
A SPIT Avoidance Workflow for SIP-Provider

Nicolas Rüger, Sebastian Hübner, Bettina Schnor
Institute of Computer Science

University of Potsdam
Potsdam, Germany

{rueger,huebners,schnor}@cs.uni-potsdam.de

Abstract—Voice-over-IP (VoIP) replaces traditional tele-
phony network infrastructures in growing numbers. Along
with this infrastructure change, Spam over Internet Telephony
(SPIT) is likely to spread massively, similiar to spam in e-mail
infrastructures. Thus, it is necessary to develope appropriate
countermeasures. Since the request for a call, usually indicated
by the ringing of the phone, might already be a disturbance
or annoyance of the called party, traditional content-based
preventive and defensive measures, used to avoid e-mail spam,
are not applicable anymore. This paper presents a new SPIT
Avoidance Workflow for the detection and prevention of un-
solicited calls and its implementation. The majority of the
presented preventive security measures are applied on side
of the provider using the Session Initiation Protocol (SIP).
The workflow therefore is implemented for the widely used
Kamailio SIP Server that has become a de facto standard
in the field of SIP telephony because of its high-performance
and robustness. Further, this paper gives an evaluation of the
overhead introduced by the different workflow modules. The
measurements of the prototype confirm that it is possible to
filter and rate call attempts in a larger scale.

Keywords-Session Initiation Protocol (SIP); Voice over IP
(VoIP); Spam over Internet Telephony (SPIT); Security

I. INTRODUCTION

Spam over Internet Telephony (SPIT) might become a
serious problem due to the continuous infrastructure change
of traditional telephone networks to Voice-over-IP (VoIP)
infrastructures. The Session Initiation Protocol (SIP) [14]
has prevailed for signalling in VoIP infrastructures. Sig-
nalling includes establishment, modification and termination
of a media session between the communication endpoints.
During the signalling all necessary data for a call, like
identities of the communication partners, represented by
Uniform Resource Identifier (URI), are exchanged.

So far, a concept is missing, which should combine
different approaches for the avoidance of SPIT, and thereby
enables a reliable SPIT detection and prevention, without
ignoring the requirements of existing communication infras-
tructures.

In [9] Liske et al. already point out that the known and
adapted methods for the prevention of spam are mostly
inappropriate for SPIT and therefore fail. SPIT disturbs
the called user already by ringing the phone. Therefore, a
telephone call needs to be filtered before any voice content
is received, while e-mail spam can be analyzed and filtered

after receiving the content. Hence, known filter methods are
not applicable for VoIP traffic.

When Internet telephony replaces the traditional tele-
phony, we will face VoIP infrastructures, which are man-
aged by different providers. Here, we focus on SIP based
infrastructures. Proprietary protocols (e.g., Skype [8]) are not
considered. Our approach is aimed at a VoIP infrastructure
that offers services comparable to the traditional telephony.
Skype uses a restrictive approach with the introduction of
buddylists that limit communication to the number of known
contacts. This violates the principle of traditional telephony
where it is possible to call everybody.

In this paper, we present a mechanism for the detection
and avoidance of SPIT that we implemented on side of the
provider by extending the widely accepted and used software
Kamailio [12]. For that purpose, we have analyzed, extended
and combined different approaches and results from real
VoIP traffic analysis [5] in our overall concept of a SPIT
Avoidance Workflow.

This paper is structured as follows: In Section II, we
discuss several approaches related to the detection and avoid-
ance of SPIT. The SPIT Avoidance Workflow is presented
in Section III. In Section IV, our prototype implementation
is described. The results of a detailed investigation of the
overhead introduced by the different modules of the SPIT
Avoidance Workflow is given in Section V.

II. RELATED WORK

There exist different approaches that relate to the detection
and prevention of SPIT including consequences on suspi-
cious call attempts.

A. Authentication

As SPIT detection is necessarily to be done during the call
initiation, it has to focus on the available information, e.g.,
the caller’s identity. Especially the appliance of actions with
long term effects, e.g., blacklisting a certain user, desires for
reliability about the user’s identity. Therefore, authentication
is an essential requirement for most approaches regarding
SPIT prevention as mentioned by Hansen et al. in [7] and
Liske et al. [9].

