
Network Partitioning Problem to Reduce Shared Information in OpenFlow Networks
with Multiple Controllers

Hidenobu Aoki, Junichi Nagano, and Norihiko Shinomiya
Graduate School of Engineering

Soka University
Tokyo, Japan

Email: shinomi@ieee.org

Abstract—This paper proposes the layered control plane of
OpenFlow networks with multiple controllers. Our method log-
ically partitions an OpenFlow network and assigns controllers
to the partitioned networks as their administrative domains.
In addition, this paper focuses on the relationship between
the network partitioning and the amount of global network
information shared among controllers. Then, this paper handles
the issue as a mathematical problem based on graph clustering
and analyzes effective network partitioning methods in reducing
the amount of global network information.

Keywords—Software-Defined Networking; OpenFlow; multiple
controllers; layered control plane; graph clustering.

I. INTRODUCTION

Software-Defined Networking (SDN) has been emerging as
a new networking paradigm. The fundamental idea of SDN is
to achieve programmable networking by separating the control
and the data planes in an individual network device, such
as a switch and router [1]. As one of the standard protocols
between those separated planes, OpenFlow has been developed
and widely used. In an OpenFlow network, a controller is in
charge of generating data forwarding rules. In contrast, Open-
Flow switches distributed in the data plane are responsible only
for forwarding data according to the rules. This centralized
architecture where a controller manages OpenFlow switches
enables network operators to dynamically configure switches
and to flexibly manage their networks [2].

Although it was assumed that a single controller dominates
an entire network at the beginning, the concerns of scalability
and reliability has been raised [3]. As the size of the network
grows, the amount of data traffic, such as flow requests to
a controller would increase [4] and [5]. Furthermore, the
network operation with a single controller could take a risk of
whole network breakdown if a failure occurs on the controller.
As a result, to deploy multiple controllers has been considered.

In an OpenFlow network managed by multiple controllers, it
could be scalable approach to logically divide the network into
sub-networks as administrative domains of controllers so as to
handle flow requests faster and reduce computational load on
each controller. Then, a collaborative framework that enables
controllers to effectively communicate each other has been
required and drawn attention as a SDN-related research topic
[6]. This paper proposes the layered architecture of control
plane and classifies the roles of controllers. In particular, this

paper focuses on how to decide the administrative domains
of controllers, which has not discussed in any relevant work.
The organization of this paper is as follows: In Section II, the
related work of distributed controllers is addressed. Section
III presents the layered control plane with its definitions
and functions. In addition, the issue between the network
partitioning and the amount of global network information
shared among controllers is described. Section IV presents the
graph definitions of the layered control plane and formulates
the problem. As solutions of the network partitioning, Sec-
tion V describes clustering algorithms. Section VI shows the
simulation results. Finally, we conclude this paper with future
work in Section VII.

II. RELATED WORK

Regarding to the deployment of multiple controllers, how
to disseminate network state information over multiple con-
trollers is highlighted as an important issue [4]. HyperFlow [7]
realizes the synchronization of the network information among
multiple controllers by utilizing a distributed file system called
WheelFS WheelFS employs publish-subscriber patterns and
contains all network information so that controllers can access
to sufficient information for the local control of switches. In
addition, ONOS [8] maintains a global network view with
the abstraction of data plane network and shares topology
information across ONOS servers by adopting distributed
Titan graph database and Cassandra key-value store.

In order to reduce the load on controllers in sharing network
information, a concept of layered control plane has been pro-
posed. Onix [9] logically partitions a network, and controllers
are assigned to partitioned networks as their control domains.
Then, each partitioned network is contracted as a logical node
and used as a unit for sharing network information among
controllers. This enables a controller to communicate with
other controllers without knowing specific network topology
and states of other partitioned networks. In this way, the
reduction of the amount of network information possessed by
a single controller can be achieved.

