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Abstract— This paper describes a turbo decoder for Long 
Term Evolution (LTE) standard, release 8, using a Max Log 
MAP algorithm. The Forward Error Correction (FEC) b lock 
dimensions, as indicated in the standard, are inside a range of 
40 to 6144 bits. The coding rate is 1/3, the puncturing block not 
being taken into discussion here. The number of turbo 
iterations is variable, but in this study it was usually set to 3. 
The turbo decoder is implemented on a Xilinx Virtex-5 
XC5VFX70T Field Programmable Gate Array (FPGA). 

Keywords- turbo codes; Max Log MAP decoder; FPGA 
implementation; LTE standard. 

I.  INTRODUCTION  

The discussions around the channel coding theory were 
intense in the last decades, but even more interest around 
this topic was added once the turbo codes were found by 
Berrou, Glavieux, and Thitimajshima [1][2][3]. 

At the beginning of their life, after proving the obtained 
decoding performances, the turbo codes were introduced in 
different standards as recommendations, while 
convolutional codes were still mandatory. The reason 
behind this decision was especially the high complexity of 
turbo decoder implementation. But the turbo codes became 
more attractive once the supports for digital processing, like 
Digital Signal Processor (DSP) or Field Programmable Gate 
Array (FPGA), were extended more and more in terms of 
processing capacity. Today the chips include dedicated 
hardware accelerators for different types of turbo decoders, 
but this approach makes them standard dependent. 

The Third-Generation Partnership Project (3GPP) [4] is 
an organization, which adopted early these advanced coding 
techniques. Turbo codes were standardized from the first 
version of Universal Mobile Telecommunications System 
(UMTS) technology, in 1999. The next UMTS releases 
(after High Speed Packet Access was introduced) added 
support for new and interesting features, while turbo coding 
remained still unchanged. Some modifications were 
introduced by the Long Term Evolution (LTE) standard 
[5][6], not significant as volume, but important as concept. 
While keeping exactly the same coding structure as in 
UMTS, 3GPP proposed for LTE a new interleaver scheme.  

Valenti and Sun presented in [7] a UMTS dedicated turbo 
decoding scheme. Due to the new LTE interleaver, the 
decoding performances are improved compared with the 
ones corresponding to UMTS standard. Moreover, the new 

LTE interleaver provides support for the parallelization of 
the decoding process inside the algorithm, taking advantage 
on the main principle introduced by turbo decoding, i.e., the 
usage of extrinsic values from one turbo iteration to another. 

This paper presents an efficient solution for the hardware 
implementation of a Convolutional Turbo Code (CTC) LTE 
decoder. The optimization indicators refer to the used logic 
area and to the obtained decoding speed. Also the level of 
performances degradation introduced by the finite precision 
representation is taken into account when selecting the final 
implementation solution.  

The paper is organized as follows. Section II describes the 
LTE coding scheme with the new introduced interleaver. 
Section III presents the decoding algorithm. In Section IV, 
the implementation solutions and the proposed decoding 
scheme are discussed. Section V presents area and speed 
results obtained when targeting a XC5VFX70T [8] chip on 
Xilinx ML507 [9] board; it also provides simulation curves 
comparing the results obtained when varying the most 
important decoding parameters. Section VI presents the final 
conclusions and the future perspective of this study.  

  

II. LTE CODING SCHEME 

The coding scheme presented in 3GPP LTE specification 
is a classic turbo coding scheme, including two constituent 
encoders and one interleaver module. It is described in Fig. 
1. One can observe at the input of the LTE turbo encoder the 
data block Ck. The K bits corresponding to this block are 
sent as systematic bits at the output in the steam Xk. In the 
same time, the data block is processed by the first 
constituent encoder resulting parity bits Zk, while the 
interleaved data block C’k is processed by the second 
constituent encoder resulting parity bits Z’k. Combining the 
systematic bits and the two streams of parity bits, the 
following sequence is obtained at the output of the encoder: 
X1, Z1, Z’1, X2, Z2, Z’2, …, Xk, Zk, Z’k. 