In [13], Mueller and Massoth further describe a basic
approach that validates the existence of a calling user during

94Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

the initiation of calls. Therefore, at least non-existing faked
identites can not be used to initiate malicious calls.

B. Filter Mechanisms

While the known traditional content filter methods, used
to detect spam e-mails, are not useful for identifying SPIT,
some adapted filter methods will apply for VoIP traffic.
Therefore, new filter methods have to be applied during the
call initiation for certain attributes, like the caller’s identity,
as there is no content to analyze. In [7] Hansen et al.
introduced a concept for several SPIT filter mechanisms,
e.g., whitelists including a web of trust, statistical blacklists
or greylists. But, an implementation of the described mech-
anisms and a performance evaluation was not done.

C. Micro Payment

The use of a payment mechanism initiated by the called
party in case of uncertainty about the caller’s trustworthiness
is introduced in [10], along with the necessary SIP exten-
sions for the micro payment. The use of micro payment
seems to be an effective method to prevent SPIT, as the
initiater of spit is not willing to pay any amount, due to fact
that these calls are initiated en masse.

D. Reputation

In [9], Liske et al. present a way of building a reputation
system on base of a micro payment system. The payment
requests and their corresponding responses are analyzed
to calculate a caller’s reputation. Thus SPIT detection by
reputation benefits from SPIT prevention by payment. The
authors explain that only a single header extension of
the underlaying protocol is necessary in order to pass the
reputation to the callee. Hence, the approach can be easily
integrated in a SIP network that already integrates payment
functionality.

In [1], Balasubramaniyan et al. introduce a defense mech-
anism that is based on the duration of calls between certain
users. Therefore, a network of relations is spanned between
single users of a VoIP-System. The characteristics of every
user, regarding the call duration, is observed during a longer
time period. Based on the resulting history of this behaviour
analysis, a rating for every user is generated. The rating
reflects the reputation of the rated user within the VoIP-
System.

E. Behavioral Analysis

In [17], Sengar et al. present two approaches based on
the anomaly detection of the distributions of selected call
features (inter-arrival time between calls and call duration).
The first approach is to detect individual SPIT call and has
similarities to some modules presented in this paper. The
second approach is designed to detect groups of (potentially
collaborating) VoIP spam calls, e.g., a botnet used for
sending SPIT. The authors analyze the call behaviour and

compare it to theoretical reference pattern to detect unsusual
call behaviour. Overhead measurements with prototypes are
not given.

F. Consequences on suspicious call attempts

Once a call attempt is suspected by the provider to be
a SPIT call, consequences need to follow. According to
legal regulations [2], the provider must not drop a call.
Therefore, the call is forwarded to the callee. The callee
needs to handle the call attempt appropriately. For this
purpose several actions may be taken, e.g., reject the call,
answer the call, forward the call to a mailbox. In [7]
Hansen et al. explain different options like voice menus or
announcements of alternative reachability for the handling
of an unsolicited call where they emphasize the use of
mailboxes.

To sum up, a powerful Anti-SPIT solution has to com-
bine different approaches for an effective detection and
prevention mechanism. Just the combination of different
approaches for avoiding SPIT will lead to a successful
solution as Mueller and Massoth mention in [13]. Especially,
the interactions between methods applied by the provider
and methods implemented by the client are important.

III. SPIT AVOIDANCE WORKFLOW

We propose a SPIT Avoidance Workflow with a modular
structure. The workflow is applied at the provider’s side
during the call initiation. The modular structure of our
overall approach allows easy customizing and experimental
combinations of single modules. Furthermore, the solution
is easily extendable and can be changed to fit future re-
quirements. The overall architecture of the SPIT Avoidance
Workflow is shown in Figure 1. Details for the boxes Check
Filterlits and SPIT-Estimation are shown in Figure 2 and
Figure 3.

In addition to the implemented workflow, we will describe
an approach for some consequence modules that need to be
applied on side of the client in order to evaluate results given
by the provider.

A. Check Syntax Module

Certain fields of an incoming message (e.g. caller address,
callee address, etc.) are checked, whether or not the fields
are filled with valid values, according to the RFC 3261 [14].

If the check is not passed, the response 484 Address
Incomplete or 400 Bad Request is sent and the call attempt is
canceled as it can not be processed. Otherwise, the Filterlist
Modules are applied. The list of syntax checks is optionally
extendable.

