
Classifying Anomalous Mobile Applications Based on Data Flows

Chia-Mei Chen
Department of Information Management

National Sun Yat-sen University
Kaohsiung, Taiwan

Email: cchen@mail.nsysu.edu.tw

Gu-Hsin Lai
Department of Information Management

Chinese Culture University
Taipei, Taiwan

Email: lgx4@ulive.pccu.edu.tw

Yu-Hsuan Tsai
Department of Information Management

National Sun Yat-sen University
Kaohsiung, Taiwan

Email: t0336470@gmail.com

Sheng-Tzong Cheng
Department of Computer Science and Info. Engineering

National Cheng Kung University
Tainan, Taiwan

Email: stcheng@mail.ncku.edu.tw

Abstract—Mobile security becomes more important as users
increasingly rely on the portable network devices. The security
consultant firms indicate that the amount of mobile malware
increases every year at a fast speed. Therefore, fast detecting
mobile malware becomes an important issue. By applying
reverse engineering techniques, a source code extraction
module produces data flow information from the mobile
application executable. The proposed static analysis-based
detection system analyzes the data flow of the target software
and it identifies if a data flow might leak sensitive data. The
experimental results show that the proposed detection system
can identify mobile malware efficiently.

Keywords- mobile security, malware detection, static analysis.

I. INTRODUCTION

Mobile users get used to downloading various mobile
applications on the mobile devices for business as well as
leisure purposes. Therefore, confidential information is
stored in the mobile devices which become the new target
for financial gain. Juniper Networks study [1] states that
92% of mobile malware targets the Android platform, as it
has the highest market share. Tread Micro [3] reports that
seventeen pieces of malware had already been downloaded
seven hundred thousand times before they were removed
and half of mobile malware involve unauthorized text
message sending or network access. F-Security report [5]
concludes that mobile malware are mostly profit oriented
and security might be the primary concern for mobile users.
The number of apps increases dramatically in the markets
and an efficient mobile malware detection is demanded.

Commercial mobile malware detection solutions such
as BullGuard Mobile Security and Lookout Mobile Security
adopt signature-based approach [2] and the detection rate
relies on the malware signature repository. For fast
growing mobile malware, hackers have a chance to
compromise mobile users before the signature is developed
[14]. Hence, an alternative solution should be developed to
detect unknown mobile malware.

In this research, the proposed detection system develops a
feature selection method combining genetic algorithm and
data flow analysis, where genetic algorithm reduces the
number of features and data flow analysis shows the
relationship between API calls and system commands. This
research conducted a preliminary study analyzing collected
mobile apps and malware and discovered that apps authors
might obfuscate the codes by replacing variable names into
meaningless strings but the API calls and system commands
would not be altered. To steal privacy information, certain
API calls and system commands would be invoked.
Therefore, the proposed detection method considers the API
calls and system commands as key attributes. Based on our
preliminary study, the possible sequences of the API calls
and system commands are huge. Therefore, genetic
algorithm is applied to build efficient threat patterns of the
API call and system command invocation. The proposed
detection method can identify unknown malware which
matches the malicious behaviors found.

The structure of the paper is organized as follows. The
literature review is studied in Section II. Section III describes
the proposed classification method, followed by performance
evaluation in Section IV. The conclusion remarks are drawn
in Section V.

II. RELATED WORK

Dynamic analysis and static analysis [21] are common
approaches used for malware detection. Dynamic analysis
consumes more resources and computation time, while static
analysis requires source code or reverse engineering.

Bhaskar Pratim et al. [9] proposed an approach which
analyzes the risk of an app based on permission. The
approach is limited to the official Google Play market, but
most malware resides in the third party markets. Francesco
Di Cerbo et al. [11] applied Apriori algorithm to identify
common subsets of permissions used by the benign apps.

As app writers may produce over-privileged mobile
software [27][28], permission based approach might not be
enough to identify mobile malware. Some malware even

147Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

conducts malicious behaviors without permission [29].
Permission based mobile malware detection has drawbacks
[20] and is not efficient.

William et al. [30] built an Android sandbox by
modifying Android’s source code. The sandbox traces the
data flows of the sensitive data, such as IMEI or DeviceId,
which appears in text messages or network connection. This
method is designed for security researchers monitoring data
flows in the mobile devices but not suitable for detecting
mobile malware.

