
CTC Turbo Decoding Architecture for LTE Systems Implemented on FPGA

Cristian Anghel, Valentin Stanciu, Cristian Stanciu, and Constantin Paleologu
Telecommunications Department

University Politehnica of Bucharest
Romania

canghel@comm.pub.ro, svl117@yahoo.com, cristian@comm.pub.ro, pale@comm.pub.ro

Abstract— This paper describes a turbo decoder for Long
Term Evolution (LTE) standard, release 8, using a Max Log
MAP algorithm. The Forward Error Correction (FEC) b lock
dimensions, as indicated in the standard, are inside a range of
40 to 6144 bits. The coding rate is 1/3, the puncturing block not
being taken into discussion here. The number of turbo
iterations is variable, but in this study it was usually set to 3.
The turbo decoder is implemented on a Xilinx Virtex-5
XC5VFX70T Field Programmable Gate Array (FPGA).

Keywords- turbo codes; Max Log MAP decoder; FPGA
implementation; LTE standard.

I. INTRODUCTION

The discussions around the channel coding theory were
intense in the last decades, but even more interest around
this topic was added once the turbo codes were found by
Berrou, Glavieux, and Thitimajshima [1][2][3].

At the beginning of their life, after proving the obtained
decoding performances, the turbo codes were introduced in
different standards as recommendations, while
convolutional codes were still mandatory. The reason
behind this decision was especially the high complexity of
turbo decoder implementation. But the turbo codes became
more attractive once the supports for digital processing, like
Digital Signal Processor (DSP) or Field Programmable Gate
Array (FPGA), were extended more and more in terms of
processing capacity. Today the chips include dedicated
hardware accelerators for different types of turbo decoders,
but this approach makes them standard dependent.

The Third-Generation Partnership Project (3GPP) [4] is
an organization, which adopted early these advanced coding
techniques. Turbo codes were standardized from the first
version of Universal Mobile Telecommunications System
(UMTS) technology, in 1999. The next UMTS releases
(after High Speed Packet Access was introduced) added
support for new and interesting features, while turbo coding
remained still unchanged. Some modifications were
introduced by the Long Term Evolution (LTE) standard
[5][6], not significant as volume, but important as concept.
While keeping exactly the same coding structure as in
UMTS, 3GPP proposed for LTE a new interleaver scheme.

Valenti and Sun presented in [7] a UMTS dedicated turbo
decoding scheme. Due to the new LTE interleaver, the
decoding performances are improved compared with the
ones corresponding to UMTS standard. Moreover, the new

LTE interleaver provides support for the parallelization of
the decoding process inside the algorithm, taking advantage
on the main principle introduced by turbo decoding, i.e., the
usage of extrinsic values from one turbo iteration to another.

This paper presents an efficient solution for the hardware
implementation of a Convolutional Turbo Code (CTC) LTE
decoder. The optimization indicators refer to the used logic
area and to the obtained decoding speed. Also the level of
performances degradation introduced by the finite precision
representation is taken into account when selecting the final
implementation solution.

The paper is organized as follows. Section II describes the
LTE coding scheme with the new introduced interleaver.
Section III presents the decoding algorithm. In Section IV,
the implementation solutions and the proposed decoding
scheme are discussed. Section V presents area and speed
results obtained when targeting a XC5VFX70T [8] chip on
Xilinx ML507 [9] board; it also provides simulation curves
comparing the results obtained when varying the most
important decoding parameters. Section VI presents the final
conclusions and the future perspective of this study.

II. LTE CODING SCHEME

The coding scheme presented in 3GPP LTE specification
is a classic turbo coding scheme, including two constituent
encoders and one interleaver module. It is described in Fig.
1. One can observe at the input of the LTE turbo encoder the
data block Ck. The K bits corresponding to this block are
sent as systematic bits at the output in the steam Xk. In the
same time, the data block is processed by the first
constituent encoder resulting parity bits Zk, while the
interleaved data block C’k is processed by the second
constituent encoder resulting parity bits Z’k. Combining the
systematic bits and the two streams of parity bits, the
following sequence is obtained at the output of the encoder:
X1, Z1, Z’1, X2, Z2, Z’2, …, Xk, Zk, Z’k.

