
A Peer to Peer Architecture Applied to Multiplayer Games

Felipe Rocha Wagner, Marcio Garcia Martins, Arthur Tórgo Gómez

Postgraduate Interdisciplinary Program in Applied Computing

University of Vale do Rio dos Sinos

São Leopoldo, Brazil

 e-mail: feliperw@msn.com, marciog@unisinos.br, breno@unisinos.br

Abstract— This article presents an architecture model

developed on a Peer to Peer network, which gives support to

develop multiplayer games that need to manage their peers

connections and permissions. The model enables the

development of multiplayer games, without the need of a

dedicated server, as is observed in the most architectures. For

this, the model offers a library that enables programmers

access the network addresses, allowing them manage their peer

connections and permissions. As results, of using this

architecture model, we can be cite the reduction of the costs

for developers of multiplayer games due to no need a dedicated

server, and a greater flexibility to manage the peer connections

and permissions by the use of the available library of the

model.

Keywords-manageable network; peer to peer; network

address translator; transversal problem.

I. INTRODUCTION

The multiplayer games market comes growing in the last
few years. It all started with the arcades and non-networked
games as Spacewar![1] and Pong [1], what later evolved to
become the networked online multiplayer games that we
know today. Online multiplayer makes it easy to find people
to play anytime and anywhere. Nonetheless, to connect many
people in order to allow them to play together, we need a
server or a Peer to Peer (P2P) mesh connection. Dedicated
game servers are usually expensive for indie game
developers. The cost arising from the use of dedicated game
servers could be reduced using a P2P approach, when
designing the game network. This is one point investigated
in this work. P2P networks are not easy to build; there are
many technological barriers that have to be broken to
connect two or more peers in different private networks.
Currently, this is a challenge for multiplayer games
developers. Typically, each machine in a private network is
hidden behind a public gateway, a public IP, with a Network
Address Translator (NAT).

In this paper, we propose a P2P architecture applied to
multiplayer games that need to manage their peers
connections and permissions. The idea is to create a library
which allows programmers access the network addresses,
without a use of a server to manage the peer connections and
permissions. The admin could define users groups in
accordance with the dynamic of the multiplayer games. This
way, we can have an admin being responsible for the
network management. This admin, in a meeting application

could mute users when someone is talking or divide the
meeting at a moment when needed. In the same way, this
admin could manage and balance the dynamic of game
rooms.

This article is structured as follows. In Section 2, related
works that were utilized to generate the architecture model
proposed are presented. In Section 3, we introduce the
architecture model and its modules and communication
protocol. Section 4 presents the peers connection process.
Finally, in the Section 5, the conclusion is presented.

II. RELATED WORK

In this section, we discuss on Super Peer in P2P
Networks and NAT transversal problem that were utilized to
generate the architecture model proposed in this paper.

A. Super Per in P2P Networks

According to Yang and Garcia-Molina [2], Super Peer is
a node, in a P2P network, that works both as a server to a
subset of clients as a peer in a network of Super Peers. Cao
et al. [3] proposed a multi-level super peer based on P2P
architecture designed to work in a hierarchical structure.
The hierarchical model not only distributes the single points
of failure in the network, reducing the chances of presenting
a massive failure, but also helps in the development of
servers or applications that are based on the same model.
Based on this two the related proposals, we defined a
variation of Super Peer. Our Super Peer (or Admin) is a peer
in the network being responsible for the network
management. It can work as a server for a set of clients
connects to it, and, optionally, also works as a peer to the
same set of clients. The Super Peer Network, that connects
Super Peers with one another, will not be considered by this
model.

B. The Network Address Translator Transversal Problem

The NAT is a table that translates private addresses to
public addresses. The development of P2P applications
utilizing the NAT has constraints, because it is not possible
that two or more computing systems, in different private
networks, send messages between them without a public
address [4]. Some techniques that allow us to break this
barrier appeared along the years [5]-[12]. The most common
of these is the Hole Punching, which uses discovery and
prediction techniques to find out the NAT mapping. More
recently, some protocols as NAT-PMP [8], PCP [9] and
UPnP [11][12] utilize communication protocol to configure

54Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

the gateway and create a port-forwarding without the need
of the user configuration.