Shabtai et al. [14] proposed a detection system
applying knowledge-based and temporal abstraction method
to detect unknown malware. Temporal patterns of mobile
devices are established from history events such as app
installation and the number of text message sent out. A
monitored event without user interaction is regarded as
abuse. In the practical cases, users tend to press OK when
using an app and hackers could apply social engineering
tactics to circumvent such restriction.

Wu et al. [10] proposed a malware classification
method which combines several types of features:
permission and component information from Manifest file,
information of intent, API calls and communication between
components from source code. K-mean algorithm and
expectation–maximization algorithm are applied to classify
the mobile applications. Yerima et al. [7] proved that API
calls and system calls are efficient for distinguishing
malware and benign applications and Bayesian classifier is
adopted to classify malwares and benign applications.

The above mentioned classification approaches do not
provide the cause of malicious behaviors and might confuse
users. The literature indicates that API calls and system calls
are efficient and the invocation ordering is useful for defining
malicious behaviors. Therefore, the proposed detection
system develops an efficient feature selection method to
identify efficient features and build the invocation sequences
used by malware. With reduced feature sets, the proposed
detection reduces the detection time without detection
performance loss.

III. PROPOSED SYSTEM

The literature review and our preliminary study
indicate that obfuscated software replacing variable names
to meaningless strings makes static analysis based detection
hard and each piece of software has unique invocation
sequence. API call and system command invocation
represents the behaviors of a piece of software. The distinct
sequences of the invocations could increase large as the
number of malware raises. Therefore, the proposed detection
system develops a feature selection method which applies
genetic algorithm to reduce the number of feature sets and
build efficient threat patterns of API call and system
command invocation.

The proposed system consists of three processes,
reverse engineering, threat pattern building, and detecting
processes as shown in Figure 1.

Figure 1. System architecture

Three tools, APKTool, dex2jar, and JAD, are applied for
reversing app’s APK files into source code. APKTool
produces the .dex files from the apk files; dex2jar transforms
the .dex files into a set of the .class files; and decompiler
JAD converts the .class files into the .jad files which are the
Java source code of the APK files. Source code provides
valuable information. API calls and system commands can
be retrieved.

Threat patterns are sequences of API calls and system
command invocations. Some API calls and system
commands are invoked by both malicious and benign apps,
and are not distinguishable features for malware detection.
Therefore, in the threat pattern building process, the feature
selection module eliminates common calls and commands
used by two types of the mobile applications.

Feature Set Reduction by Genetic Algorithm

Many API calls and system commands were found in the
test dataset; therefore, the number of the possible
combinations of the invocations is huge. The feature sets
grow up as the number of invocation sequences increases. In
this study, genetic algorithm is applied to select a suboptimal
set of invocations which can distinguish mobile malware
from the normal apps. The goal of the proposed classification
system is to maximize the detection rate which is measured
by true positive rate and precision in this study. Hence, the
proposed fitness function is defined by the detection
performance measurements mentioned above: true positive
rate + precision.

IV. SYSTEM EVALUATION

The mobile apps for evaluation were extracted from
Android Malware Genome Project [26] and Google Play
Market. This study assumes that the chance of a malicious
and popular app which can survive in Google Play market for
over three month is low.

148Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Table I. DETECTION RESULTS.

Family No of apps
in the family

No. of detected
malware

True
positive

ADRD 22 22 100.00%
AnserverBot 186 187 99.47%

Asroot 7 8 87.50%
BaseBridge 115 122 94.26%

BeanBot 8 8 100.00%
Bgserv 9 9 100.00%

CoinPirate 1 1 100.00%
CruseWin 2 2 100.00%
DogWars 0 1 0.00%

DroidCoupon 0 1 0.00%
DroidDeluxe 1 1 100.00%
DroidDream 15 16 93.75%

DroidDreamLight 46 46 100.00%
DroidKungFu1 33 34 97.06%
DroidKungFu2 30 30 100.00%
DroidKungFu3 309 309 100.00%
DroidKungFu4 96 96 100.00%

DroidKungFuSapp 3 3 100.00%
DroidKungFuUpdate 1 1 100.00%

Endofday 1 1 100.00%
FakeNetflix 0 1 0.00%
FakePlayer 0 6 0.00%
GGTracker 1 1 100.00%