Moreover, Kandoo [10] provides a layered control method
for OpenFlow networks consisting of the root controller and
some local controllers. The root controller manages all local
controllers and is responsible only for the events which re-
quires information over the whole network. On the other hand,

250Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

the local controller deals with the local events like requesting
flow setups and collecting the statistics for a network with
governing a group of switches and links between them. This
layered control defines the scope of operations for processing
different requests efficiently, which could offload the burden
of the root controller.

As stated above, notable ideas of the layered control meth-
ods have been proposed in those related work. Nevertheless,
they have not mentioned how to logically partition a net-
work to decide administrative domains of controllers against
switches although it could affect the amount of network
information shared among controllers. In order to consider
the issue, this paper focuses on the network partitioning
and examines its solutions based on the concept of graph
clustering.

III. LAYERED CONTROL PLANE

This section presents the architecture of the layered control
plane and describes the issue between the network partitioning
and the amount of global network information shared among
controllers.

A. Definitions

In an OpenFlow network with multiple controllers, the
network can be logically partitioned as administrative domains
of controllers. In each domain, a controller is responsible
for the following two roles: (1) management of switches
in own domain and (2) federation of a whole network by
communicating with other controllers. In accordance with
those roles, the control plane can be layered in two tiers:
the local tier and the federation tier in charge of (1) and (2),
respectively.

B. Network Topology in Local and Federation Tiers

In the local tier, a local control function, called a local
controller, describes the network topology of each adminis-
trative domain as a local graph. Moreover, the local graph
is contracted to a single node which is used as a unit of
communication with other controllers. In the federation tier,
a global control function, referred to a federator, gathers
the contracted nodes from all controllers and unifies them
with edges between local graphs to form a federation graph
describing global network topology. Because of this topology
contraction, it is assumed to reduce the amount of global
network information shared among controllers through the
distributed database. Figure 1 illustrates an example of the
layered control plane. In Figure 1, there are two domains
described as local graphs 1 and 2. In the federation tier, on the
other hand, the federation graph has two contracted nodes, and
three edges correspond to the edges between the local graphs.

C. Network Topology Acquisition

In an OpenFlow network, the network topology is obtained
by a combination of LLDP (Link Layer Discovery Protocol)
packets, packet in and packet out messages as follows:

Local Graph 1 Local Graph 2

Federation Graph

Fig. 1. An example of topology contraction in layered control plane.

1) Receiving a new packet, a switch forwards it to the
controller as a packet in message if it does not match
any flow entries installed in the switch.

2) When the controller receives the packet in message, the
controller installs a flow entry to the switch if there
exists the destination of the packet in its administrative
domain; otherwise, in order to find the destination, the
controller sends packet out messages to direct switches
to forward LLDP packets from its ports.

3) The switches send LLDP packets from their ports to
adjacency switches. If the packet is received by a switch
in the same domain, the packet in message is sent
to the controller; otherwise, it is forwarded to another
controller.

4) When a controller receives the packet in message, it
inspects the message and detects the connectivity of
switches.

5) If a controller detects the connectivity between switches
within its domain, it updates own local database holding
local network information; otherwise, as the controller
detects an inter-domain link, it updates the distributed
database keeping global network information.

Through LLDP flooding, controllers discover the destination
of packets and install the corresponding flow entries in each
switch in its administrative domain. Note that since LLDP
packets will flood the entire network until the destination
is found, this overhead will increase as the size of network
becomes larger. Moreover, on the occasion of the inter-domain
link detection, controllers need to update the distributed
database, which may degrade their throughput. Furthermore,
if there are many inter-domain links, controllers may need
to access frequently to the distributed database to obtain
and update the global network topology and compute routing
paths. Therefore, we assume that the number of inter-domain
links could affect the network performances and the load on
controllers.