III. ARCHITECTURE MODEL

The architecture model was designed in a way to support
message packets transferred and media streams between the
network’s peers. It also takes into account the existence of a
Super Peer, which has the ability to manage the network
configuration and permissions of other peers.

Every peer has its own network module, a set of
configuration flags (that describe the permissions and
communication rules), an ID number and a group; the latter
two are defined by the network admin.

The model proposed can be described as a hybrid model
of Client-Server and P2P. The admin user initially registers
himself in a server and waits for connections from common
users. After the connections are made, the users
communicate directly with each other, without the need of a
server that would increase the costs of this process. The only
function of the server is to make possible the connection of
the P2P network

A. Modules

The network modules are the core of all communication.
Every peer has its own module, and every module is
composed by two sub-modules, as shown in Fig. 1.

Figure 1. Network model.

 The first one is a stream module for receiving and
transmitting audio and video in real time using UDP,
described by the RFC 768 [12]. The second one is
responsible for delivering and receiving packets with
network messages such as control and validation messages,
and signals or important application messages. Those
messages need to be sent, through a reliable connection
without losing packets. Therefore, we chose to use TCP,
described by the RFC 793 [13], which ensures the arrival of
the packets in their destination [3][14].

To fully understand the sub-modules, we need to look at
them separately. The Stream Sub-Module uses two UDP
sockets, one to receive and other to transmit audio and/or
video streams, as shown in Fig. 2.

Figure 2. Stream sub-module.

On the other hand, the Reliable Sub-Module is
composed of a listener responsible for receiving new
connections and a list of sockets containing a functional
socket for each connection sustained for peer, as seen in Fig.
3.

Figure 3. Reliable Sub-Module.

B. Comunication Protocol

According to Tanenbaum [15], a protocol is the set of
rules and conventions governing communications between
two or more computer systems. In the architecture model
developed in this work, the admin can include himself in
any kind of communication in his network, thus taking a full
view of everything what is going on.

Users, in this architecture model, are divided into
groups. Every user is connected to the admin, but not
necessarily with the others users. The common users have
connections with other common users, only when they
belong to the same group. This way, the admin is able to
send messages to any group in the network or even send a
message from an user of a group to an user of another
group. However, an user from a group is unable to directly
send a message to an user of another group and vice versa.

In order to provide good performance to group system,
the communication channels UDP and TCP have three ways
to sending packets. The first one is the simple unicast,
which is nothing more than the exchange of packets
between two peers. The second one is multicast, and is used
to send messages to a preset group of peer. At last, the third
one is a broadcast, which is used to send messages to every
peer with connection to the network.

The broadcast and multicast procedures can be simulated
taking in account only the network mesh connections. Also,
as observed in the Table I, broadcast and unicast procedures
might present different behaviors according which the
configurations and permissions of the peers.

TABLE I. BROADCAST & UNICAST BEHAVIOR

 Peers Behavior

BroadcastM Admin Multicast → All

BroadcastG User Multicast* → Group

BroadcastR User
BroadcastM Request

(User → Admin)

Unicast Admin-User Unicast

Unicast 2 Users Unicast or Multicast*
 *Optionally might include the Admin as addressee

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

A user might broadcast messages in two ways. The first,
we will call BroadcastG works as a multicast for the group
the user belongs. The second occurs when a requests user
to the admin to route a message for all network, including
each single group, similar to a Broadcast Unknown Server
(BUS) [15], that we are calling of BroadcastR.

To be able to use BroadcastR, an user must be enabled.
A unicast between the common user and the admin will
always be a simple unicast, but a unicast between two
common users might behave as a multicast when the admin
is included in the communication through the permissions
and configurations of the peer. It is important to reinforce
that the multicast and broadcast that we talk here might be
simulated as a set of unicasts in its core.

