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Abstract—Wireless Sensor Networks (WSNs) have many
promising applications involving unattended deployment in
hostile territories. Random key predistribution schemes
(RKPS) have been proposed to secure these networks. RKPS
require broadcasting within the secured sensor network for
key discovery and key revocation. Unbounded broadcasting in
RKPS could incur large transmission and computational over-
heads and may not be sustainable on sensor node platforms,
due to their limited power resources. Since the requests are
triggered by unauthenticated nodes, this broadcasting can be
exploited by a sabotaging adversary to deliberately exhaust the
power on the sensor nodes and prevent them from performing
their intended function. Enforcing the maximum value of the
TTL (MAXTTL) on all nodes of the sensor networks can be
an effective approach to mitigating this potential threat if it
does not impede the function of the RKPS key discovery and
revocation. In this paper, we model the RKPS sensor network
as a Random Geometric Graph (RGG) and investigate the
upper bounds on RGG diameter as guidance for MAXTTL
on all RKPS key discovery and key revocation broadcasts. The
simulation results show that our approach is practical and does
not impede its function.

Keywords- sensor networks, random key predistribution, graph
diameter, random graph, theoretical bound.

I. INTRODUCTION

Wireless sensor networks (WSNs) comprise of a large
population of inexpensive battery-powered sensor nodes
that are deployed randomly in a large area. Each node
communicates through a wireless radio interface with other
neighboring nodes within its wireless transmission range.
Consequently, communicating sensors form a wireless ad-
hoc network transmitting real-time physical measurements
in its deployment area. WSNs have promising applications
that require unattended deployment such as environment
monitoring and military operations in hostile territory. These
applications motivate research in securing WSNs.

Among the proposed WSN security schemes, Random
Key Pre-distribution Scheme (RKPS) [1], [2] has shown
to be an effective approach that guarantees any pair of
neighboring nodes in a WSN would be able to build a
secure connection using symmetric cryptography. Modeling
a sensor network as a random graph allows RKPS to apply

Erdős-Rényi random graph theory to choose an optimal
keyring size for a given keypool size. Keyring size is chosen
such that each sensor node is able to authenticate at least
a fraction of its neighboring nodes, and set up secure
connections to these authenticated nodes to form a trust
graph. Each sensor node can later authenticate the remaining
untrusted neighboring nodes by flooding the trust graph with
authentication requests. We term this mechanism as secured
flooding since this flooding occurs along the edges of the
trust graph only.

Unbounded broadcasting in RKPS may excessively con-
sume computational and transmission power on each sensor
node for authentication and retransmissions. An adversary
can exploit this weakness to inject bogus authentication
requests into a WSN incurring large performance hits on
the network over time. These performance hits constitute a
Denial-of-Service attack that can be used to sabotage a WSN
by draining sensor power and preventing the network from
carrying authentic traffic.

Flooding in ad-hoc networks is typically controlled by a
TTL value to ensure that a packet will not be forwarded
indefinitely within the networks. Prior research [1], [4],
[6], [7], [9]–[12] has presented several studies reporting
empirical observations and theoretical analysis on the di-
ameter of a WSN. However, they either lack rigorous and
repeatable results [1], [6], [7], or have to base upon different
assumptions [4], [9]–[12] that may not be applicable for all
WSNs.

In this paper, we study a more applicable modeling based
on Random Geometric Graph (RGG) to identify the diameter
of a WSN for bounding broadcasting in RKPS. We propose
a MAXTTL value setting on each sensor node to ensure
that packets with TTL values above MAXTTL cannot be
injected into the network. The RGG based modeling can
more accurately represent a WSN, and thus derive a more
applicable MAXTTL value to mitigate excessive power
consumption. The simulation results also show our approach
is practical and accurate.

The rest of the paper is organized as the following.
Section II discusses the related research work. Section III
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describes how results on the upper bound of the diameter
of Random Geometric Graph (RGG) can be used to derive
the value of MAXTTL for a sensor network enabled with
RKPS. Section IV describes RKPS in detail and reviews
the application of both Erdős-Rényi graph theory and RGG
theory relevant to RKPS modeling. Section V present our
simulation design and results respectively. Finally, Sec-
tion VI concludes the paper with future directions.

II. RELATED WORK

In this section, we review prior research that has either
proposed guidance on the TTL values for authentication
requests, or has some bearing on the derivation of MAXTTL.
We also review research on modeling RKPS deployment
using RGG theory and the work on upper bound of RGG
diameter.

RKPS [1] and its variations have been widely used for
securing WSNs, which has been reviewed in [5]. Since this
paper is to address a fundamental problem for RKPS, we
base our work on a generalized model of the basic RKPS
detailed in the next section. This model includes all elements
of the scheme that have remained invariant in the derived
schemes.

Prior research in [1], [6], [7] had presented empirical
observations that the keypath lengths do not exceed a con-
stant number for their simulated WSNs with 1000 to 10000
nodes. However, there is no formal mathematical guidance
that could characterize the relationship of the TTL values
and the size of WSNs. For example, the first reference to
use of a TTL for secured flooding [6] only provided the
observation on the average lengths of the keypaths based on
the simulation results on a limited node population.

Recent research in RKPS has applied RGG theory to
model the highly clustered topology of a practical sensor
network deployment. While RGG models the connectivity
graph with high fidelity, the presence of edges in the trust
graph depends upon the probability with which any two
neighboring nodes share a common key. Consequently, RGG
with unreliable links has been explored for modeling the
trust graph. Di Peitro et al., defined the cryptographs in [8]
that model the trust graph as an intersection of a Erdős-Rényi
random graph with a RGG graph modeling the deployment.
References [9]–[12] modeled the trust graph as a RGG
graph, with the presence of edges governed by a Bernoulli
function.

It is notable that the authors of [10] also proved con-
nectivity of the RGG with edge probability modulated
by a uniform random intersection graph, which shows a
theoretical model of the random key predistribution under
the full visibility assumption [11]. We discuss these results
more formally in the next section.

The authors of this paper have introduced the problem
of MAXTTL in [4] and applied theoretical upper bound
on the diameter of Erdős-Rényi random graphs to solve

it for the full visibility case. In this paper we tackle the
practical limited visibility case where a sensor node can only
communicate with nodes within their transmission range.
This limits their visibility to a much smaller subset of
nodes within the network. In our modeling, we applied
results from several papers [13], [14] on the application of
random graph theory to sensor networks, which discusses the
application of Erdős-Rényi random graph theory to RKPS
in the context of sensor networks and produces validating
results for specific ranges of its parameters. We also used
guidance from [14] that discusses the construction of a
high performance simulation and allowed us to validate our
simulation design.

III. MAXTTL FOR SECURE FLOODING

In Figure 1, we show a model of a sample sensor net-
work deployment implementing RKPS, where each sensor
node plotted as a node vertex in the graph is surrounded
by a circle representing its transmission range. The two
overlaid graphs on this model represent the transmission
connectivity and secure connectivity respectively. The lighter
edged graph among the node vertices represents the connec-
tivity graph formed among a node within its transmission
range. The darker edges form the trust graph representing
secure connectivity among neighboring node vertices in the
connectivity graph. Secure connectivity can be achieved if
two neighboring nodes share a common key within their
keyrings. Note that the trust graph is a subgraph of the
connectivity graph.

While there are more economical broadcasting schemes
for ad-hoc networks, flooding may be necessary to ensure
speedy and fault tolerant communication of security in-
formation in RKPS. In particular, two important protocols
in RKPS for authentication and key revocation rely upon
secured flooding to accomplish their functions. Authenti-
cations typically occur immediately after deployment of a
WSN and before the sensor nodes can securely communicate
to initialize more optimized broadcasting protocols based
on the dominant set in the topology. At this stage the
secured sensor network may not be fully connected and a
gossiping based broadcast may not reach an authentication
node and return back within a bounded time. Key revocation
in RKPS aims to remove keys of compromised sensors
from the network and also requires speedy announcement of
compromised nodes that can be executed by secured flooding
in a secure and fault tolerant manner.

As mentioned in the introduction, RKPS secured flooding
can have large computational and power overheads that can
be exploited to launch DoS attacks. This can be mitigated
by setting a maximum limit on the TTL (MAXTTL) on each
sensor before deployment. A node receiving a flooded packet
will ensure that the contained TTL less than MAXTTL
before forwarding it. This will ensure that an adversary
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Figure 1: A sensor network secured with RKPS.

injecting packets with long TTL can only inflict limited
damage to a RKPS sensor network.

Recent research in RKPS based schemes has utilized
RGG for modeling the deployment of a sensor network.
MAXTTL can be derived on the basis of the theory related
to the upper bound on the diameter of RGG. Diameter of a
random graph is the longest of all the shortest paths between
every pair of vertices in the graph. Deriving MAXTTL from
this value would allow a secured flooding request (SFR) to
adequately cover all shortest paths of a connected RGG,
without impeding their function.