At the end of the coding process, in order to drive back
the constituent encoders to the initial state, the switches
from Fig. 1 are moved from position A to B. Since the final
states of the two constituent encoders are different,
depending on the input data block, this switching procedure
will generate tail bits for each encoder. These tail bits have
to be transmitted together with the systematic and parity bits
resulting the following final sequence: Xk+1, Zk+1, Xk+2, Zk+2,
Xk+3, Zk+3, X’k+1, Z’k+1, X’k+2, Z’k+2, X’k+3, Z’k+3.

199Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

Figure 1. LTE CTC encoder.

As mentioned before, the novelty introduced by the LTE
standard in terms of turbo coding is the interleaver module.
The output bits are reorganized using

 '
π () , 1, 2,..., ,i iC C i K= = (1)

where the interliving function π applied over the output
index i is defined as

 2
1 2π() () mod .i f i f i K= ⋅ + ⋅ (2)

The length K of the input data block and the parameters f1
and f2 are provided in Table 5.1.3-3 in [5].

III. DECODING ALGORITHM

The LTE turbo decoding scheme is depicted in Fig. 2. The
two Recursive Systematic Convolutional (RSC) decoders are
using in theory the Maximum A Posteriori (MAP) algorithm.
This classic algorithm provides the best decoding
performances, but it suffers from very high implementation
complexity and it can lead to large dynamic range for its
variables. For these reasons the MAP algorithm is used as a
reference for targeted decoding performances, while for real
implementation new sub-optimal algorithms have been
studied: Logarithmic MAP (Log MAP) [10], Maximum Log
MAP (Max Log MAP), Constant Log MAP (Const Log
MAP) [11], and Linear Log MAP (Lin Log MAP) [12].

For the proposed decoding scheme, the Max Log MAP
algorithm is selected. This algorithm reduces the
implementation complexity and controls the dynamic range
problem with the cost of acceptable performances
degradation, compared to classic MAP algorithm. The Max
Log MAP algorithm keeps from Jacobi logarithm only the
first term, i.e.,

max*(,) ln(e e)

max(,) ln(1 e) max(,).

x y

y x

x y

x y x y− −

= + =

+ + ≈
 (3)

W(Xk)

V1(Xk)

V2(Xk)

V2(X’k)

Xkˆ

SISO 1

SISO 2

Interleaver

+

+

+

+

-

Decision

Deinterleaver
()'

2
o

kXΛ ()2
o

kXΛ

()1
o

kXΛ
()i

kXΛ

()i
kZΛ

()'i
kZΛ

Figure 2. LTE turbo decoder.

The LTE turbo decoder trellis diagram contains 8 states.
Each diagram state permits 2 inputs and 2 outputs. The
branch metric between the states Si and Sj is

 () () () ()V , , ,i
ij k kX X i j Z Z i jγ = + Λ (4)

where X(i,j) represents the data bit and Z(i,j) is the parity bit,

both associated to one branch. Also ()i
kZΛ is the Log

Likelihood Ratio (LLR) for the input parity bit. When Soft
Input Soft Output (SISO) 1 decoder is taken into discussion

this input LLR is ()i
kZΛ , while for SISO 2 it becomes

()'i
kZΛ ; V(Xk)=V1(Xk) represents the sum between ()i

kXΛ

and W(Xk) for SISO 1 and V(Xk)=V2(X’k) represents the
interleaved version of the difference between ()1

o
kXΛ and

W(Xk) for SISO 2. In Fig. 2, W(Xk) is the extrinsic

information and ()1
o

kXΛ and ()'
2
o

kXΛ are the output LLRs

generated by the two SISOs.
In the LTE turbo encoder case, there are 4 possible values

for the branch metrics between 2 states in the trellis:

()
()

() ()

0

1

2

2

0

V

V .

k

i
k

i
k k

X

Z

X Z

γ
γ

γ

γ

=
=

= Λ

= + Λ

 (5)

The decoding process is based on going forward and
backward through the trellis.