GPSSMSSpy 0 6 0.00%
GamblerSMS 1 1 100.00%

Geinimi 69 69 100.00%
GingerMaster 4 4 100.00%
GoldDream 47 47 100.00%

Gone60 0 9 0.00%
HippoSMS 2 4 50.00%

Jifake 0 1 0.00%
KMin 52 52 100.00%

LoveTrap 1 1 100.00%
NickyBot 1 1 100.00%
NickySpy 0 2 0.00%

Pjapps 57 57 100.00%
Plankton 11 11 100.00%

RogueLemon 2 2 100.00%
RogueSPPush 9 9 100.00%
SMSReplicator 1 1 100.00%

SndApps 10 10 100.00%
Spitmo 1 1 100.00%

Tapsnake 0 2 0.00%
Walkinwat 0 1 0.00%

YZHC 22 22 100.00%
Zitmo 0 1 0.00%
Zsone 12 12 100.00%

jSMSHider 16 16 100.00%
zHash 11 11 100.00%
Total 1215 1259 96.51%

The detection results are shown in Table I; the proposed

system has the detection rate of 96.5%. The proposed
detection method might have false negative on small size
malware families, as the threat patterns used by them

improve insignificantly on fitness function of the genetic
algorithm. As for false positive, 119 benign samples out of
1,259 were classified as malicious. Some misclassified
samples have root threat. For example,
com.estrongs.android.pop.cupcak is one of the applications
that being detected has root threat. As shown in Figure 2, the
description of this application indicates that it requires root
access. Most misclassified benign apps were detected as
malwares because of data thief threat. For example, data
synchronization app, com.gozap.labi.android copies
information stored in the mobile device and sends to
somewhere. Other misclassifications were caused by adware
which sends out device ID for advertisement purpose [19].
Therefore, the results conclude that the proposed detection
system can detect malware efficiently.

Figure 2. Misclassified benign app (snapshot of

com.estrongs.android.pop.cupcak in Google Play) requires root access.

V. CONCLUSIONS

Mobile devices are widely used in our daily work and
leisure time. The security surveys and reports demonstrate
that hackers have shifted the attack target to mobile users and
mobile malware increases each year. Signature based
detection is not suitable for fast growing and changing
mobile malware.

Static analysis is suitable for analyzing fast growing
mobile malware. This study proposes a static analysis based
detection method which identifies efficient feature sets from
the API calls and system commands. Two phases of feature
set reductions are developed and the experimental results
show that the proposed detection using the feature selection
method performs efficiently with the detection rate of 96.5%.

Further evaluation and investigation should be made to
compare the proposed static analysis approach with signature
based detection method and to analyze the process time
required by the proposed system in the reverse engineering
and model training phases.

Static analysis might have limitations. Malware with
botnet capability which receives and executes attack
commands from command and control server might not be
detectable from static analysis.

The reverse engineering tools and techniques used in this
study can be improved to extract better quality of source
code. Some applications use NDK (Native Development Kit)
which allows to develop functions in language C and to
extend invocation via JNI (Java Native Interface). The C
functions are compiled into share object (.so file) and hard to
decompile back to the source code. The software which
invokes malicious functions in C requires better detection

149Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

and reverse engineering methods to identify the anomalous
behaviors.

REFERENCES
[1] Juniper networks, “Juniper networks Mobile threat Center

Third Annual Mobile threats report,” retrieved March 1, 2015
from http://www.juniper.net/us/en/local/pdf/additional-
resources/3rd-jnpr-mobile-threats-report-exec-summary.pdf.

[2] Shuaifu Dai, “Behavior-Based Malware Detection on Mobile
Phone” The 6th International Conference on Wireless
Communications Networking and Mobile Computing
(WiCOM), 2010.

[3] TrendMicro, “Android Malware: How Worried Should You
Be?” retrieved on March 1, 2015 from
http://blog.trendmicro.com/trendlabs-security-
intelligence/android-malware-how-worried-should-you-be/.

[4] McAfee, “McAfee Threats Report: Second Quarter 2013,”
retrieved on March 1, 2015 from
http://www.mcafee.com/us/resources/reports/rp-quarterly-
threat-q2-2013-summary.pdf.

[5] TrendMicro, “Android Malware: How Worried Should You
Be?” retrieved on March 1, 2015 from
http://blog.trendmicro.com/trendlabs-security-
intelligence/android-malware-how-worried-should-you-be/

[6] F-Security, ”MOBILE THREAT REPORT Q4 2012,”
http://www.f-
secure.com/static/doc/labs_global/Research/Mobile%20Threat
%20Report%20Q4%202012.pdf.