B. Filterlist Modules

Filterlists provide an effective means to categorize incom-
ing messages during the call initiation. Certain fields of an

95Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

SPIT Avoidance Workflow

SPIT-Estimation

Check Filterlists

[not found]

[found]

Check Syntax

[passed]
[not passed]

Figure 1. SPIT Avoidance Workflow

incoming message (e.g., the caller’s identity in the From
header) are compared to lists with previously stored values.
If a match is present, a corresponding action is executed.

Simple concepts like the black- or whitelisting of users
are already well-known from e-mail infrastructures. By using
such lists, it is important to be aware about the priority of the
interpreted lists, e.g., personal vs. global lists or manually
vs. automatically managed lists. Implementing our approach,
we set a higher priority to personal and to manually managed
lists. In our opinion, the personal settings like the manually
and therefore intentionally set entries, should be preferred.

Therefore, we introduce global and callee specific lists
for black- and whitelisting. In addition, we propose a global
delay list that is to indicate suspicious callers whose calls
are delayed during the initiation. This idea is based on the
approach that such timeouts will lead callers, that initiated
calls en masse, to hang up the phone before the call attempt
is actually forwarded to the callee.

The detailed part of the workflow for the Filterlist Mod-
ules is shown in Figure 2. A blacklisted user, e.g., receives
403 Forbidden and the call attempt is canceled as the callee
decided so in advance by putting the caller on the blacklist.
Once a caller can not be categorized by any filterlist, the
Estimation Modules will apply.

C. Estimation Modules

The Estimation Modules realize the main concept of SPIT
detection. The modules focus on undesired calls that have

Check Callee Specific Black List

Check Global White List

Check Global Delay List

SPIT=0%

SPIT=100%

[found]
[not found]

[found]
[not found]

[found]

[not found]

 Filterlist Modules

Check Callee List Hosted

[lists not hosted]
 [lists hosted]

Delay Call

Check Callee Specific White List

Provider

Configuration

Cancel Call

[found]
[not found]

Figure 2. Filterlist Modules

Estimation Modules

Callback

Return Calls

Call Increase

Rejected PaymentsInfeasible Calls

Call Diversity

Call Proportion

Call Duration

SPIT Rate Computation

Figure 3. Estimation Modules

96Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

been initiated in a larger scale. Both criteria characterize
SPIT. Various methods that are managed modular, evaluate
the caller’s behaviour in the past. The approach is based
on the assumption that it is possible to identify users with
criminal or malicious intentions because of their specific
behaviour related to different criteria. Parameters, such as
the number of calls initiated by the user, the duration of calls,
the number of different contacts during a certain period of
time etc. are analyzed by the provider. Based on this data, the
probability of SPIT related to a special criterion is estimated
by each method and therefore realized by a single module
in each case (see Figure 3).

The detailed mathematical formulas of the SPIT Estima-
tion Modules are given in [15].

1) Callback: The module Callback returns a low SPIT
probability if a caller was contacted by the callee already
before. The idea given by Seifert in [16] is that a user who
returns someone’s call is a legitimate and desired contact.
Therefore, also past call attempts of the callee of the ongoing
call are rated.

2) Return Calls: This module returns a low SPIT proba-
bility if a user gets called back frequently. This approach is
based on the consideration that a user who is never called
back by others, is probably to be classified as an unwanted
dialog partner.

We now propose that only those interactions between
users should be considered, where the relevant past calls
have been successful. These calls must have been confirmed
by both partners and there must have been a conversation
with submitted voice content. Both parties need to confirm at
least one call request from the other party. This ensures that
both participants really wanted to interact with each other.
Such a interaction is rated as a successful returned call.

3) Call Increase: The module Call Increase recognizes
increasing call numbers of a single user in comparison to
himself during a short time period. In [16] Seifert describes a
mechanism our module is based on. The module is designed
to identify accounts that already exist for a longer time and
have now been compromised. The number of outgoing calls
of the current caller, in several elapsed intervals, is set into
relation to his initiated calls during the last interval. If the
number of calls has risen too high, the module returns a high
SPIT probability. Balasubramaniyan et al. in [1] and Sengar
et al. in [17] assume that a significant divergence from the
normal call behaviour is a signal for outgoing SPIT.

4) Infeasible Calls: Based on an approach in [16], our
module Infeasible Calls evaluates the number of calls that
have not been successful because a recipient with the se-
lected SIP address was nonexistent. Therefore, the module
controls which response codes the caller has received on his
call attempts in the past. If, too often in the past, the caller
of the current call tried to attain identities that did not exist,
the module returns a high SPIT probability.

Therefore, we do now propose to extend the message

404 Not Found by a SIP conforming string extension. In
the communication between various providers it should be
distinguished between 404 Not Registered and 404 Not
Existing, while the client still only receives 404 Not Found.

Thus, it is possible for the providers, to separate infeasible
calls from the calls to currently not available users. In
addition the approach eliminates the chance of creating a
file of existent addresses, as these could possibly be used
for sending SPIT in the future.

5) Call Diversity: This module rates the number of calls
to different SIP URIs as proposed by Liske et al. in [10].
For that purpose, the module compares the number of made
calls to the number of diverse dialed numbers.

We propose that callers who call too many different SIP
URIs are suspected to spit.

6) Call Proportion: The module Call Proportion assesses
the number of calls made by a user, compared to the average
number of calls of all users in an observation period. If in the
past the caller of the current call has initiated significantly
more calls than other users in average, our module returns a
high SPIT probability. This again bases on the assumption
made by Balasubramaniyan et al. in [1] and Sengar et al.
[17] that a strong divergence from the normal call behaviour
is probably SPIT and has been mentioned by Seifert in [16]
as well.

7) Call Duration: This module considers the duration of
current caller’s past calls as Liske et al. mention in [9]. A
caller who initiates many very short calls is suspected to be
an unwanted caller. Therefore, we compare the number of
short calls (e.g., ≤ 5sec.) to the overall number of phone
calls, the user has initiated.

8) Rejected Payments: The module evaluates the number
of calls of the caller, which have not been successfully
concluded because the caller did not agree to pay the fees
that were caused by his call. In [9], Liske et al. suppose that
a caller is suspected to spit if he did reject such requests
too often. Thereto, the caller is rated with a high SPIT
probability by the module.

Through SPIT Rate Computation, the results of the in-
dividual modules are combined. The result is represented
within a single value for the SPIT probability. In [9], Liske
et al. already mention a related reputation system.

The detailed mathematical formulas of the SPIT Rate
Computation are given in [15].

Finally, the Consequence Modules, not shown in the
figures due to their client side’s deployment, generate an
appropriate reaction to the determined SPIT Rate. In [7],
Hansen et al. already emphasize the importance of mailbox
mechanisms to prevent SPIT. Our proposal is to provide
certain capabilities to the client, to evaluate the SPIT Rate
that has been forwarded by the provider.

Thus, our Consequence Modules decide by time of day

97Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

and by transmitted SPIT Rate about how to respond to the
call. Possible consequences are: signal an incoming call
(e.g., by ringing or vibrating the phone), forward the call to a
mailbox, request micro-payment from the caller or reject the
call. The Consequence Modules are not part of our prototype
implementation as they should be located within the client’s
VoIP (soft-)phone.

IV. IMPLEMENTATION

The implementation presented in this paper contains the
Syntax Check Module, the Filterlist Modules and the Esti-
mation Modules including the SPIT Rate Computation as
described in Section III.

Our implementation extends the functionality of the Ka-
mailio SIP Server [12]. It is complying with the Kamailio
project guidelines and compatible with the existing code.
Kamailio is de-facto standard in the field of telephony via
SIP due to its open source code, modularity, world-wide
usage, high-performance, robustness and its active developer
community.

The Estimation Modules access the information in the
database, previously collected by a Call Trace Update Func-
tionality. Therefore, the Call Trace Update Functionality
logs all relevant data (e.g., start and end time, caller, callee,
etc.) of every call. Based on this information, the behaviour
of the caller gets evaluated and expressed as module-specific
SPIT probability.

As a final result, the SPIT Rate is calculated using
the SPIT probabilties from all SPIT Estimation Modules.
Different strategies can be applied to include the single SPIT
probabilities in the computation, as described by Seifert
in [16]. It is possible to incorporate the ratings of all
modules in the same degree in the reported value as we
did for our prototype implementation. For future use, we
propose a weighted accumulation to underline the greater
importance of certain modules. As the number of modules
that contribute to the SPIT rating may vary, the calculation
should be implemented dynamically. If, for example not
enough information about the caller is available, not all input
parameters for all modules are applicable.

