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Abstract—Mobile security becomes more important as users 
increasingly rely on the portable network devices. The security 
consultant firms indicate that the amount of mobile malware 
increases every year at a fast speed. Therefore, fast detecting 
mobile malware becomes an important issue. By applying 
reverse engineering techniques, a source code extraction 
module produces data flow information from the mobile 
application executable. The proposed static analysis-based 
detection system analyzes the data flow of the target software 
and it identifies if a data flow might leak sensitive data. The 
experimental results show that the proposed detection system 
can identify mobile malware efficiently.  
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I.  INTRODUCTION 

Mobile users get used to downloading various mobile 
applications on the mobile devices for business as well as 
leisure purposes. Therefore, confidential information is 
stored in the mobile devices which become the new target 
for financial gain. Juniper Networks study [1] states that 
92% of mobile malware targets the Android platform, as it 
has the highest market share. Tread Micro [3] reports that 
seventeen pieces of malware had already been downloaded 
seven hundred thousand times before they were removed 
and half of mobile malware involve unauthorized text 
message sending or network access. F-Security report [5] 
concludes that mobile malware are mostly profit oriented 
and security might be the primary concern for mobile users. 
The number of apps increases dramatically in the markets 
and an efficient mobile malware detection is demanded.  

Commercial mobile malware detection solutions such 
as BullGuard Mobile Security and Lookout Mobile Security 
adopt signature-based approach [2] and the detection rate 
relies on the    malware signature repository. For fast 
growing mobile malware, hackers have a chance to 
compromise mobile users before the signature is developed 
[14]. Hence, an alternative solution should be developed to 
detect unknown mobile malware. 

In this research, the proposed detection system develops a 
feature selection method combining genetic algorithm and 
data flow analysis, where genetic algorithm reduces the 
number of features and data flow analysis shows the 
relationship between API calls and system commands. This 
research conducted a preliminary study analyzing collected 
mobile apps and malware and discovered that apps authors 
might obfuscate the codes by replacing variable names into 
meaningless strings but the API calls and system commands 
would not be altered. To steal privacy information, certain 
API calls and system commands would be invoked. 
Therefore, the proposed detection method considers the API 
calls and system commands as key attributes. Based on our 
preliminary study, the possible sequences of the API calls 
and system commands are huge. Therefore, genetic 
algorithm is applied to build efficient threat patterns of the 
API call and system command invocation. The proposed 
detection method can identify unknown malware which 
matches the malicious behaviors found. 

The structure of the paper is organized as follows. The 
literature review is studied in Section II. Section III describes 
the proposed classification method, followed by performance 
evaluation in Section IV. The conclusion remarks are drawn 
in Section V. 

 

II. RELATED WORK 

Dynamic analysis and static analysis [21] are common 
approaches used for malware detection. Dynamic analysis 
consumes more resources and computation time, while static 
analysis requires source code or reverse engineering. 

Bhaskar Pratim et al. [9] proposed an approach which 
analyzes the risk of an app based on permission. The 
approach is limited to the official Google Play market, but 
most malware resides in the third party markets. Francesco 
Di Cerbo et al. [11] applied Apriori algorithm to identify 
common subsets of permissions used by the benign apps.  

As app writers may produce over-privileged mobile 
software [27][28], permission based approach might not be 
enough to identify mobile malware. Some malware even 

147Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks



conducts malicious behaviors without permission [29]. 
Permission based mobile malware detection has drawbacks 
[20] and is not efficient.  

William et al. [30] built an Android sandbox by 
modifying Android’s source code. The sandbox traces the 
data flows of the sensitive data, such as IMEI or DeviceId, 
which appears in text messages or network connection. This 
method is designed for security researchers monitoring data 
flows in the mobile devices but not suitable for detecting 
mobile malware. 

Shabtai et al. [14] proposed a detection system 
applying knowledge-based and temporal abstraction method 
to detect unknown malware. Temporal patterns of mobile 
devices are established from history events such as app 
installation and the number of text message sent out. A 
monitored event without user interaction is regarded as 
abuse. In the practical cases, users tend to press OK when 
using an app and hackers could apply social engineering 
tactics to circumvent such restriction.  

Wu et al. [10] proposed a malware classification 
method which combines several types of features: 
permission and component information from Manifest file, 
information of intent, API calls and communication between 
components from source code. K-mean algorithm and 
expectation–maximization algorithm are applied to classify 
the mobile applications. Yerima et al. [7] proved that API 
calls and system calls are efficient for distinguishing 
malware and benign applications and Bayesian classifier is 
adopted to classify malwares and benign applications.  

The above mentioned classification approaches do not 
provide the cause of malicious behaviors and might confuse 
users. The literature indicates that API calls and system calls 
are efficient and the invocation ordering is useful for defining 
malicious behaviors. Therefore, the proposed detection 
system develops an efficient feature selection method to 
identify efficient features and build the invocation sequences 
used by malware. With reduced feature sets, the proposed 
detection reduces the detection time without detection 
performance loss. 

 

III. PROPOSED SYSTEM 

The literature review and our preliminary study 
indicate that obfuscated software replacing variable names 
to meaningless strings makes static analysis based detection 
hard and each piece of software has unique invocation 
sequence. API call and system command invocation 
represents the behaviors of a piece of software. The distinct 
sequences of the invocations could increase large as the 
number of malware raises. Therefore, the proposed detection 
system develops a feature selection method which applies 
genetic algorithm to reduce the number of feature sets and 
build efficient threat patterns of API call and system 
command invocation.  