[7] Yerima, S. Y., Sezer, S., McWilliams, G., and Muttik, I., “A
New Android Malware Detection Approach Using Bayesian
Classification,” the 27th IEEE International Conference on
Advanced Information Networking and Applications (AINA),
2013.

[8] Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart,
W. E., Belew, R. K., and Olson, A. J., “Automated docking
using a Lamarckian genetic algorithm and an empirical
binding free energy function,” Journal of Computational
Chemistry, 1998.

[9] Bridge, D., “Genetic Algorithms,” retrieved on March 1, 2015
from
http://www.cs.ucc.ie/~dgb/courses/tai/notes/handout12.pdf.

[10] Sarma, B. P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C.,
and Molloy, I., “Android permissions: a perspective
combining risks and benefits,” The 17th ACM symposium on
Access Control Models and Technologies, 2012.

[11] Wu, D.J., Mao, C. H., Wei, T. E., Lee, H. M. and Wu, K. P.,
“DroidMat: Android Malware Detection through Manifest and
API Calls Tracing,” The 7th Asia Joint Conference on
Information Security, 2012.

[12] Di Cerbo, F., Girardello, A., Michahelles, F., and Voronkova,
S., “Detection of malicious applications on android OS,”
Computational Forensics, 2011.

[13] Enck, W., Ongtang, M., & McDaniel, P., “On lightweight
mobile phone application certification,” The 16th ACM
conference on Computer and communications security, 2009.

[14] Chiang, W. C., “Behavior Analysis of Mobile Malware Based
on Information Leakage”, master thesis of National Sun Yat-
sen University, 2013

[15] Shabtai, A., Kanonov, U., and Elovici, Y., “Intrusion
detection for mobile devices using the knowledge-based,
temporal abstraction method,” in Proc. Journal of Systems and
Software, vol. 83, no. 8, 2010, pp. 1524-1537

[16] Cover, T. M., and Thomas, J. A., “Entropy, relative entropy
and mutual information,” Elements of Information Theory,
1991.

[17] Kouznetsov, P., “JAD Java Decompiler,” retrieved on March
1 2015 from http://www.varaneckas.com/jad/.

[18] Lin, J. M., ”Detecting Mobile Application Malicious
Behavior Based on Taint Propagation”, master thesis of
National Sun Yat-sen University, 2013

[19] Aafer, Y., Du, W., and Yin, H., “DroidAPIMiner: Mining
API-level features for robust malware detection in android,”
Security and Privacy in Communication Networks, 2013.

[20] Blasing, T., Batyuk, L., Schmidt, A. D., Camtepe, S. A., and
Albayrak, S., “An android application sandbox system for
suspicious software detection,” The Fifth international IEEE
conference on Malicious and Unwanted Software
(MALWARE), 2010.

[21] McAfee Lab , 2012, “FakeInstaller’ Leads the Attack on
Android Phones,” retrieved on March 1, 2015 from
https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-
attack-on-android-phones

[22] Richardson, L., retrieved on March 1, 2015 from
“BeautifulSoup,”
http://www.crummy.com/software/BeautifulSoup/.

[23] Neumann, M., “Mechanize,” http://mechanize.rubyforge.org/.
[24] Zhou, Y. and Jiang, X., Android Malware Genome Project,

retrieved March 1, 2015 from
http://www.malgenomeproject.org/.

[25] Adrienne Porter Felt, Kate Greenwood, and David Wagner,
“The effectiveness of application permissions,” The Second
USENIX Conference on Web Application Development, 2011.

[26] Wei, X., Gomez, L., Neamtiu, I., and Faloutsos, M.,
“Permission evolution in the android ecosystem,” The 28th
ACM Annual Computer Security Applications Conference.
ACM, 2012.

[27] Grace, M. C., Zhou, Y., Wang, Z., and Jiang, X, “Systematic
Detection of Capability Leaks in Stock Android
Smartphones,” The Annual Network & Distributed System
Security Symposium (NDSS), 2012.

[28] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B. G.,
Cox, L. P., and Sheth, A. N., “TaintDroid: an information
flow tracking system for real-time privacy monitoring on
smartphones,” The 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’10), 2010.

150Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