At the end of the coding process, in order to drive back 
the constituent encoders to the initial state, the switches 
from Fig. 1 are moved from position A to B. Since the final 
states of the two constituent encoders are different, 
depending on the input data block, this switching procedure 
will generate tail bits for each encoder. These tail bits have 
to be transmitted together with the systematic and parity bits 
resulting the following final sequence: Xk+1, Zk+1, Xk+2, Zk+2, 
Xk+3, Zk+3, X’k+1, Z’k+1, X’k+2, Z’k+2, X’k+3, Z’k+3.     
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Figure 1.  LTE CTC encoder.  

As mentioned before, the novelty introduced by the LTE 
standard in terms of turbo coding is the interleaver module. 
The output bits are reorganized using 

 '
π ( ) , 1, 2,..., ,i iC C i K= =  (1) 

where the interliving function π applied over the output 
index i is defined as 

 2
1 2π( ) ( ) mod .i f i f i K= ⋅ + ⋅  (2) 

The length K of the input data block and the parameters f1 
and f2 are provided in Table 5.1.3-3 in [5]. 
 

III.  DECODING ALGORITHM 

The LTE turbo decoding scheme is depicted in Fig. 2. The 
two Recursive Systematic Convolutional (RSC) decoders are 
using in theory the Maximum A Posteriori (MAP) algorithm. 
This classic algorithm provides the best decoding 
performances, but it suffers from very high implementation 
complexity and it can lead to large dynamic range for its 
variables. For these reasons the MAP algorithm is used as a 
reference for targeted decoding performances, while for real 
implementation new sub-optimal algorithms have been 
studied: Logarithmic MAP (Log MAP) [10], Maximum Log 
MAP (Max Log MAP), Constant Log MAP (Const Log 
MAP) [11], and Linear Log MAP (Lin Log MAP) [12]. 

For the proposed decoding scheme, the Max Log MAP 
algorithm is selected. This algorithm reduces the 
implementation complexity and controls the dynamic range 
problem with the cost of acceptable performances 
degradation, compared to classic MAP algorithm. The Max 
Log MAP algorithm keeps from Jacobi logarithm only the 
first term, i.e., 
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Figure 2.  LTE turbo decoder.  

The LTE turbo decoder trellis diagram contains 8 states. 
Each diagram state permits 2 inputs and 2 outputs. The 
branch metric between the states Si and Sj is 

 ( ) ( ) ( ) ( )V , , ,i
ij k kX X i j Z Z i jγ = + Λ  (4) 

where X(i,j) represents the data bit and Z(i,j) is the parity bit, 

both associated to one branch. Also ( )i
kZΛ is the Log 

Likelihood Ratio (LLR) for the input parity bit. When Soft 
Input Soft Output (SISO) 1 decoder is taken into discussion 

this input LLR is ( )i
kZΛ , while for SISO 2 it becomes 

( )'i
kZΛ ; V(Xk)=V1(Xk) represents the sum between ( )i

kXΛ  

and W(Xk) for SISO 1 and V(Xk)=V2(X’k) represents the 
interleaved version of the difference between ( )1

o
kXΛ  and 

W(Xk) for SISO 2. In Fig. 2, W(Xk) is the extrinsic 

information and ( )1
o

kXΛ and ( )'
2
o

kXΛ are the output LLRs 

generated by the two SISOs. 
In the LTE turbo encoder case, there are 4 possible values 

for the branch metrics between 2 states in the trellis: 
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The decoding process is based on going forward and 
backward through the trellis.   