The proposed system consists of three processes, 
reverse engineering, threat pattern building, and detecting 
processes as shown in Figure 1.  

 

 
Figure 1. System architecture 

 
 

Three tools, APKTool, dex2jar, and JAD, are applied for 
reversing app’s APK files into source code. APKTool 
produces the .dex files from the apk files; dex2jar transforms 
the .dex files into a set of the .class files; and decompiler 
JAD converts the .class files into the .jad files which are the 
Java source code of the APK files. Source code provides 
valuable information. API calls and system commands can 
be retrieved.  

Threat patterns are sequences of API calls and system 
command invocations. Some API calls and system 
commands are invoked by both malicious and benign apps, 
and are not distinguishable features for malware detection. 
Therefore, in the threat pattern building process, the feature 
selection module eliminates common calls and commands 
used by two types of the mobile applications.  
 

Feature Set Reduction by Genetic Algorithm  

Many API calls and system commands were found in the 
test dataset; therefore, the number of the possible 
combinations of the invocations is huge. The feature sets 
grow up as the number of invocation sequences increases. In 
this study, genetic algorithm is applied to select a suboptimal 
set of invocations which can distinguish mobile malware 
from the normal apps. The goal of the proposed classification 
system is to maximize the detection rate which is measured 
by true positive rate and precision in this study. Hence, the 
proposed fitness function is defined by the detection 
performance measurements mentioned above: true positive 
rate + precision.   

 

IV. SYSTEM EVALUATION 

The mobile apps for evaluation were extracted from 
Android Malware Genome Project [26] and Google Play 
Market. This study assumes that the chance of a malicious 
and popular app which can survive in Google Play market for 
over three month is low.  
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Table I. DETECTION RESULTS. 

Family No of apps 
in the family 

No. of detected 
malware 

True 
positive 

ADRD 22 22 100.00%
AnserverBot 186 187 99.47%

Asroot 7 8 87.50%
BaseBridge 115 122 94.26%

BeanBot 8 8 100.00%
Bgserv 9 9 100.00%

CoinPirate 1 1 100.00%
CruseWin 2 2 100.00%
DogWars 0 1 0.00% 

DroidCoupon 0 1 0.00% 
DroidDeluxe 1 1 100.00%
DroidDream 15 16 93.75%

DroidDreamLight 46 46 100.00%
DroidKungFu1 33 34 97.06%
DroidKungFu2 30 30 100.00%
DroidKungFu3 309 309 100.00%
DroidKungFu4 96 96 100.00%

DroidKungFuSapp 3 3 100.00%
DroidKungFuUpdate 1 1 100.00%

Endofday 1 1 100.00%
FakeNetflix 0 1 0.00% 
FakePlayer 0 6 0.00% 
GGTracker 1 1 100.00%

GPSSMSSpy 0 6 0.00% 
GamblerSMS 1 1 100.00%

Geinimi 69 69 100.00%
GingerMaster 4 4 100.00%
GoldDream 47 47 100.00%

Gone60 0 9 0.00% 
HippoSMS 2 4 50.00%

Jifake 0 1 0.00% 
KMin 52 52 100.00%

LoveTrap 1 1 100.00%
NickyBot 1 1 100.00%
NickySpy 0 2 0.00% 

Pjapps 57 57 100.00%
Plankton 11 11 100.00%

RogueLemon 2 2 100.00%
RogueSPPush 9 9 100.00%
SMSReplicator 1 1 100.00%

SndApps 10 10 100.00%
Spitmo 1 1 100.00%

Tapsnake 0 2 0.00% 
Walkinwat 0 1 0.00% 

YZHC 22 22 100.00%
Zitmo 0 1 0.00% 
Zsone 12 12 100.00%

jSMSHider 16 16 100.00%
zHash 11 11 100.00%
Total 1215 1259 96.51%

 
The detection results are shown in Table I; the proposed 

system has the detection rate of 96.5%. The proposed 
detection method might have false negative on small size 
malware families, as the threat patterns used by them 

improve insignificantly on fitness function of the genetic 
algorithm. As for false positive, 119 benign samples out of 
1,259 were classified as malicious. Some misclassified 
samples have root threat. For example, 
com.estrongs.android.pop.cupcak is one of the applications 
that being detected has root threat. As shown in Figure 2, the 
description of this application indicates that it requires root 
access. Most misclassified benign apps were detected as 
malwares because of data thief threat. For example, data 
synchronization app, com.gozap.labi.android copies 
information stored in the mobile device and sends to 
somewhere. Other misclassifications were caused by adware 
which sends out device ID for advertisement purpose [19]. 
Therefore, the results conclude that the proposed detection 
system can detect malware efficiently. 

 

 
Figure 2. Misclassified benign app (snapshot of 

com.estrongs.android.pop.cupcak in Google Play) requires root access. 
 
 

V. CONCLUSIONS 

Mobile devices are widely used in our daily work and 
leisure time. The security surveys and reports demonstrate 
that hackers have shifted the attack target to mobile users and 
mobile malware increases each year. