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Abstract — Efficient allocation of computers to incoming tasks 
is crucial for achieving high performance in modern networks. 
A good allocation algorithm should identify available 
computers with minimum overhead and allocate incoming 
tasks in as short period of time as possible. This paper 
concerns allocation problem for torus-structured system. The 
new allocation mechanism, called Improved Tree Allocation 
for Torus (ITAT), based on tree architecture, has been 
proposed. ITAT-algorithm was compared with other known 
allocation algorithms on the basis of simulation experiments 
made with the designed and implemented experimentation 
system. The obtained results justify a conclusion that the 
created allocation algorithm seems to be very promising. 

Keywords-torus; allocation; algorithm; experimentation 
system; efectiveness 

I.  INTRODUCTION  

Multicomputer systems, consisting of many processing 
elements connected through a high speed network, have 
become widespread in engineering and scientific 
applications [1]. Such networks are intended to deal with 
tasks which cannot be handled by single computer. Two-
dimensional (2D) torus is one of the interconnection 
topologies developed for mentioned system [2]. For each 
topology including 2D torus, predefined allocation 
algorithms exist. In this paper, contiguous processor 
allocator for torus structured network is considered (Fig. 1). 

The requirement here is to allocate incoming jobs to free 
subtorus of appropriate size in 2D torus connected system. 
The allocation scheme should provide maximal resource 
utilization what is done by minimizing any kind of 
fragmentation [3]. Allocation algorithm must be fast, deliver 
low overhead and be able to support systems with thousands 
of nodes. A critical attribute of all mechanisms is ability to 
find available subtoruses for incoming requests, if they 
exist, what is called subtorus recognition ability. An 
allocation algorithm has complete subtorus recognition 
ability when it can always find a free subtorus (if one is 
available) for an incoming job [4]. 

In this paper, recognition-complete allocation scheme 
based on non-binary tree called Improved Tree Allocation 
(ITAT) is presented. It was designed with intent of 
maximize the utilization.  

The rest of the paper is organized as follows. Section II 
presents definitions and notations used throughout the 
paper. The existing job allocation mechanisms and 

accessory algorithms are reviewed in Section III. Section IV 
describes our novel scheme in detail. In Section V 
experimentation system is shortly presented. Within Section 
VI properties of the created algorithm are analysed and 
compared with other well-known algorithms. Future work 
and conclusion are finally included in Section VII. 

 

 
Figure 1. An example of 2D torus. 

II. NOMENCLATURE 

We use the classic notation presented, e.g., in [5][6][7]: 
A 2D torus topology, denoted by T(w,h), consists of w 

× h nodes arranged in a w × h 2D grid. The node in column 
c and row r is identified by address <c,r>  where 0 ≤ c < w 
and 0 ≤ r < h. A node <c,r>  is connected by direct 
communication channel to its neighbouring nodes <c±1,r> 
and <c,r±1>. Thus each node has four neighbouring nodes.  

A 2D subtorus S(p,q) in the torus T(w,h) is a subgrid 
T(p,q) such that 1 ≤ p ≤ w and 1 ≤ q ≤ h. A job requesting a 
subtorus p × q is denoted by J(p,q). A subtorus S is 
identified by its base (lower left node) and end (upper right 
end) and is denoted as S[<xb,yb> <xe,ye>].  In contrast to the 
2D-mesh topology, in torus xb can be greater than xe, and yb 
can be greater than ye. However, the base still remains as 
lower left corner with end on the upper right node. 

A busy node is a node which has been allocated to a job. 
A busy subtorus β is a subtorus, where all of its nodes have 
been allocated to jobs. 

A free node is a node which is not allocated to any job. 
A subtorus is free when all of its nodes have not been 
allocated to jobs. 

A busy array  of a torus T(w,h) is a bit map B[w,h], in 
which element B[c,r]  has a value 1 or 0 if node <c,r>  is 
busy or free, respectively. 

A busy list is a set of all busy subtoruses in the system. 
Similarly, a free list is a set of all free subtoruses available. 
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The coverage of a busy subtorus β with respect to a job 
J is denoted by ζβ,J  and it is a set of processors such that use 
of any node in ζβ,J  as the base of free subtorus for the 
allocation of J will cause the job J to be overlapped with β. 
The coverage set with respect to J is denoted by CJ and it is 
the set of the coverages of all busy subtoruses. 

A base block with respect to a job J is a subtorus whose 
nodes can be used as base for free subtoruses to allocate job 
J. A set of disjoint base blocks is called the base set. 