We assume that the relevant data for the single modules is
available when it needs to be analyzed. In case no relevant
data is found during the evaluation of the available data,
the corresponding module is not able to compute a result
and can not be involved in the SPIT Rate Computation. Our
implementation considers this dynamic computation.

The final result of the computation is added as an addi-
tional header field Spit Rate to the initial Invite message.
Thus it is transmitted to the client as a compressed value.
This extension is conformant with the RFC 3261 [14].

For our implementation, we have chosen a MySQL
database [3] as backend because the link is well supported
by Kamailio and the database is Open Source like Kamailio
itself. The entity relationship model is shown in Figure 4.

Legend...

association
relation attribute primary keyentity

globallist

username

id

domain

category

lstd_username

lstg_domain

lstg_username

id

category

lstd_domain

userlist

session_start

session_end

accepted

end

start

callee_domain

callee_username

caller_domain

caller_username

call_id

id

acknowledged

call detail record payment

payment_successful

id

1
requests [0..1]

Figure 4. Database Entity Relationship Model

Within the shown database structure, all relevant data needed
by the modules described in Section III is stored.

We have implemented our SPIT Avoidance Workflow
by extending the Kamailio routing logic in kamailio.cfg.
We have chosen the interface SQLOps [11] provided by
Kamailio. It allows interaction with the database backend
directly from the routing logic.

Analysis of different available interfaces arrived at the
conclusion that SQLOps shows the best performance. It
holds and reuses one database connection that is established
on Kamailio startup. The Perl interface [4] seemed to be
an alternative because it allows the execution of arbitrary
Perl scripts, but it etablishes a new database connection for
each running script. Therefore, it is not scalable for growing
numbers of calls per second.

V. MEASUREMENTS

The measurements were made to compare the perfor-
mance of the Kamailio SIP server with and without the
extensions for SPIT prevention. Thus, it is possible to
evaluate the overhead of our solution and its impact on the
number of processed calls per second. Therefore, telephony
traffic was simulated, while the SPIT prevention modules
have been active or inactive.

A. Testbed and Scenarios

We used three nodes (each with 2 x AMD Opteron 244
CPU, 1.8GHz, 4GB RAM, Gigabit Ethernet Interconnection)
to setup one SIP proxy (Kamailio [12], v3.1.1), two user
agents (SIPp [6], v3.1) that generated (resp. processed) a
various number of SIP calls and a MySQL [3] database
(v.14.12 distrib. 5.0.51a) to store the collected connection
data. Kamailio has been configured to use 1024MB of
memory, to create eight processes and its log level was set
to zero.

We measured the default configuration of the proxy in
comparison to the behaviour of the proxy with one single

98Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

Figure 5. Measurement of Round Trip Time

module switched on in each case. Thereby, we wanted to
figure out which module causes the most overhead.

Each call generates a time value. The round-trip time
(RTT) represents the delay of a user agent server’s response,
including Kamailio action (processing the activated mod-
ules). We focused on this part of the session initiation as
it measures the most expensive part. It represents the time
interval from the start of the session initiation to the first
ringing (see Figure 5).

For each single module, we measured the RTT in
different series. Each series used a constant call frequency
(number of calls per second) for 60 seconds. We have
chosen different call frequencies for each series in steps of
1 from the range of 1 to 10 calls per second (cps), steps of
10 from the range of 10 to 100cps and steps of 100 from
the range of 100 to 1000cps. That sums up to 28 series
of different call frequencies per module lasting 60 seconds
each (see Table I). The proxy and the user agents have
been restarted for each measurement.

RANGE (CPS) STEPS NO. OF SERIES

1 - 10 1 10
20 - 100 10 9
200 - 1000 100 9∑

28 a 60 sec.

Table I. Measurements for each module

B. Results

For all modules and each call frequency we calculated the
corresponding median values for the RTT.

1) Syntax Check and Filterlist Modules: The module
Global List includes the global delay- and global whitelist
whereas the module User List includes the callee’s personal
black and white list. The lists were filled with 50 sample
entries each. As shown in Figure 6, the Kamailio SIP server
only shows slightly higher response times of maximum

(~0.25ms) with the Syntax Check or the Filterlist Modules
switched on, than without any modules for SPIT detection.