MAXTTL would also ensure the economy of the RKPS
scheme since it would prevent SFRs from traveling on
longer redundant paths and cycles within the network. To
establish that the paths longer than the diameter are present
in a RGG, we observe that longer paths exist between two
nodes connected to the nodes between which the diameter
exists. By induction, it can be deduced that the diameter
can be included in the path between any two pair of nodes
accessible by the nodes between which the diameter exists.

Delinquent packets with large TTLs may also get for-
warded indefinitely in cycles. The only other solution to
prevent forwarding of packets in cycles is to enforce dupli-
cate checking of each packet on every sensor node. Typical
secure duplicate checking would require that each sensor
spend a prohibitive amount of computational resources for
calculating the hashcode for each packet it receives. To
prevent cycles of a length l each sensor will need to store
a comparable (l) number of hashcodes. There is evidence
to suggest that the length of the longest cycles on large
random graphs is O(n) [3]. The memory, if it were available
could be better used to increase the number of keys in sensor
keyrings. We can therefore safely assume its absence.

IV. RKPS MODEL AND THEORETICAL ANALYSIS

In this section, we first analyze RKPS to show how Erdős-
Rényi random graph theory is applicable to choose the size
of the keyring for a keypool based on the network size
and deployment density. Subsequently, we introduce theory
related to RGG connectivity and the analytical results on
the upper bound of its diameter that can be directly used to
calculate an optimal MAXTTL.

A. Generalized RKPS Model

RKPS predistributes random subsets of keys (keyring)
from a large pool of keys (keypool) on each sensor node.
Any two keyrings share a common key with a small
probability and after deployment each sensor attempts to
establish trust with its neighbors by discovering common
key(s) through keyrequests. A keyrequest contains a list
of key identifiers which uniquely identify each key in a
requesting node’s keyring. A neighboring node receiving the
keyrequest will attempt to find a key in its own keyring.
If successful the node will respond back by encrypting a
random number with the identified common key (challenge),
which must be decrypted by the requesting node and sent
back as plain text (response) to complete the authentication.
Subsequently, the identified common key can be used to
negotiate a shared session encryption key.

Due to the limited memory available on each sensor, the
keyring are only large enough to allow a fraction of neigh-
bors to successfully identify common keys in a keyrequest.
If a receiving sensor is unable to identify common keys in a
keyrequest, it resorts to a path key establishment mechanism
(PKEM), where it forwards the keyrequest to the neighbors
it is securely connected to. These secure neighboring sensors
will in turn either authenticate the keyrequest or forward it
to their secure neighbors which will repeat the process until
some sensor able to authenticate the keyrequest responds
back. RKPS choice for keypool and keyring sizes also
ensures that every sensor is securely connected to the rest
of the sensor network and the keyrequests sent by it will
propagate throughout the network.

A repeatedly forwarded keyrequest constitutes a path
through the network, where each node within the path trusts
the next node in the path, termed as a keypath [1]. For a
single PKEM execution multiple keypaths emanate from the
node requesting PKEM authentication of a single keyrequest.
Consequently, a large number of the connected sensor nodes
within the network will spend power in computation and
communication to authenticate a single keyrequest.

RKPS chooses the keyring and keypool sizes such that
the secure network formed by direct authentications of
the neighboring sensor nodes forms a connected Erdős-
Rényi graph, and a keyrequest sent by any node would be
forwarded to all nodes within the network. The deployment
model of the sensor network is generally assumed to be
uniformly random and the neighboring nodes of any par-
ticular sensor node after deployment cannot be predicted
beforehand. This requires that any sensor node within the
network should be able to connect with any other node if
they happen to be deployed in each other’s neighborhood.

RKPS models the a sensor network in the form of a con-
nected Erdős-Rényi random graph represented by G(n, p),
where n is the number of vertices and p represents the
probability with which a vertex is connected to any other
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vertex in the graph. Erdős-Rényi graph theory introduced
in [15] proves that G(n, p) where the value of p is derived
according to Eq. 1 will be connected with the probability
P[G(n, p) is connected] shown in Eq. 2. Authors in [1],
suggested choice of the common parameter CC such that
P[G(n, p) is connected] is close to 1.0 in Eq. 2. Fig-
ure 2 indicates the value of CC, for the desired values of
P[G(n,p) is connected].

i f p =
ln(n)

n
+

CC

n
(1)

then lim
n→inf

P(G(n,p) is connected) = ee−CC (2)

where CC is a constant.
Formally, to design a connected G(n,p), we choose value

of CC in Eq. 1, such that P[G(n,p) is connected] in Eq. 2 is
close to 1.0.