External fragmentation is the ratio of the number of 
free processors to the total number of processors in the 
torus, when the allocation of incoming task fails but there is 
sufficient number of free processors. 

The given definitions are illustrated in example of a 
torus T(6,6) with respect to J(2,3) and J(2,2) (see Fig. 2). 

 

 
Figure 2. Busy and free nodes, coverage area, busy array and free list for a 

torus T(6,6). 

III.  KNOWN ALLOCATION ALGORITHMS FOR TORUS 

ARCHITECTURE 

The algorithms, based on busy list and busy array, create 
coverage area set [8] in one of the first steps. For k-array 2-
cube four possible cases of task allocation can be distinguish 
and they are presented in Fig. 3. 

 

 
    Figure 3. Four different cases of job J(4,3) allocation. 

These cases are characterized by: 1) xb > xe and yb > ye,; 
2) xb ≤ xe and yb > ye,; 3) xb > xe  and yb ≤ ye ; 4) regular case 
known from 2D-mesh networks. 

For every presented instance, coverage needs to be 
determined in a different way. For a given β=[<x b,yb> 
<xe,ye>], its coverage with respect to J(p,q) is ζβ,J=[<x 1,y1> 
<x2,y2>] , where x1, y1, x2, y2 are determined according to the 
Construction of Coverage algorithm described in [1]. 

IBMAT Algorithm.  First existing allocation algorithm 
is Improved Bit Map Allocation for Torus [9]. The general 
idea of the IBMAT is based on the approach used in IFF 
algorithm [4]. With respect to an incoming job, the busy 
array is scanned to create a coverage array CT in the form of 
bit map. Each coverage ζβ,J is divided into three regions: job 
coverage, left coverage and bottom coverage, presented in 
Fig. 4. In the worst case, two inspections through a CT are 
required: 

All rows from right to left, each row two times 
(determining the left coverage of a job). 

All columns from top to bottom, each column two times 
(creating bottom coverage of a job). 

The IBMAT is recognition complete by manipulating 
the job orientation. If for a given J(p,q) the allocation fails 
and p ≠ q, the scheme will change the orientation of the job 
and then J(q,p) possibility is checked. When both attempts 
fail, the allocation of the job fails. 

 

 
Figure 4. Coverage of job J(4,3) with respect to incoming job J(2,3). 
 
IBLAT Algorithm . Second existing allocation 

algorithm is Improved Busy List Allocation for Torus [10]. 
The IBLAT is based on the strategy employed in the IAS 
scheme [11]. For an incoming job J(p,q), the IBLAT scans a 
busy list and creates coverage set CT which is also in a list 
form. Both busy and coverage lists contains coordinates of 
each β and ζβ,J respectively. When CJ is created, each node is 
tested for membership in CJ , what is done by inspecting the 
whole CJ for every node. Node which is not in CJ can be a 
base for given job, in the other case, the algorithm checks 
another node. The IBLAT scheme is recognition complete. 

IRAT Algorithm.  Third existing mechanism, based on 
randomness, is called Improved Random Algorithm. It can 
only pick random node from system and check if it can 
become base for an incoming request. If node is available as 
base job is allocated, otherwise scheme will change 
orientation of job J(p,q) and J(q,p) possibility is checked. 
When both attempts fail, the allocation of the job fails [12]. 
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IV.  IMPROVED TREE ALLOCATION  FOR TORUS 

ALGORITHM 

The task allocation algorithm proposed in this paper has 
complete subtorus recognition ability. The allocation 
scheme is particularly attractive for large systems, what is 
confirmed in experimentation section of this paper. 

ITAT  achieves recognition completeness by 
manipulating the orientation of the subtorus request. In 
allocation a job J(p,q), the scheme first tries to allocate the 
task using the given orientation p × q. If allocation fails, the 
algorithm creates a new request J(q,p) by rotating the 
original orientation and tries to allocate rotated request. If 
this attempt also fails, the allocation of the job also fails. 

The following definitions are introduced:  
A busy tree, denoted by T(n), incorporates n nodes 

including root, free and busy leaves and base nodes. 
A root  of the tree is the node with address <0,0>. 
Subtree, denoted by ST(x), is a tree incorporates x nodes 

including only base nodes of tree T(n) such that 0 < x < n. 
Free leave, denoted by Lf(c,r), is the node with address 

<c,r>  such that it is not base of any existing subtoruses and 
it is not allocated to a job. 