D. Network Partitioning in Local Tier

Considering the topology contraction in the layered control
plane, it would be noteworthy that the number of inter-
domain links, that is, the number of edges in a federation
graph depends on how to partition a network; in other words,

251Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Federation Tier

Local Tier

(a) (b)

Fig. 2. An example of network partitioning in different ways.

how to decide administrative domains of controllers affects
the amount of global topology information shared among
controllers. Figure 2 shows an example of network partitioning
in different ways. As seen in Figure 2, there are four edges in
federation graph (a) while federation graph (b) has eight edges.
This is because of different ways of network partitioning
between (a) and (b). Therefore, it can be expected to further
reduce the amount of global topology information by focusing
on the network partitioning. This paper defines the problem
to decide administrative domains of controllers as Network
Partitioning Problem (NPP).

IV. MODEL DEFINITIONS AND PROBLEM FORMULATION

This section presents graph definitions treated in the layered
control plane and formulates NPP.

A. Graph Definitions

Network topology can be described as a graph G = (V,E) :
a set of vertices V represents network devices, such as routers
and switches, and a set of edges E denotes links that connect
those devices. In the local tier, local graphs are defined as

Gl
1 = (V l

1 ,E l
1), . . . ,G

l
i = (V l

i ,E l
i). (1)

Note that a node can not belong to multiple local graphs. In
the federation tier, on the other hand, a federation graph is
denoted as

G f = (V f ,E f) (2)

where G f contains all local graphs as contracted nodes in V f

and edges between local graphs in E f .

B. Problem Formulation as Graph Clustering

In the field of graph theory, graph clustering is defined
as a task of grouping nodes in a graph into subsets called
clusters in some predefined sense [11]. This paper applies
the concept of graph clustering for network partitioning. Let
a local graph Gl

i in (1) be a cluster, and a set of local
graphs Gl is defined as a clustering: Gl = {Gl

1, ...,G
l
i}. In

general, it is regarded as a desirable clustering where there are
many edges within each cluster called intra-cluster edges and
relatively few edges between clusters referred to inter-cluster

edges [12]. Considering the network topology treated in the
layered control plane, intra-cluster edges correspond to edges
in E l

i , and inter-cluster edges are equivalent to edges in E f .
Consequently, we could say that the general criterion for the
desirable clustering is applicable for the objective of NPP, that
is, to partition a network such that the number of edges in a
federation graph is reduced. Therefore, the objective function
of NPP is defined as finding a clustering Gl such that

Minimize |E f | (3)

where an upper bound of the number of nodes in a cluster q
is satisfied.

V. CLUSTERING ALGORITHMS FOR NETWORK
PARTITIONING

In this section, three clustering algorithms based on different
measures are presented as solutions of NPP.

A. Minimum Cut Clustering

In graph theory, a minimum cut is defined as a set of
the smallest number of edges which divide a graph into two
disjoint subgraphs [13]. Based on the concept, we constructed
Minimum cut clustering which separates a graph by minimum
cut and regards the yielded subgraphs as clusters. It recursively
conducts the separation process until the number of nodes in
each cluster does not exceed the upper bound of the number
of nodes in a cluster q as described in Algorithm 1.

Algorithm 1 Minimum Cut Clustering.

Require: G = (V,E) and q: constraint of # of nodes
1: main
2: Clustering Gl← φ
3: MinimumCutClustering(G,q)
4: Return Gl

5: end main
6: function MinimumCutClustering(G,q)
7: (Gl

i ,G
l
j) : generate clusters based on minimum cut

8: if # o f nodes in Gl
i ≤ q then

9: Add Gl
i to Gl

10: else
11: MinimumCutClustering(Gl

i ,q)
12: end if
13: if # o f nodes in Gl

j ≤ q then
14: Add Gl

j to Gl

15: else
16: MinimumCutClustering(Gl

j,q)
17: end if
18: Return Gl

19: end function

B. Conductance Clustering

As one of clustering indices, conductance has been defined,
which compares the number of inter-cluster edges and that of
intra-cluster edges yielded by a clustering [13]. By denoting a

252Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

set of all edges that have their origin in Gl
i and their destination

in Gl
j as E(Gl

i ,G
l
j), the conductance of a cluster is defined as

Φ(Gl
i) =

|E(Gl
i ,Gl \Gl

i)|
min(∑

v∈Gl
i

deg(v), ∑
v∈Gl\Gl

i

deg(v))
. (4)