A. Backward recursion

The trellis is covered backward and the computed
metrics are stored in a normalized form at each node of the
trellis. These stored values are used for the LLR
computation at the trellis forward recursion. The backward
metric for the Si state at the kth stage is ()k iSβ , where

2 3k K≤ ≤ + and 0 7i≤ ≤ . The backward recursion is

initialized with ()3 0 0K Sβ + =

and ()3 0, 0K iS iβ + = ∀ > .

200Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

Starting from the stage k=K+2 and continuing through the
trellis until stage k=2, the computed backward metrics are

 () () (){ }1 1 1 1 2 2
ˆ max (), () ,k i k j ij k j ijS S Sβ β γ β γ+ += + + (6)

where ()ˆ
k iSβ represents the un-normalized metric and Sj1

and Sj2 are the two states from stage k+1 connected to the
state iS from stage k. After the computation of

()0
ˆ
k Sβ value, the rest of the backward metrics are

normalized as

 () () ()0
ˆ ˆ

k i k i kS S Sβ β β= − (7)

and then stored in the dedicated memory.

B. Forward recursion

During the forward recursion, the trellis is covered in the
normal direction, this process being similar with the one
specific for Viterbi algorithm. Now only the forward metrics
from the last stage (k-1) have to be stored, in order to allow
the computation of the current stage (k) metrics. The
forward metric for the state iS at the stage k is ()k iSα with

0 1k K≤ ≤ − and 0 7i≤ ≤ . The forward recursion is

initialized with ()0 0 0Sα = and ()0 0, 0iS iα = ∀ > . Starting

from the stage k=1 and continuing through the trellis until
the last stage k=K, the un-normalized forward metrics are
given by

 () () (){ }1 1 1 1 2 2ˆ max (), () ,k j k i i j k i i jS S Sα α γ α γ− −= + + (8)

where Si1 and Si2 are the two states from stage k-1 connected
to the state Sj from stage k. After the computation of

()0ˆk Sα value, the rest of the forward metrics are normalized

as

 () () ()0ˆ ˆ .k i k i kS S Sα α α= − (9)

Because the forward metrics α are computed for the
stage k, the decoding algorithm can obtain in the same time
a LLR estimated for the data bits Xk. This LLR is found the
first time by considering that the likelihood of the
connection between the state Si at k-1 stage and the state Sj
at k stage is

 () () ()1, .k k i ij k ji j S Sλ α γ β− += + (10)

The likelihood of having a bit equal to 1 (or 0) is when the
Jacobi logarithm of all the branch likelihoods corresponds to
1 (or 0) and thus:

() () ()
(): 1 (): 0

max { , } max { , },
i j i i j i

o
k k k

S S X S S X
X i j i jλ λ

→ = → =
Λ = − (11)

where “max” operator is recursively computed over the
branches, which have at the input a bit of 1

{ }() : 1i j iS S X→ = or a bit of 0 { }() : 0i j iS S X→ = .

IV. PROPOSED DECODING SCHEME

A. Block Scheme

Since one constituent decoder extrinsic outputs are inputs
for the other, and because the interleaving or deinterleaving
procedure is applied over data blocks, the operating periods
for the two constituent decoders are not overlapped. Thus,
the decoding scheme can use a single constituent decoder,
which operates time-multiplexed. The proposed scheme is
depicted in Fig. 3 and it is based on the previous work
presented in [13] for a WiMAX CTC decoder. The memory
blocks are used for storing data from one semi-iteration to
another and from one iteration to another. SISO 1 reads the
memory locations corresponding to V1(Xk) and

()i
kZΛ vectors. The reading process is performed forward

and backward and it serves the first semi-iteration. At the
end of this process, SISO 2 reads forward and backward
from the memory blocks corresponding to V2(X’k) and