Figure 2: Values of CC for desired probability of connectivity
in Eq. 2.

Prior research in [1] on RKPS identified the desired range
for CC is between 8 and 16, as shown in Figure 2. The value
obtained for p can be used subsequently to calculate the
keyring size (k) for a given keypool size (K) to ensure that
the RKPS sensor network is connected with high probability.

B. Full Visibility vs Limited Visibility

It is essential to note, however, that the Erdős-Rényi
random graph theory assumes that any node within the graph
can be connected to another one, i.e., every node can see any
others within the network (full visibility model). However, in
practical sensor networks, a sensor node is only connected
to a subset of the n vertices, na � n, that represents the
expected number of neighboring nodes of a sensor within its
communication range (limited visibility model). In order to
overcome this practical limitation, the work in [1] proposed
scaling p to the effective probability pa, such that the
average degree davg of the deployed sensors in the network
remain equal to the expected degrees of a vertex in the
equivalent G(n,p) as indicated in Eq. 3. Note that the pa
represents the probability with which a sensor network will
be connected to any node within its neighborhood and this
is the probability that will be used to calculate k and K
subsequently.

davg = (na−1)pa = np (3)

The value of pa, calculated from Eq. 3 is used to derive
the keyring size k, from Eq. 4 for a given keypool size K.

pa = 1− (K− k)!2

K!(K−2k)!
(4)

C. Deployment Modeling of RKPS with RGG

While the original scheme only models the average degree
of the connectivity graph, more recent research in key pre-
distribution schemes has formally modeled the connectivity
graph as a Random Geometric Graph. Study of Random
Geometric Graph (RGG) theory began with [16] and has
been adopted generally to study the practical deployment
of ad-hoc networks on a planner surface. We borrow the
definition from [17] to define the generalized form of RGG,
quoted as follows. Let X1, · · · ,Xn be independent, uniformly
distributed random points in the unit cube [0,1]d , where d
represents the number of dimensions. The set of vertices of
the graph Gn(rn) is V = 1, · · · ,n while two points i and j are
connected by and edge if and only if the Euclidian distance
between Xi and X j does not exceed a positive parameter
rn, i.e., E = {(i, j) ‖ Xi−X j ‖< rn} where ‖ . ‖ denotes the
Euclidean norm.

Note that by definition the Gn(rn) is generalized over
multiple dimensions d, however the two dimensional case
is of specific interest to modeling the spatial deployment of
sensor nodes on planner field. The Euclidean norm in this
case becomes the distance between any two nodes and rn
corresponds to the transmission range of each node. The
points described in RGG correspond to the location of each
sensor node uniformly distributed on a unit area (d = 2) that
can be modeled as a unit square or unit circle without loss
of generality. In the context of modeling the practical sensor
network deployment the results obtained from RGG theory
can be trivially scaled to the actual deployment area.

D. Connectivity of RGG

While RGG models the graph connectivity with high
fidelity, the links of the trust graph are also modulated by
the probability with which two neighboring nodes share a
common key. As a result, RGG with unreliable links has
been explored for modeling the trust graph [10] established
the following result for the connectivity of RGG, where
pl and pn represent the probability of the link and node
presence respectively.

r =

√
lnn+C
npl pnπ

|n,C→ ∞, pl , pn ∈ [0,1] (5)

More recently, research in [11] has investigated routing in
a practical sensor network deployment using Random Geo-
metric Graph with randomly deleted edges. They formally
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proved results for the following conditions.

i f πplr2≥C
lnn
n
|C > 8, pl ∈ [0,1],r∈ (0,1/

√
π)

(6)

r≥ c

√
lnn
n
|c> 1.598, pl ∈ [0,1],r∈ (0,1/

√
π)

(7)
Then RGG Gn(r, pl) is connected with probability tending
to 1 as n→ ∞, pl is again the probability of link presence.

E. Network Connectivity Requirement in RGG

Xue et al., in [18] showed that in a two-dimensional RGG
where the nodes are distributed uniformly, the number of
neighbors of each node need to grow like Θ(logn) if the
network is connected. Further they also showed analytically
that for a RGG where each node is connected to less than
0.074logn (lower bound) nodes the network is asymptot-
ically disconnected. However, if the nodes are connected
to greater than 5.1774logn (upper bound) nearest neigh-
bors, then the network will be asymptotically connected.
Finally, Balister et al., in [19] improved the lower bound
to 0.3043logn and the upper bound to 0.5139logn.