Busy leave, denoted by Lb(c,r), is the node with address 
<c,r> such that it is not base of any existing subtoruses but 
it is allocated to a job. 

In Fig. 5(a), the introduced notions are illustrated for an 
exemplary torus T(6,6). 

 

 
 

 
Figure 5(a). Illustration of the introduced notions for torus T(6,6). 

Allocation scheme always starts from node with address 
<0,0> which is a root of busy tree. The root is a constant 
element of tree and exists even if it is not allocated as base 
to any job. With first allocated job, tree evolution process 
starts, that lasts until there are no more requests to allocate. 
Tree evolution process is divided into two main sections. 

Base of every allocated job generates children nodes 
(leaves, shown in Fig. 5(a)) as follows: 

Add adjacent nodes, from left to right, along top of the 
busy subtorus. 

Add adjacent nodes, from bottom to top, along the right 
side of the busy subtorus. 

After that, busy tree is recursively updated and every 
leaf receives its status – free or busy. Free leaves are 
potentially base nodes and hence are directly under 
consideration. Tree is searched level by level from left to 
right, start with root level. First free leaf that meets the 
requirement is returned as base for given job. Search 
scheme is presented in Fig. 5(b). 

 

 
Figure 5(b). Search scheme for busy tree T(11). 

The search scheme, with respect to children creation 
mechanism, provides good fit of the incoming task to the 
existing configuration of torus, marked as border in Fig. 
6(b). 

Every allocated job, after elapse of its duration time is 
deallocated. It means that base node and its leaves are 
deleted from busy tree. Children that represent base are 
reattached to other base from current level or level up as 
follows: 

If any base exists on the left side of deleted base 
descendants are attached to the base on the left side. 

If none base does not exist on the left side of deleted 
base but does exist on the right side descendants are 
attached to the base on the right side. 

If none base does not exist in current level descendants 
are attached to the parent base of deleted one. 

V. EXPERIMENTATION SYSTEM 

Experimentation system was developed in C++.  
Input parameters: 

The following task allocation problem parameters are 
taken into consideration: 

P1: the number of jobs in the queue (important data for 
static case of allocation). 

P2: the range of uniformly distributed pseudorandom 
sizes of each job in the queue (range of p and q). 

P3: the range of uniformly distributed pseudorandom 
numbers for execution time of each job in the queue. 

P4: the size of torus T(w,h)  i.e., the values of  w and h. 

Output parameters: 
The following indices of performance (measures of 

efficiency, criteria) are treated as system outputs: 
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Simulation time ts [ms]: defined as total time of 
simulation. It is the time needed to allocate and process all 
given jobs. This criterion is being analysed during static 
experiments. 

Effectiveness E [%]:  defined as percentage of process 
jobs with respect to all given jobs. This criterion is being 
analysed during static experiments. Effectiveness is also 
measured in specific period of time for dynamic 
experiments.  

Unreliability U [%]:  defined as complement of 
effectiveness in specific period of time. Unreliability can be 
calculated using eq. 1. 

                                  EU −= 1                                  (1) 
This criterion is not being analysed itself due to the fact it is 
calculated based on knowledge of effectiveness. It is 
important during dynamic experiments. 

Remark: The series of simulation experiments were 
carried out on the Intel Pentium i5 machine with 4 GB of 
RAM memory.  

VI.  INVESTIGATION 

A. Static Allocation – Experiment Design 

First experiment was focused on comparing total 
simulation times ts and effectiveness E for the considered 
algorithms. List of tasks was generated according to range 
of P2 and P3 presented in Table I.  

TABLE I. RANGE OF INPUT PARAMETERS 

Parameter Range  

Job size 2÷7 

Job time [s] 5÷20 

Parameter P4 was equal: 25×25, 50×50, 75×75, and 
100×100. For each system, ten measurements were made 
on the basis of which the average result for each system 
was calculated. Each algorithm had to allocate respectively 
25, 50, 75, 100, 150, 200, 300, and 400 tasks. 

B. Static Allocation – Results  

The averaged results, concerning the total simulation 
time ts and the effectiveness E are presented in Fig. 6 and 
Fig. 7. 
 

 
Figure 6. Average total simulation time ts. 

It may be observed, that the best algorithm, with respect 
to ts is IRAT which is not reliable because it is based on 
randomness. Thus it is able to get through the whole list of 
tasks in short period of time but a substantial part of them 
will not be allocated and processed (Fig. 7). Due to the fact, 
that the best results were achieved for IBLAT and ITAT 
algorithms.  

