas, to generate address assignment and to define basic
security policies. The future work is focused on extending

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

the language with other features, e.g. NAT configuration,
VLAN definitions, VPN configuration, policy routing, etc. For
a first experimental implementation we decided to implement
configuration generator only for CISCO devices. Currently, we
are working on the support for other platforms.

The presented approach is directly comparable to Nettle lan-
guage [1] and the FML [2]. These languages attempt to define
a network configuration by specifying which services should
be available rather than encoding the network behavior by
using low level configuration commands. Nevertheless, there
are other methods that simplify the network configuration.
From industrial perspective, the major achievement in this area
has been made by XML-based network configuration methods
and protocols [11]. For instance, Juniper Networks introduced
a Network Configuration Protocol called NETCONF, which
was standardized by IETF as RFC4741. The protocol provides
mechanisms to install, manipulate, and delete the configuration
of network devices. The aim of Network Description Language
(NDL) [12] is to simplify a description of networks and
configurations by creating the ontology for computer networks
based on the Resource Description Framework (RDF).

Our approach goes beyond merely introducing a new
language for describing network configurations. Rather, we
would like to construct network configurations by using a
high-level configuration programming language. For this we
set foundations in the presented language, which supports
declarative statements with embedded expressions increasing
the expressiveness and minimizing the need to repeatedly write
routine configuration statements. There is a similarity to TCL
scripting in IOS configuration, which can be employed to
automatize certain tasks. Nevertheless, this scripting is rather
limited to a single device.

The proposed language contains also concepts known
from network configuration management tools. The NetScope
toolkit [13], for instance, integrates topology model, traffic,
and routing based on flows. It visualizes traffic and enables
users to determine effects of configuration changes before
they are applied to a real network. For security specifications,
our language employs ideas described by Guttman in [14]. In
particular, we attempt to generate access control lists from a
security policy specifications.

The other line of research has been focused on configuration
synthesis. Tools such as ConfigAssure [15] are able to refine
or generate configurations for network devices based on a
predefined configuration database and given constraints. This
approach requires the implementation of advanced reasoning
methods that perform model-finding. The goal of our tool is
similar, but we employ less sophisticated techniques requiring
that a user will provide the intended configuration by program-
ming it in the proposed configuration language.

The presented paper briefly reported the first attempt to
tackle the specified goal. We plan to extend the language
with more advanced constructs, which would allow us to
define a network specification in the modular manner that is
typical for programming languages. This means that a network
configuration would be split in modules logically representing

network areas. These modules would have defined public
interfaces through which interconnections are only possible.
These are also points where security enforcement on the
highest level is to be implemented. Thus it may be possible to
hide internal structures of individual modules to simplify the
configuration management.

To evaluate the presented approach we need to i) extend our
language beyond the currently supported set of rather basic
configuration blocks and ii) support more than a single target
platform for which the configuration can be generated. Both
are topics for the further work.

ACKNOWLEDGMENT

This work was partially supported by research programs
MSM 0021630528 and CZ 1.05/1.1.00/02.0070, and the BUT
grant FIT-S-11-1.

REFERENCES

[1] A. Voellmy and P. Hudak, “Nettle: A language for configuring routing
networks,” in Domain-Specific Languages. Springer, 2009, pp. 211–
235.

[2] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” Proceedings of the 1st
ACM workshop on Research on enterprise networking - WREN ’09,
p. 1, 2009.

[3] J. Guttman, “Filtering postures: Local enforcement for global policies,”
in IEEE Symposium on Security and Privacy. IEEE Comput. Soc.
Press, 1997, pp. 120–129.

[4] G. Stone, B. Lundy, and G. Xie, “Network policy languages: a survey
and a new approach,” IEEE Network, vol. 15, no. 1, pp. 10–21, 2001.

[5] S. Narain, “Network configuration management via model finding,”
in Proceedings of the 19th conference on Large Installation System
Administration Conference-Volume 19. USENIX Association, 2005,
p. 15.

[6] X. Ou, S. Govindavajhala, and A. Appel, “MulVAL: A logic-based
network security analyzer,” in Proceedings of the 14th conference on
USENIX Security Symposium-Volume 14. USENIX Association, 2005,
pp. 8–8.

[7] E. Lupu and M. Sloman, “Conflict analysis for management policies,”
in Proceedings of IFIP/IEEE International Symposium on Integrated
Network Management (IM1997), vol. 97, no. May. Citeseer, 1997, pp.
1–14.

[8] A. Couch and M. Gilfix, “Its elementary, dear Watson: applying logic
programming to convergent system management processes,,” in Proc.
Lisa XIII, 1999.

[9] A. X. Liu and M. G. Gouda, “Firewall Policy Queries,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 20, no. 6, pp. 766–777,
Jun. 2009.

[10] F. Baboescu and G. Varghese, “Fast and scalable conflict detection for
packet classifiers,” Computer Networks, vol. 42, no. 6, pp. 717–735,
Aug. 2003.

[11] J. Hong, “XML-based configuration management for IP network de-
vices,” IEEE Communications Magazine, vol. 42, no. 7, pp. 84–91, Jul.
2004.

[12] J. van der Ham, P. Grosso, R. van der Pol, A. Toonk, and C. de Laat, “Us-
ing the network description language in optical networks,” in Integrated
Network Management, 2007. IM’07. 10th IFIP/IEEE International Sym-
posium on. IEEE, 2007, pp. 199–205.

[13] A. Feldmann and A. Greenbreg, “NetScope: traffic engineering for IP
networks,” IEEE Network,March/April, 200o. 1l , 2000.

[14] J. D. Guttman and A. L. Herzog, “Rigorous automated network security
management,” International Journal of Information Security, vol. 4, no.
1-2, pp. 29–48, Dec. 2004.

[15] S. Narain, G. Levin, and S. Malik, “Declarative Infrastructure Configu-
ration Synthesis and Debugging,” Journal of Network and Systems, pp.
1–26, 2008.

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