 0

 0.5

 1

 1.5

 2

 2.5

 1 10 100 1000

R
ou

nd
 T

rip
 T

im
e

[m
s]

Call Frequency [cps]

Measuring Scenario SIPp-Kamailio-SIPp RTT#1 Filterlist Modules

NoModules
SyntaxCheck

GlobalList
UserList

Figure 6. Median RTT with activated Filterlist Modules

Slight deviation of 0.1ms is due to normal measurement
fuzziness using the described measurement environment.
The reached accuracy of 0.1ms is sufficient to show the
impact of the modules.

2) Estimation Modules: Figure 7 shows the RTT for the
Estimation Modules, with exception of module Call Increase
as it does not fit within the chosen scale, in comparison to the
proxy’s plain behaviour. The modules Callback, Infeasible
Calls and Rejected Payment show just a slightly higher
response time of ~0.25 to 0.5ms.

From a call frequency of 100cps the response time for
the modules Call Diversity, Return Calls, Call Duration and
Call Proportion reaches unacceptable high values, whereas
the module Call Increase shows this behaviour already from
a call frequency of 10cps.

 0

 2.5

 5

 7.5

 10

 12.5

 15

 17.5

 20

 1 10 100 1000

R
ou

nd
 T

rip
 T

im
e

[m
s]

Call Frequency [cps]

Measuring Scenario SIPp-Kamailio-SIPp RTT#1 Estimation Modules (without Call Increase)

NoModules
Callback

Call Diversity
Call Duration

Call Proportion
Infeasible Calls

Return Calls
Rejected Payment

Figure 7. Median RTT with activated Estimation Modules

The measured delays for some modules are resulting from
the queries to the database, initiated by the Kamailio routing

99Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

logic during the processing of messages. Further tests have
shown, that the delays do not occur if the requests on the
database are not performed, even though the remaining pro-
gram code (e.g., decisions, branches, variable assignments,
adding the SPIT-header fields etc.) of the SPIT Avoidance
Modules kept unchanged. Therefore, the delays result from
the database queries only. This conclusion is backed by
the measurement results, which show that especially the
modules with more frequent requests to the database scale
poorly.

3) Call Trace Update Functionality: The Call Trace
Update Functionality does not scale well as it accesses
the database very often during the call initiation to log all
necessary data. Figure 8 shows that the functionality causes
high response times already from a call frequency of 10cps.

Figure 8. Median RTT with activated Call Trace Update

As the Call Trace Update Functionality provides the basis
for the Estimation Modules, some effort needs to be made
to improve the performance of this basic functionality.

C. Result Summary and Suggestions for Improvement

In summary, six modules scale satisfying and five modules
do not. In addition, the trace mechanism for data collection
does not scale very well.

Since we have identified the database queries as the reason
for the measured delay, the following actions might lead to
better response times and thus, to a higher performance of
the SPIT Avoidance Modules that did not scale and finally to
a better Kamailio scalability. The selected MySQL database
was used in the standard configuration. We have made no
improvements for our measurements. Therefore, indexing of
database entries, detailed analysis and optimization of the
individual database queries, the usage of numeric data types
instead of strings, increasing the cache size of the database
and the number of possible child processes of Kamailio
might lead to a much better performance.

Further, the usage of more powerful hardware as well
as separating the database system will improve the overall
system performance in addition.

VI. CONCLUSION AND FUTURE WORK

We presented a SPIT Avoidance Workflow consisting of
filterlists, call detail record analysis, and a rating system
based on this analysis. Between modules known from prior
works, we also proposed new modules like a global delay
list.

We have shown that the workflow can be integrated within
the Kamailio routing logic to detect and prevent SPIT. For
some of our modules, the measurements with the prototype
confirm that it is possible to filter and rate call attempts in
a larger scale without increasing the response time or the
scalability of the Kamailio SIP Server. Already six from
eleven SPIT Avoidance Modules worked very well without
any database optimization or any special hardware.

Future work has to be done to optimize the SQL queries
and to improve the underlying database structure for a better
performance.

REFERENCES

[1] Vijay Balasubramaniyan, Mustaque Ahamad, and Haesun
Park. CallRank: Combating SPIT Using Call Duration, Social
Networks and Global Reputation. In CEAS’07, 2007.