C. Network Packages

The network messages can be wrapped in TCP or UDP
packets, and are divided in two main groups: Common
Messages and Control Messages. The difference between
the two is a validation key of two bytes, appearing at the end
of the packet header in the Control Messages, shown in the
Table II.

TABLE II. HEADER OF WRAPPED PACKETS (EXT. = 0)

Offset

(Bytes)

1 Byte 1 Byte

4

bits
2 bits 2 bits 2 bits 6 bits

0
Vers

ion
Type

Addresse

e Type

Ext.

(= 0)
Reserved

2 Sender ID Addressee ID

4 Validation Key*
*Present only in Control Messages

It is important to highlight that the validation key has the
purpose to avoiding cheating in the network. The header
starts with a four bits version number, matching the bits
0001. Next, we have two bits that define the type of
message according to Table III.

TABLE III. MESSAGE TYPES

2 Bits

Value
Message Type

00 Common Message

01 Common Message (Stream)

10 Control Message

11 Connection Message

The next two bits represent the addressee type, and

define what will the Addressee ID corresponding, as follow.
Addressee type: equal to zero (bits: 00) corresponds to a
user; equal to one (bits: 01) corresponds to a group; equal to
two (bits: 10) corresponds to a broadcast message; and equal
to three (bits: 11) corresponds to a system message. After
that, we have other two bits, which are used to establish the
extension of the Sender and Addressee IDs as 2n Bytes,
where n is the extension value.

The next 6 bits are reserved and should be ignored. The
Bytes in sequence, should be construed according to the
extension value. In case of the extension value is zero, the
third Byte represents the Sender ID, and the fourth Byte
represents the Addressee ID: which must be translated
according to the Addressee Type value.

Only the admin has permission to send broadcast
messages to the network. The users might request to the
admin to send a broadcast message. If the users have the
right permissions, the admin will work as a BUS sending
the messages to all the users connected to him. To make a
broadcast request, the common user must send an unicast
message to the admin with its Addressee Type set as
broadcast and the Addressee ID set to zero. It is up to the
admin accepts or declines the request.

The stream transmission is equivalent to a common
message, once there is no need for any validation of the
frames arrival, what could cause delays in the transmission.
We can stream audio, video or both (mux). To send and
receive streams we must use an encoder and a decoder that
will be responsible for processing the data. In this fashion,
the codec or mux to be used is the responsibility of the
application or of game developer.

IV. CONECTION PROCESS

To connect the peers in a network, we must follow a
connection protocol. The connection protocol for this
architecture model is defined in Fig. 4.

Figure 4. Connection Process.

The Admin must register its address in a server, so that
common users can find him. Then, the Admin waits for
connections from common users. The common user can
request to server a list of registered Administrators and
make a request of an address of an specific Admin. When
the server receives the request, he sends a message to this

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Admin requesting permission for the user to establish
connection. If the user is accepted by Admin, the server
sends to the user the admin address. Those messages are
sent using UDP.

Once that user has the IP address and access to the
Admin, he can realize the connection process. He sends a
connection request over TCP to the admin, if accepted will
be sent to user his UDP address, the group ID, a list with
the connections information of the user from in the group, a
set of flags that defines configuration and permission
settings, and a two bytes validation key.

Subsequently, the address of the user is sent to the users
connected to the group to which he was assigned. At the end
of this process the user is added to the list of connected
peers.

A. Network Configuration Flags

The network configuration flags describe the types of
messages that will include the Admin as addressee and the
permissions of each peer. Those flags’ values are defined by
the Admin during the connection process and are distributed
over a Byte where each bit is equivalent to a Boolean that
corresponds to a specific type of message. As shown in
Table IV, the first four bits are related to common messages
and the following four bits are related to streams. Since the
control messages are always between an Admin and a
common user there is no need to configure them.