We note [18] and [19] rely upon a Poisson distribution
of nodes on a unit disk. Low or rare events [20] allow the
approximation of the binomial distribution with a Poisson
distribution.

F. RGG Diameter

Ellis et al., [17] have shown two important asymptotic
results on the diameters of RGG. Let φ(n)→ ∞ be non-
negative. There exists an absolute constant K > 0 such that
if

r ≥
√

lnn+φ(n)
n

|n,φ(n)→ ∞ (8)

then the unit disk random graph G(n,r) is connected with
diameter denoted by D(G(n,r))< K(2/r). They also derived
the value of K analytically to 129.27. In Theorem 7 [17]
they prove a still lower bound for the following conditions.

Let

r = c

√
lnn
n
|c≥ 2.26164 (9)

Then the unit disk random graph G(r,n) is connected with
diameter

D(G(n,r))≤ (4+o(1))/r (10)

V. SIMULATION RESULTS

We constructed a simulation model to verify the diameter
of the trust graph generated in RKPS scheme using direct
authentication. The simulation generates random topologies
for sensor networks with limited visibility by varying the
number of nodes from 1000 to 12000, and calculated the
corresponding keyring sizes from a keypool of 100000. The
visibility range of each sensor is calculated on the basis of

Eq. 9 since it provides an elegant result which can be used
to directly calculate the diameter of the random graph.

Our simulation model closely follows the guidance
from [14]. The keying size are derived based on the guidance
from [1], and allows for variations in the sensor network
deployment densities through node range variation according
to Eq. 9. We have also taken into account the boundary effect
identified in [14] and eliminated it from our final results.
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Figure 3: Simulation results and asymptotic predictions for
a 12000 node sensor network.

Figure 3 shows a plot of our simulations on MATLAB
and Java. The upper surface represents the calculated upper
bound. The lower surface represents the actual diameter of
the simulated sensor network. The actual diameter of the
network is consistently smaller than the prediction for the
diameter by a wide margin. However, it is notable that
the upper bound on the diameter is much higher than the
actual diameter of the network. This indicates that tighter
theoretical bounds on the diameter of the Random Geometric
Graphs, and consequently the MAXTTL are possible.

However, we recommend keeping a wide margin between
the actual MAXTTL and predicted MAXTTL value. The
actual value used in practical deployments should be set
higher than the predicted value. This is to accommodate the
fact that the trust graph is not a perfect Random Geometric
Graph. It may have many absent edges between neighboring
nodes at the beginning of the deployment, when secure
trust relationships have not been established. Theory on
faulty Random Geometric Graphs [?] is still nascent and
upper bound on its diameter may provide a more accurate
prediction for the MAXTTL.

Figure 4 shows the prediction of the diameter for sensor
networks for large node populations O(106). We observe
that the diameter is relatively small and grows slowly with
the node population O(log(n)/n).

Diameter of the network increases very slowly with
network size and remains constant for large ranges of
node populations. This shows promise in the extensibility
and graceful degradation of a sensor network deployment,
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Figure 4: Long range predictions for the sensor network
diameters.

even if the MAXTTL value is locked as a constant before
deployment. On the other hand, this shows that controlling
the TTL would only provide limited control over the number
of nodes visited by a keyrequest and therefore MAXTTL
alone may not be well suited for precise control of power
consumption for SFRs. The consequent power consumption
of PKEM is not precise and the number of transmissions
increase rapidly with each increment in TTL value.

VI. DISCUSSION AND CONCLUSION

While we have utilized asymptotic results on RGG graph
theory, formal proofs for asymptotic diameters on faulty
RGGs is still an open problem. Our simulation results
indicate that either the upper bound on RGG diameters holds
well for faulty RGGs as well and there is further scope for a
tighter upper bound on the RGG diameter. Future theoretical
results for tighter bounds on the diameter of RGGs and
specifically for faulty RGGs would provide precise bounds
applicable to the problem of MAXTTL.

Some form of fault tolerant gossiping may eventually
be considered to reduce the transmission overhead and the
power consumption of PKEM, however the latency would
increase in this case. This would also make the network
more vulnerable to worm hole attacks where an adversary
is able to exploit the latency between two different parts of
the network to launch various attacks.

Finally we hope to trigger a discussion of the problem of
secure broadcasting as applied to RKPS, and the analytical
modelling of its overhead. We believe that this overhead
is unique to RKPS based schemes and may prove to be
prohibitive in large networks. Competing public key cryp-
tography like Elliptic Curve do not require a broadcast for
key discovery with lower overhead than RSA and that may
eventually be more feasible with development in technology.
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