More complex structure of system does have noticeable 
impact on allocation time. Although differences are not 
significant and can be consider as neglected due to 
simulation error – experiments were done in the 
multitasking operating system that can cause measurement 
errors. 

Testimony that the Improved Random Allocation 
Algorithm is not reliable is shown in Fig. 7. The IRAT 
works faster than the other mechanisms but a substantial 
part of tasks is not allocated and processed. Due to this fact 
the effective results were achieved for IBLAT, ITAT and 
IBMAT algorithms. 

 

 
Figure 7. Average effectiveness E[%] . 

C. Dynamic Allocation – Experiment Design 

The second complex experiment was focused on 
comparing the total number of processed jobs N and 
unreliability U. Two cases were considered depending on 
the two sets of input parameters. 

In the Case 1, incoming tasks were created according to 
the ranges of P2 and P3 parameters presented in Table II. 
Input parameter P4 was equal: 25×25, 50×50, 75×75, and 
100×100.  

TABLE II. CASE 1: RANGE OF INPUT PARAMETERS P2 AND P3 

Parameter Range  

Job size 2÷7 

Job time [s] 10÷30 
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In the Case 2, incoming tasks were created according to 
range of P2 and P3 parameters presented in Table III. Input 
parameter P4 was equal: 100×100, 200×200, and 300×300.  

TABLE III. CASE 2: RANGE OF INPUT PARAMETERS P2 AND P3 

Parameter Range  

Job size 20÷40 

Job time [s] 50÷100 

 
For the both sets of parameters and for each considered 

torus 10 measurements were performed on the basis of 
which the average result for each system was calculated. 
Each algorithm had to allocate incoming tasks during 
respectively 10, 20, 30, 40, 50, and 60 seconds.  

D. Dynamic Allocation - Results 

The averaged results of the experiments for both cases 
are presented in Fig. 8 and 9. 

 

 
Figure 8. Average effectiveness E for Case 1 

As expected, randomness has noticeable impact on the 
effectiveness and thus also on number of allocated tasks and 
unreliability. It allows processing large number of jobs 
(tasks) but at the cost of high unreliability what is a result of 
this, that system gets more tasks than it can be processed. It 
is important to know, that quality of algorithms cannot be 
determined solely by the number of allocated and processed 
tasks.  

It can be said that effectiveness of algorithms for case 1 
is comparable, or even the same - differences are barely 
noticeable. The effectiveness is not an ideal parameter 
because it is based on the speed of processing tasks within 
the system. Simplify algorithm, i.e. IRAT are faster, thus 
whole process of allocation for one task does not take a lot 
time. Because of that the number of processed tasks can be 
higher when compared with other algorithms, however in 
comparison with the all given jobs results are worse. 

The probability of allocation success decreases with 
every processed job and so unreliability decreases. 

It does not mean that every algorithm with ability to 
allocate large number of jobs, even at the cost of low 
effectiveness, is efficient. The efficient allocation technique 
needs to have balanced parameters.  

Every incoming task can be described by the probability 
of its allocation. As the size of torus grows, the probability  

 

 
Figure 9. Average effectiveness E for Case 2. 

 
of allocation grows as well. The same can be said about 
effectiveness and total allocation time parameters that 
achieve higher values for larger systems. The reverse 
situation can be observed for duration time and size of 
incoming tasks. As the size and duration time of tasks falls, 
probability of allocation, effectiveness and total allocation 
time grows. 

VII.  CONCLUSION AND FUTURE WORK 

In this paper the Improved Tree Allocation for Torus 
(ITAT) was proposed. Based on experiments it may be 
observed that each allocation algorithm has its advantages 
and disadvantages. The proposed algorithm is particularly 
attractive for large toruses and large tasks. ITAT uses non-
binary tree to identify free subtoruses which can be 
allocated to an incoming request.  

Busy tree as the algorithm is a very complex structure 
that is why for smaller systems ITAT work worse than other 
schemes. It is important to know that modern networks with 
torus topology do have hundreds of nodes. Thus ITAT’s 
quality is comparable with other existing schemes. 

The future work includes plans to extend ITAT by 
implementing more intelligent scheme for leaves creation 
process. It is necessary in order to maximize utilization of 
nodes. Other process that needs to be reviewed is 
recursively update of busy tree that has negative impact on 
total simulation time and allocation time. We also intend to 
combine leaves update scheme with leaves creation process. 
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