A. Backward recursion 

The trellis is covered backward and the computed 
metrics are stored in a normalized form at each node of the 
trellis. These stored values are used for the LLR 
computation at the trellis forward recursion. The backward 
metric for the Si state at the kth stage is ( )k iSβ , where 

2 3k K≤ ≤ +  and 0 7i≤ ≤ . The backward recursion is 

initialized with ( )3 0 0K Sβ + =
 

and ( )3 0, 0K iS iβ + = ∀ > . 
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Starting from the stage k=K+2 and continuing through the 
trellis until stage k=2, the computed backward metrics are 

 ( ) ( ) ( ){ }1 1 1 1 2 2
ˆ max ( ), ( ) ,k i k j ij k j ijS S Sβ β γ β γ+ += + +  (6) 

where ( )ˆ
k iSβ  represents the un-normalized metric and Sj1 

and Sj2 are the two states from stage k+1 connected to the 
state iS  from stage k. After the computation of 

( )0
ˆ
k Sβ value, the rest of the backward metrics are 

normalized as 

 ( ) ( ) ( )0
ˆ ˆ

k i k i kS S Sβ β β= −  (7) 

and then stored in the dedicated memory.  

B. Forward recursion 

During the forward recursion, the trellis is covered in the 
normal direction, this process being similar with the one 
specific for Viterbi algorithm. Now only the forward metrics 
from the last stage (k-1) have to be stored, in order to allow 
the computation of the current stage (k) metrics. The 
forward metric for the state iS  at the stage k is ( )k iSα with 

0 1k K≤ ≤ −  and 0 7i≤ ≤ . The forward recursion is 

initialized with ( )0 0 0Sα = and ( )0 0, 0iS iα = ∀ > . Starting 

from the stage k=1 and continuing through the trellis until 
the last stage k=K, the un-normalized forward metrics are 
given by 

 ( ) ( ) ( ){ }1 1 1 1 2 2ˆ max ( ), ( ) ,k j k i i j k i i jS S Sα α γ α γ− −= + +  (8) 

where Si1 and Si2 are the two states from stage k-1 connected 
to the state Sj from stage k. After the computation of 

( )0ˆk Sα value, the rest of the forward metrics are normalized 

as 

 ( ) ( ) ( )0ˆ ˆ .k i k i kS S Sα α α= −  (9) 

Because the forward metrics α are computed for the 
stage k, the decoding algorithm can obtain in the same time 
a LLR estimated for the data bits Xk. This LLR is found the 
first time by considering that the likelihood of the 
connection between the state Si at k-1 stage and the state Sj 
at  k stage is 

 ( ) ( ) ( )1, .k k i ij k ji j S Sλ α γ β− += +  (10) 

The likelihood of having a bit equal to 1 (or 0) is when the 
Jacobi logarithm of all the branch likelihoods corresponds to 
1 (or 0) and thus: 

( ) ( ) ( )
( ): 1 ( ): 0

max { , } max { , },
i j i i j i

o
k k k

S S X S S X
X i j i jλ λ

→ = → =
Λ = −  (11) 

where “max” operator is recursively computed over the 
branches, which have at the input a bit of 1 

{ }( ) : 1i j iS S X→ = or a bit of 0 { }( ) : 0i j iS S X→ = . 

 

IV.  PROPOSED DECODING SCHEME 

A. Block Scheme 

Since one constituent decoder extrinsic outputs are inputs 
for the other, and because the interleaving or deinterleaving 
procedure is applied over data blocks, the operating periods 
for the two constituent decoders are not overlapped. Thus, 
the decoding scheme can use a single constituent decoder, 
which operates time-multiplexed. The proposed scheme is 
depicted in Fig. 3 and it is based on the previous work 
presented in [13] for a WiMAX CTC decoder. The memory 
blocks are used for storing data from one semi-iteration to 
another and from one iteration to another. SISO 1 reads the 
memory locations corresponding to V1(Xk) and 

( )i
kZΛ vectors. The reading process is performed forward 

and backward and it serves the first semi-iteration. At the 
end of this process, SISO 2 reads forward and backward 
from the memory blocks corresponding to V2(X’k) and 

( )'i
kZΛ  vectors in order to perform the second semi-

iteration. 
Vector V1(Xk) is obtained by adding the input vector 
( )i

kXΛ  with the extrinsic information vector W(Xk). After 

having the input data ready, SISO 1 starts the decoding 
process. At the output, the LLRs are available sequentially, 
at 8 clock periods distance. Performing the subtraction 
between these LLRs and the extrinsic values W(Xk), the 
vector V2(Xk) is computed and then stored into its 
corresponding memory. The interleaving process is started 
and the re-ordered LLRs V2(X’k) are stored in their memory, 
where the corresponding values for the 3 tail bits X’k+1, X’k+2, 
X’k+3 are also added on the last memory locations. The 
second semi-iteration can start at this point. The same SISO 
unit is used, but reading this time data inputs from the other 
memory blocks. As one can see from Fig. 3, two switching 
mechanisms are included in the scheme. When in position 1, 
the memory blocks for V1(Xk) and ( )i

kZΛ  are used, while 

in position 2 the memory blocks for V2(X’k) and 

( )'i
kZΛ become active. 

At the output of the SISO unit, after each semi-iteration, 
K LLRs are obtained. The ones corresponding to the second 

semi-iteration are stored in the ( )'
2
o

kXΛ  memory, then they 

are deinterleaved and finally they are stored in the 

( )2
o

kXΛ memory. Subtracting from these deinterleaved 

LLRs the values of V2(Xk) vector, the extrinsic information 
W(Xk)  is obtained. Also,  if  the  decoder  performs  the  last 
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Figure 3.  Proposed turbo decoder block scheme.  

second semi-iteration, the hard decision is made over these 
deinterleaved LLRs, resulting this way the decoded bits. 

In order to be able to handle all the data block 
dimensions, the used memory blocks have 6144 locations 
(this is the maximum data block length), except the ones 
storing the input data for RSCs, which have 6144 + 3 
locations, including here also the tail bits. Each memory 
locations is 10 bits wide, the first bit being used for the sign, 
the next 6 bits representing the integer part and the last 3 bits 
indicating the fractional part. This format was decided 
studying the dynamic range of the variables (for the integer 
part) and the variations of the decoding performances (for 
the fractional part).  

B. The Interleaver 

The interleaver module is used both for interleaving and 
deinterleaving. The interleaved index is obtained based on a 
modified form of (2), i.e., 

 ( ) ( )1 2π {[ mod  ] }mod  .i f f i K i K= + ⋅ ⋅  (12) 

In order to obtain both functions, either the input data is 
stored in the memory in natural order and then it is read in 
interleaved order, either the input data is stored in the 
interleaved order and then it is read in natural order.  Fig. 4 
depicts the implementation solution for this module. 

As one can observe from Fig. 4, the interleaved index 
computation is performed in three steps. First the value for 

( )1 2 mod  f f i K+ ⋅
 

is computed. This partial result is 

multiplied by natural order index i and then a new modulo K 
function is applied. In the first stage of this process, the 
remark that the formula is increased with f2 for consecutive 
values of index i is used. This way, a register value is 
increased with f2 at each new index i. If the resulted value is 
bigger than K, the value of K is subtracted from the register 
value. This processing is one clock period long, this being 
the reason why data is generated in a continuous manner.  

(f1+f2·i) mod K mod K
i

f2

f1

(i)

              
Figure 4.  Proposed interleaver logic scheme. 

In the second stage, a pipe-line multiplier is used for 
obtaining the result of the multiplication between index i 
and the first stage resulted value. The product result is 
obtained after 13 clock periods and it is 26 bits wide. In the 
third stage this result is compared with values 2nK, with n 
between 13 and 0. Less subtraction for computing modulo K 
function are performed this way, the total number of clock 
periods being reduced from 6124 to 13. At the end of this 
third stage the interleaved indexes are obtained. 

C. The SISO module 

The internal SISO scheme is presented in Fig. 5. One can 
notice both the un-normalized metric computing blocks 
ALPHA (forward) and BETA (backward), and the transition 
metric computing block GAMMA, which in addition 
includes the normalization function (subtract the metrics for 
the first state from all the other metrics). The L block 
computes the output LLRs, which are normalized by the 
NORM block. The MUX-MAX block selects inputs 
corresponding to the forward or backward recursion and 
computes the maximum function. The MEM BETA block 
stores the backward metrics, which are computed before 
forward metrics. The metric normalization is required to 
preserve the dynamic range. Without normalization, the 
forward and backward metric width should be wider in order  
to avoid saturation, which means more memory blocks, more 
complex arithmetic (i.e., more used resources), and lower 
frequency (as an overall consequence). Hence, reducing the 
logic levels by eliminating the normalizing procedure does 
not increase the system performances. 
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Figure 5.  Proposed SISO block scheme. 
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The ALPHA, BETA, and GAMMA blocks are 
implemented in a dedicated way. Each metric corresponding 
to each state is computed separately, not using the same 
function with different input parameters. 