[2] Translation of the German Criminal Code provided by
Prof. Dr. Michael Bohlander Bundesministerium der
Justiz. German Criminal Code - Strafgesetzbuch (StGB).
http://www.gesetze-im-internet.de/englisch_stgb/german_
criminal_code.pdf, 2010.

[3] Oracle Corp. MySQL v.14.12 distrib. 5.0.51a.
http://downloads.mysql.com/archives.php?p=mysql-5.0&v=5.
0.51a, 2008.

[4] Bastian Friedrich. Kamailio (OpenSER) Perl Mod-
ule. http://www.kamailio.org/docs/modules/3.1.x/modules_k/
perl.html, 2007.

[5] Stefan Gasterstädt and Bettina Schnor. What VoIP-CDR can
tell us (not)? Technical Report ISSN 0946-7580, TR-2010-2,
Potsdam University, Germany, May 2010.

[6] Richard Gayraud, Olivier Jacques, et al. SIPp: An Open
Source Performance Testing Tool for SIP [v3.1]. http://sipp.
sourceforge.net, March 17th, 2009.

[7] Markus Hansen, Marit Hansen, Jan Moeller, Thomas Ro-
hwer, Carsten Tolkmit, and Henning Waack. Developing a
Legally Compliant Reachability Management System as a
Countermeasure against SPIT. In Third Annual VoIP Security
Workshop, Berlin, Germany, June 2006.

[8] Skype Limited. Skype Technologies (Microsoft). http://www.
skype.com, 2011.

100Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

[9] Stefan Liske, Klaus Rebensburg, and Bettina Schnor. Im-
plicit Reputation in a Payment Integrated SIP Network. In
Proceedings of the 14th Annual Workshop of HP Software
University Association (HP-SUA), pages 161–170, Munich,
Germany, July 2007.

[10] Stefan Liske, Klaus Rebensburg, and Bettina Schnor. SPIT-
Erkennung, -Bekanntgabe und -Abwehr in SIP-Netzwerken.
In U. Ultes-Nitsche, editor, Proceedings of KiVS – Net-
Sec 2007, Workshop „Secure Network Configuration“, pages
33–38, February 2007.

[11] Daniel-Constantin Mierla. Kamailio (OpenSER) SQLOps
Module. http://www.kamailio.org/docs/modules/3.1.x/
modules_k/sqlops.html, 2008.

[12] Ramona-Elena Modroiu, Bogdan Andrei Iancu, Daniel-
Constantin Mierla, et al. Kamailio (OpenSER) [v3.1.1].
http://www.kamailio.org/, December 02th, 2010.

[13] Juergen Mueller and Michael Massoth. Defense Against Di-
rect Spam Over Internet Telephony by Caller Pre-Validation.
In 2010 Sixth Advanced International Conference on Telecom-
munications (AICT 2010), Barcelona, Spain, 9-15 May 2010,
pages 172–177, Washington, DC, USA, 2010. IEEE Com-
puter Society. Best Paper Award.

[14] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camar-
illo, Alan Johnston, Jon Peterson, Robert Sparks, Mark Hand-
ley, and Eve Schooler. SIP: Session Initiation Protocol. RFC
3261 (Proposed Standard), June 2002. Updated by RFCs
3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630, 5922.

[15] Nicolas Rueger. Konzeption und Implementierung provider-
seitiger Sicherheitsmechanismen zur Erkennung und Ab-
wehr von SPAM over Internet Telephony (SPIT) in VoIP-
Netzwerken. Diploma thesis, University of Potsdam, Institute
for Computer Science, 2011.

[16] Juergen Maximilian Seifert. Klassifizierung und Imple-
mentierung von SPIT (Spam over Internet Telephony) Ab-
wehrmassnahmen in SIP-Netzen. Diploma thesis, University
of Potsdam, Institute for Computer Science, 2006.

[17] Hemant Sengar, Xinyuan Wang, and Art Nichols. Thwart-
ing Spam over Internet Telephony (SPIT) Attacks on VoIP
Networks. In Proceedings of the Nineteenth International
Workshop on Quality of Service, IWQoS ’11, pages 25:1–
25:3, Piscataway, NJ, USA, 2011. IEEE Press.

101Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