()'i
kZΛ vectors in order to perform the second semi-

iteration.
Vector V1(Xk) is obtained by adding the input vector
()i

kXΛ with the extrinsic information vector W(Xk). After

having the input data ready, SISO 1 starts the decoding
process. At the output, the LLRs are available sequentially,
at 8 clock periods distance. Performing the subtraction
between these LLRs and the extrinsic values W(Xk), the
vector V2(Xk) is computed and then stored into its
corresponding memory. The interleaving process is started
and the re-ordered LLRs V2(X’k) are stored in their memory,
where the corresponding values for the 3 tail bits X’k+1, X’k+2,
X’k+3 are also added on the last memory locations. The
second semi-iteration can start at this point. The same SISO
unit is used, but reading this time data inputs from the other
memory blocks. As one can see from Fig. 3, two switching
mechanisms are included in the scheme. When in position 1,
the memory blocks for V1(Xk) and ()i

kZΛ are used, while

in position 2 the memory blocks for V2(X’k) and

()'i
kZΛ become active.

At the output of the SISO unit, after each semi-iteration,
K LLRs are obtained. The ones corresponding to the second

semi-iteration are stored in the ()'
2
o

kXΛ memory, then they

are deinterleaved and finally they are stored in the

()2
o

kXΛ memory. Subtracting from these deinterleaved

LLRs the values of V2(Xk) vector, the extrinsic information
W(Xk) is obtained. Also, if the decoder performs the last

201Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

RSC

(SISO1 or

SISO2)

Λi(Xk)

memory

Λi(Zk)

memory

Λi(Z’k)

memory

+
V1(Xk)

memory

1

2

+
V2(Xk)

memory

V2(X’k)

memoryInterleaver

1

1

2

2

W(Xk)

V1(Xk)

V2(Xk)

V2(X’k)

(X’k)

memory

Deinterleaver
(Xk)

memory

+

W(Xk)

memory

()i
kXΛ

()i
kZΛ

()'i
kZΛ

()1
o

kXΛ

()'
2
o

kXΛ ()2
o

kXΛ ˆ
kX

2
oΛ

2
oΛ

Figure 3. Proposed turbo decoder block scheme.

second semi-iteration, the hard decision is made over these
deinterleaved LLRs, resulting this way the decoded bits.

In order to be able to handle all the data block
dimensions, the used memory blocks have 6144 locations
(this is the maximum data block length), except the ones
storing the input data for RSCs, which have 6144 + 3
locations, including here also the tail bits. Each memory
locations is 10 bits wide, the first bit being used for the sign,
the next 6 bits representing the integer part and the last 3 bits
indicating the fractional part. This format was decided
studying the dynamic range of the variables (for the integer
part) and the variations of the decoding performances (for
the fractional part).

B. The Interleaver

The interleaver module is used both for interleaving and
deinterleaving. The interleaved index is obtained based on a
modified form of (2), i.e.,

 () ()1 2π {[mod] }mod .i f f i K i K= + ⋅ ⋅ (12)

In order to obtain both functions, either the input data is
stored in the memory in natural order and then it is read in
interleaved order, either the input data is stored in the
interleaved order and then it is read in natural order. Fig. 4
depicts the implementation solution for this module.

As one can observe from Fig. 4, the interleaved index
computation is performed in three steps. First the value for

()1 2 mod f f i K+ ⋅

is computed. This partial result is

multiplied by natural order index i and then a new modulo K
function is applied. In the first stage of this process, the
remark that the formula is increased with f2 for consecutive
values of index i is used. This way, a register value is
increased with f2 at each new index i. If the resulted value is
bigger than K, the value of K is subtracted from the register
value. This processing is one clock period long, this being
the reason why data is generated in a continuous manner.

(f1+f2·i) mod K mod K
i

f2

f1

(i)

Figure 4. Proposed interleaver logic scheme.

In the second stage, a pipe-line multiplier is used for
obtaining the result of the multiplication between index i
and the first stage resulted value. The product result is
obtained after 13 clock periods and it is 26 bits wide. In the
third stage this result is compared with values 2nK, with n
between 13 and 0. Less subtraction for computing modulo K
function are performed this way, the total number of clock
periods being reduced from 6124 to 13. At the end of this
third stage the interleaved indexes are obtained.