Consequently, 16 equations should be used for transition 
metric computation (2 possible transitions for each of the 8 
states from a stage). In fact, only 4 equations are needed [as 
indicated in (5)]; moreover, from these 4 equations one of 
them leads to zero value, so that the computational effort is 
minimized for this implementation solution. 

V. IMPLEMENTATION RESULTS 

A. Performances 

The used hardware programming language is Very High 
Speed Hardware Description Language (VHDL). For the 
generation of RAM/ ROM memory blocks Xilinx Core 
Generator 11.1 was used. The simulations were performed 
with ModelSIM 6.5. The synthesis process was done using 
Xilinx XST from Xilinx ISE 11.1. Using these tools, the 
obtained system frequency when implementing the 
decoding structure on a Xilinx XC5VFX70T-FFG1136 chip 
is around 210 MHz. The occupied area is around 1000 
(8.92%) slices from a total of 11200, while the used 18Kb 
memory blocks number is 32 from a total of 296. 

B. Simulations 

The following performance curves were obtained using a 
finite precision Matlab simulator. This approach was 
selected because the Matlab simulator produces exactly the 
same outputs as the ModelSIM simulator, while the 
simulation time is smaller.  

All the simulation results are using the Max Log MAP 
algorithm, and the results are presented for different types of 
decoding parameters variations. All pictures describe the Bit 
Error Rate (BER) versus Signal-to-Noise Ratio (SNR) 
expressed as the ratio between the energy per bit and the 
noise power spectral density. 
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Figure 6.  Finite precision vs. infinite precision. 
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Figure 7.  Decoding performances vs. number of iterations. 

Fig. 6 depicts the obtained performances when executing 
the decoding process of the same input data, in infinite 
precision and in finite precision. For finite precision, as 
mentioned before, a 10 bit format was used, one bit for the 
sign, 6 bits for the integer part and 3 bits for the fractional 
part. In these simulations, K=512 bits, the used modulation 
is QPSK, and the number of turbo iterations is set to 3. 

Fig. 7 depicts the performances improvement when the 
number of turbo iterations is increased. One can observe 
that after a certain number of turbo iterations the decoding 
improvement is not significant anymore and thus the added 
decoded latency is not justified. In these simulations, K=512 
bits, the used modulation is QPSK, and the number of turbo 
iterations is increased from 1 to 5. 

Finally, Fig. 8 describes the decoding performances 
improvement when the data block size increases. For these 
simulations the used modulation is QPSK, the number of 
turbo iterations is 3, and the data block lengths are K=40,  
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Figure 8.  Decoding performances vs. block dimension. 
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K=512, and K=6144. One can observe an improvement of 
about 1.8 dB at BER = 10-2 between the smallest and the 
biggest block size defined by standard (K=40 and K=6144). 

 

VI.  CONCLUSIONS AND FUTURE WORKS 

The most important aspects regarding the FPGA 
implementation of a CTC decoder for LTE systems were 
presented in this paper. Area and speed optimization 
solutions have been proposed based on the specific decoding 
scheme. A very efficient method of increasing the clock 
frequency was proposed, i.e., the normalization operation 
from the ALPHA/BETA updating loop was removed from 
that loop and distributed into the GAMMA block and also 
into the LLR computing block. Simulation and 
implementation results were given for different data block 
sizes and for different number of turbo iterations. 

The perspective for a future work is to implement a stop 
criterion in order to reduce the decoding latency. A possible 
solution is the stop the decoding iterations when some 
indicators are not changing from one iteration to another. 
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