TABLE IV. CONFIGURATION FLAGS

Type 1st bit 2nd bit 3rd bit 4th bit

Common User Group Broadcast System

Stream User Group Broadcast System

The bits corresponding to group messages and user,

identify if those messages should include the Admin as
addressee and the bits corresponding to Broadcast. The
configurations of every user are saved by the Admin for
validation purposes. To change the flags of a user, the
Admin can send a control message with the new
configurations and permissions.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed an architecture model applied
to a manageable P2P network that gives support to the
development of multiplayer games that need to manage their
peers connections and permissions. The users can
communicate directly with each other, without the need of a
server that would increase the costs of this process.

We presented a brief study of the NAT Transversal and
some of the available techniques to break the NAT barrier in
order to allow connections between hosts in different private
networks. Were discussed the network model and the
protocol that provides the functionalities that help both in
the development of multiplayer games, as in the control of
the network and in the managing of the connection
processes.

As future work, we are developing a library, from the
proposed architecture, in order to test the quality, usability
and performance of developed applications.

REFERENCES

[1] M. Barton and B. Loguidici, “The History of Spacewar!: the
best waste of time in the history of the universe,” 2015 [On
line]. Available from: http://www.gamasutra.com/view/
feature/132438/ the history_of_spacewar_the_best.php
[retrieved: Mar., 2015].

[2] B. Yang. and H. Garcia-Molina, “Designing a Super-Peer
Network,” Proc. International Conference on Data
Engineering (wICDE), Mar. 2003, pp. 49-60, ISSN: 1063-
6382.

[3] Z. Cao, K. Li, and Y. Liu, “ A Multi-Level Super Peer Based
P2P Architecture,” Proc. International Conference on
Information Networking (ICOIN), Jan. 2008, pp. 1-5,
ISSN 1617-5468, ISBN 3-88579-366-0.

[4] J.F. Kurose and K.W.Ross, Computer Networking: a top-
down approach, Pearson Education, 6th ed., Mar. 2012, 864
p., ISBN-13: 978-0132856201, ISBN-10: 0132856204,

[5] S. Cheshire, M. Krochmal and K. Sekar, 2006. NAT Port
Mapping Protocol (NAT-PMP). [Online] Internet Draft.
Available from: http://tools.ietf.org/id/draft-cheshire-nat-pmp-
02.txt [retrieved: Mar., 2015].

[6] RFC 3489, 2003. STUN – Simple Transversal of User
Datagram Protocol [online] RFC. Available from:
http://tools.ietf.org/html/rfc3489 [retrieved: Mar., 2015].

[7] RFC 5389, 2008. Session Transversal Utilities for NAT
(STUN) [Online] RFC. Available from:
http://tools.ietf.org/html/rfc5389 [retrieved: Mar., 2015].

[8] RFC 6886, 2013. NAT Port Mapping Protocol (NAT-PMP)
[online] RFC. Available from:
http://tools.ietf.org/html/rfc6886 [retrieved: Mar., 2015].

[9] RFC 6887, 2013. Port Control Protocol (PCP) [Online] RFC.
Available from: http://tools.ietf.org/html/rfc6887 [retrieved:
Mar., 2015].

[10] H. Suzuki, Y. Goto, and A. Watanabe, “External Dynamic
Mapping Method for NAT Transversal, ” Proc. International
Symposium on Communications and Information
Technologies, Octo. 2007, pp. 723-728, ISBN: 978-1-4244-
0977-8.

[11] UPnP Forum, 2001. Internet Gateway Device (IGD) V 1.0
[Online] UPnP Forum. Available from:
http://upnp.org/specs/gw/igd1 [retrieved: Mar., 2015].

[12] UPnP Forum , 2010. Internet Gateway Device (IGD) V 2.0
[Online] UPnP Forum. Available from:
http://upnp.org/specs/gw/igd2 [retrieved: Mar., 2015].

[13] RFC 768, 1980. User Datagram Protocol [Online] RFC.
Available from: http://tools.ietf.org/html/rfc768 [retrieved:
Marc., 2015].

[14] RFC 793, 1981. Transmission Control Protocol [Online]
RFC. Available from: http://tools.ietf.org/html/rfc793
[retrieved: Mar., 2015].

[15] A. S. Tanenbaum, Computer Networks, Editora Campus, 3rd
ed., 1997.

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