C. The SISO module

The internal SISO scheme is presented in Fig. 5. One can
notice both the un-normalized metric computing blocks
ALPHA (forward) and BETA (backward), and the transition
metric computing block GAMMA, which in addition
includes the normalization function (subtract the metrics for
the first state from all the other metrics). The L block
computes the output LLRs, which are normalized by the
NORM block. The MUX-MAX block selects inputs
corresponding to the forward or backward recursion and
computes the maximum function. The MEM BETA block
stores the backward metrics, which are computed before
forward metrics. The metric normalization is required to
preserve the dynamic range. Without normalization, the
forward and backward metric width should be wider in order
to avoid saturation, which means more memory blocks, more
complex arithmetic (i.e., more used resources), and lower
frequency (as an overall consequence). Hence, reducing the
logic levels by eliminating the normalizing procedure does
not increase the system performances.

GAMMA

ALPHA

BETA

8 X R

StartTrellis

Reset

MEM

BETA
LMUX

MAX

NORM

()
()

1

'
2

V /

V

k

k

X

X

()
()'

/i
k

i
k

Z

Z

Λ

Λ

()
()

1

'
2

/o
k

o
k

X

X

Λ

Λ

Figure 5. Proposed SISO block scheme.

202Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

The ALPHA, BETA, and GAMMA blocks are
implemented in a dedicated way. Each metric corresponding
to each state is computed separately, not using the same
function with different input parameters.

Consequently, 16 equations should be used for transition
metric computation (2 possible transitions for each of the 8
states from a stage). In fact, only 4 equations are needed [as
indicated in (5)]; moreover, from these 4 equations one of
them leads to zero value, so that the computational effort is
minimized for this implementation solution.

V. IMPLEMENTATION RESULTS

A. Performances

The used hardware programming language is Very High
Speed Hardware Description Language (VHDL). For the
generation of RAM/ ROM memory blocks Xilinx Core
Generator 11.1 was used. The simulations were performed
with ModelSIM 6.5. The synthesis process was done using
Xilinx XST from Xilinx ISE 11.1. Using these tools, the
obtained system frequency when implementing the
decoding structure on a Xilinx XC5VFX70T-FFG1136 chip
is around 210 MHz. The occupied area is around 1000
(8.92%) slices from a total of 11200, while the used 18Kb
memory blocks number is 32 from a total of 296.

B. Simulations

The following performance curves were obtained using a
finite precision Matlab simulator. This approach was
selected because the Matlab simulator produces exactly the
same outputs as the ModelSIM simulator, while the
simulation time is smaller.

All the simulation results are using the Max Log MAP
algorithm, and the results are presented for different types of
decoding parameters variations. All pictures describe the Bit
Error Rate (BER) versus Signal-to-Noise Ratio (SNR)
expressed as the ratio between the energy per bit and the
noise power spectral density.

-3 -2 -1 0 1
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

QPSK, K=512, 3 iterations

infinite precision
finite precision

Figure 6. Finite precision vs. infinite precision.

-3 -2 -1 0 1 2 3
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

QPSK, K=512

iter=1
iter=2
iter=3
iter=4
iter=5

Figure 7. Decoding performances vs. number of iterations.

Fig. 6 depicts the obtained performances when executing
the decoding process of the same input data, in infinite
precision and in finite precision. For finite precision, as
mentioned before, a 10 bit format was used, one bit for the
sign, 6 bits for the integer part and 3 bits for the fractional
part. In these simulations, K=512 bits, the used modulation
is QPSK, and the number of turbo iterations is set to 3.

Fig. 7 depicts the performances improvement when the
number of turbo iterations is increased. One can observe
that after a certain number of turbo iterations the decoding
improvement is not significant anymore and thus the added
decoded latency is not justified. In these simulations, K=512
bits, the used modulation is QPSK, and the number of turbo
iterations is increased from 1 to 5.