Since finding a clustering with minimum conductance is
known as NP-hard [12], we created Conductance clustering
that chooses nodes one by one based on the conductance value
as shown in Algorithm 2. The algorithm begins with a random
node and assigns it to a cluster. Then, one of neighbor nodes
of the node, which the cluster obtains the best conductance
value, is chosen and assigned to the cluster. As this process, it
expands the cluster by recursively choosing a neighbor node of
the nodes in the cluster. If the number of nodes in the cluster
reaches to the upper bound of the number of nodes in a cluster
q, then it starts again to create a new cluster with a random
node which has not belonged to any clusters.

Algorithm 2 Conductance Clustering.

Require: G = (V,E) and q: constraint of # of nodes
1: Clustering Gl← φ
2: V ′← a list of nodes in a graph G
3: while V ′ 6= φ do
4: Gl

i ← φ
5: Choose a node vr randomly from V ′

6: Add vr to Gl
i and remove vr from V ′

7: while # o f nodes in Gl
i ≤ q do

8: for every neighbor node vn of ∀ v ∈ Gl
i do

9: if vn is in V ′ then
10: Gl

c = Gl
i

11: Add vn to Gl
c

12: Calculate Φ(Gl
c)

13: end if
14: end for
15: Choose Gl

c with minimum conductance Φ(Gl
c)

16: Add vn in the Gl
c to Gl

i
17: Remove vn from V ′

18: end while
19: Add Gl

i to Gl

20: end while
21: Return Gl

C. Distance-k Cliques Clustering

In addition to minimum cut and conductance, distance is
also a general clustering measure. We apply one of distance-
based clustering algorithms called Distance-k cliques cluster-
ing [14]. Distance-k cliques clustering measures the strength
of a relationship between two nodes in a graph in terms of
the shortest path length between two nodes and generates
clusters such that every pair of nodes is connected by a path
of length at most k. As shown in Algorithm 3, Distance-k
cliques clustering algorithm obtains an initial clustering at first.
In an initial clustering, clusters are generated by choosing a
node with the highest degree and its neighbors. Based on the

initial clustering, the next step is to combine the clusters while
both constraints of the number of nodes in a cluster q and the
diameter of a cluster k are satisfied. Note that in order to fit
the simulation setting of this paper, we added the constraint
of the number of nodes in a cluster q which is not considered
in the original algorithm defined in [14].

Algorithm 3 Distance-k Cliques Clustering.

Require: G = (V,E) and q: constraint of # of nodes
1: STEP1 : Obtain an initial clustering
2: Clustering Gl← φ
3: V ′← a list of nodes in a graph G
4: while V ′ 6= φ do
5: Gl

i ← φ
6: Find the highest degree node vmax in V ′

7: while # o f nodes in a cluster ≤ q do
8: Add vmax to Gl

i and remove vmax from V ′

9: Add neighbor nodes of vmax to Gl
i and remove those

nodes from V ′

10: end while
11: Add Gl

i to Gl

12: end while
13: STEP2 : Combine the clusters of the initial clustering
14: while True do
15: Find umax, a node connected with nodes in other clusters

where the total # of nodes in adjacency clusters Gl
ad j is

the largest in Gl.
16: if # o f nodes in Gl

i(umax) = q then
17: Break
18: end if
19: for ∀ Gl

ad j of Gl
i(umax) do

20: if # o f nodes in Gl
i(umax)+Gl

ad j < q then
21: if diameter(Gl

i(umax)+Gl
ad j)≤ k then

22: Add nodes in Gl
ad j to Gl

i(umax)
23: end if
24: end if
25: end for
26: Update Gl with Gl

i(umax)
27: end while
28: Return Gl

VI. SIMULATION AND RESULTS

This section shows the simulation settings and results. We
have developed a simulator in Python and NetworkX to eval-
uate three clustering algorithms in terms of minimizing |E f |.
In our simulation, those clustering algorithms are executed
on a random graph called Newman Watts Strogatz (NWS)
and two types of real network model, America and Japan
models as shown in Figure 3. Note that a NWS graph is
formed by connecting random pairs of nodes with a certain
probability after creating a ring over n nodes [15]. The reason
why we choose the random graph as well as real network
models is to change the size of graph flexibly and examine
the results. Therefore, we conduct two kinds of simulation
for NWS graph: 1) varying the number of nodes and edges

253Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

as described in Table I. 2) changing the value of the upper
bound of the number of nodes in a cluster q. On the other
hand, we test only 2) for the real network models since the
size of the models is fixed as in Table I. Note that the distance
constraint k of Distance-k cliques clustering is set to 10, and
all simulations are executed 20 times.

(a) NWS [15].

(b) America Model [16]. (c) Japan Model [17].

Fig. 3. Examples of Network Model.

TABLE I. THE SIZE OF GRAPHS FOR SIMULATIONS.

NWS
The # of nodes 49 100 225 400
The # of edges 98 200 450 800

America Japan
The # of nodes 365 48
The # of edges 772 82

A. Changing the Size of NWS Graph

Figure 4 shows |E f | on different number of nodes in the
graphs where q is fixed to 15. The result indicates Conductance
clustering demonstrates with the least |E f | on different size of
the graph. In addition, as the size of the graph obtains larger,
the difference of |E f | becomes considerable.

B. Varying the upper bound of nodes in a cluster

Figures 5 to 7 describe |E f | on different value of q from
10 to 25 while the number of nodes in a graph is fixed. Note
that the number of nodes in a NWS graph is set to 225.

The negative slopes in those results indicate that as the
value of q obtains greater, which means the larger number
of nodes can be included in a cluster, it would yield the
larger number of intra-cluster edges and the less number of
inter-cluster edges. However, the results of Distance-k cliques
clustering show horizontal slopes in Figures 5, 6, and a part
of 7. This would be because of the constraint of distance k.
Even if the number of nodes in a cluster does not reach to its

50 100 150 200 250 300 350 400
of nodes |V|

0

100

200

300

400

500

600

700

800

#
 o

f e
dg

es
 in

 fe
de

ra
tio

n
gr

ap
h
|E

f
|

Minimum Cut
Conductance
Distance-k Cliques

Fig. 4. |E f | on different size of NWS graph.

5 10 15 20 25 30
Upper bound of # of nodes in a cluster q

0

50

100

150

200

250

300

350

400

450

#
 o

f e
dg

es
 in

 fe
de

ra
tio

n
gr

ap
h
|E

f
|

Minimum Cut
Conductance
Distance-k Cliques

Fig. 5. |E f | on different value of q (NWS)

limitation q, the distance constraint would be more influential
because the algorithm does not allow a path length of any
pairs of nodes to exceed k.

Furthermore, we can see that even when the value of q is
varied, Conductance clustering reduces |E f | at most on any
types of graph in our simulation (Figures 5 to 7). From the all
results, we could say that conductance would be an important
measure for effective network partitioning in reducing |E f |,
which indicates the reduction of the amount of shared topology
information among controllers in OpenFlow networks. This
is because Conductance clustering selects a node to assign
a cluster based on the conductance value in (4) considering
not only the number of cutting edges but also the density
of yielded clusters. Therefore, it could have a tendency to
yield a clustering with less |E f |. On the other hand, Minimum
cut clustering does not consider the quality of a clustering. It
focuses on separating a graph based on the minimum number
of cutting edges, which may results in separating only a
small portion of a graph. As a result, the recursive graph
separation by minimum cut could increase the number of
clusters containing relatively small number of nodes, which
ends up with a large number of inter-cluster edges as shown
in our simulation results.

254Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

5 10 15 20 25 30
Upper bound of # of nodes in a cluster q

20

40

60

80

100

120

140

160

180
#

 o
f e

dg
es

 in
 fe

de
ra

tio
n

gr
ap

h
|E

f
|

Minimum Cut
Conductance
Distance-k Cliques

Fig. 6. |E f | on different value of q (America)

5 10 15 20 25 30
Upper bound of # of nodes in a cluster q

0

5

10

15

20

25

30

35

40

#
 o

f e
dg

es
 in

 fe
de

ra
tio

n
gr

ap
h
|E

f
|

Minimum Cut
Conductance
Distance-k Cliques

Fig. 7. |E f | on different value of q (Japan)

VII. CONCLUSION AND FUTURE WORK

This paper proposed the layered control plane of OpenFlow
networks and classified its functions in detail. In addition,
the issue between the network partitioning and the amount
of global network information in the layered control plane
is addressed and converted to a mathematical problem as
NPP. As a solution of NPP, this paper provided the network
partitioning methods based on graph clustering and examined
them on different network models. Our simulation results
indicate that Conductance clustering performs the best in
reducing the amount of network topology information shared
among controller. Since our simulation is limited to theoretical
approach, our future work will be an implementation of the
layered control plane and examination of how reducing global
network information by network partitioning can affect the
load on controllers and the network performances under real
network scenarios.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Num-
ber 26330120.

REFERENCES

[1] S. Sezer and et al., “Are we ready for SDN? implementation chal-
lenges for software-defined networks,” Communications Magazine,
IEEE, vol. 51, no. 7, July 2013, pp. 36–43.

[2] K. Suzuki and et al., “A survey on openflow technologies,” IEICE
Transactions on Communications, vol. 97, no. 2, 2014, pp. 375–386.

[3] S. Kuklinski and P. Chemouil, “Network management challenges in
software-defined networks,” IEICE Transactions on Communications,
vol. 97, no. 1, 2014, pp. 2–9.

[4] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability
of software-defined networking,” Communications Magazine, IEEE,
vol. 51, no. 2, February 2013, pp. 136–141.

[5] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Proceed-
ings of the 2nd USENIX conference on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services. USENIX
Association, 2012, pp. 10–10.

[6] D. Marconett and S. Yoo, “Flowbroker: A software-defined network con-
troller architecture for multi-domain brokering and reputation,” Journal
of Network and Systems Management, 2014, pp. 1–32.

[7] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 Internet Network Management
Conference on Research on Enterprise Networking, ser. INM/WREN’10,
2010, pp. 3–3.

[8] P. B and et al., “Onos: towards an open, distributed sdn os,” in
Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014, pp. 1–6.

[9] T. Koponen and et al., “Onix: A distributed control platform for large-
scale production networks.” in OSDI, vol. 10, 2010, pp. 1–6.

[10] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the
first workshop on Hot topics in software defined networks. ACM, 2012,
pp. 19–24.

[11] R. Kannan, S. Vempala, and A. Vetta, “On clusterings: Good, bad and
spectral,” Journal of the ACM (JACM), vol. 51, no. 3, 2004, pp. 497–
515.

[12] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1,
no. 1, 2007, pp. 27–64.

[13] U. Brandes and T. Erlebach, “Network analysis.” Springer Berlin
Heidelberg, 2005.

[14] J. Edachery, A. Sen, and F. J. Brandenburg, “Graph clustering using
distance-k cliques,” in Graph drawing. Springer, 1999, pp. 98–106.

[15] M. E. Newman, D. J. Watts, and S. H. Strogatz, “Random graph models
of social networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. suppl 1, 2002, pp. 2566–2572.

[16] N. Shinomiya, T. Hoshida, Y. Akiyama, H. Nakashima, and T. Terahara,
“Hybrid link/path-based design for translucent photonic network dimen-
sioning,” Journal of Lightwave Technology, vol. 25, no. 10, 2007, pp.
2931–2941.

[17] T. Sakano and et al., “A study on a photonic network model based on the
regional characteristics of japan (in japanese,” IEICE Technical Report,
PN2013-01, Tech. Rep., 2013.

255Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