Finally, Fig. 8 describes the decoding performances
improvement when the data block size increases. For these
simulations the used modulation is QPSK, the number of
turbo iterations is 3, and the data block lengths are K=40,

-3 -2 -1 0 1 2 3
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

QPSK, 3 iterations

K=40
K=512
K=6144

Figure 8. Decoding performances vs. block dimension.

203Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

K=512, and K=6144. One can observe an improvement of
about 1.8 dB at BER = 10-2 between the smallest and the
biggest block size defined by standard (K=40 and K=6144).

VI. CONCLUSIONS AND FUTURE WORKS

The most important aspects regarding the FPGA
implementation of a CTC decoder for LTE systems were
presented in this paper. Area and speed optimization
solutions have been proposed based on the specific decoding
scheme. A very efficient method of increasing the clock
frequency was proposed, i.e., the normalization operation
from the ALPHA/BETA updating loop was removed from
that loop and distributed into the GAMMA block and also
into the LLR computing block. Simulation and
implementation results were given for different data block
sizes and for different number of turbo iterations.

The perspective for a future work is to implement a stop
criterion in order to reduce the decoding latency. A possible
solution is the stop the decoding iterations when some
indicators are not changing from one iteration to another.

ACKNOWLEDGMENTS

This work was supported under the Grant UEFISCDI PN-II-

RU-TE no. 7/5.08.2010.

REFERENCES
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit

Error-Correcting Coding and Decoding: Turbo Codes,” IEEE
Proceedings of the Int. Conf. on Communications, Geneva,
Switzerland, pp. 1064-1070, May 1993.

[2] C. Berrou and A. Glavieux, “Near Optimum Error Correcting Coding
and Decoding: Turbo-Codes,” IEEE Trans. Communications, vol. 44,
no. 10, pp. 1261-1271, Oct. 1996.

[3] C. Berrou and M. Jézéquel, “Non binary convolutional codes for
turbo coding,” Electronics Letters, vol. 35, no. 1, pp. 9-40, Jan. 1999.

[4] Third Generation Partnership Project. 3GPP home page.
www.3gpp.org, last accessed on November 2011.

[5] 3GPP TS 36.212 V8.7.0 (2009-05) Technical Specification, “3rd
Generation Partnership Project; Technical Specification Group Radio
Access Network; Evolved Universal Terrestrial Radio Access (E-
UTRA); Multiplexing and channel coding (Release 8).”

[6] F. Khan, LTE for 4G Mobile Broadband, Cambridge University
Press, New York, 2009.

[7] M. C. Valenti and J. Sun, “The UMTS Turbo Code and an Efficient
Decoder Implementation Suitable for Software-Defined Radios,”
International Journal of Wireless Information Networks, Vol. 8, No.
4, pp. 203-216, October 2001.

[8] “Xilinx Virtex 5 family user guide,” retrieved from www.xilinx.com
on January 2011.

[9] “Xilinx ML507 evaluation platform user guide,” retrieved from
www.xilinx.com on January 2011.

[10] P. Robertson, E. Villebrun, and P. Hoeher, “A Comparison of
Optimal and Sub-Optimal MAP Decoding Algorithms Operating in
the Log Domain,” Proc. IEEE International Conference on
Communications (ICC’95), Seattle, pp. 1009-1013, June 1995.

[11] S. Papaharalabos, P. Sweeney, and B. G. Evans, “Constant log-MAP
decoding algorithm for duo-binary turbo codes,” Electronics Letters
Volume 42, Issue 12, pp. 709 – 710, June 2006.

[12] J. F. Cheng and T. Ottosson, “Linearly approximated log-MAP
algorithms for turbo decoding,” Vehicular Technology Conference
Proceedings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st
Volume 3, pp. 2252 – 2256, May 2000.

[13] C. Anghel, A. A. Enescu, C. Paleologu, and S. Ciochina, “CTC Turbo
Decoding Architecture for H-ARQ Capable WiMAX Systems
Implemented on FPGA,” “Ninth International Conference on
Networks” ICN 2010, Menuires, France, April 2010.

204Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

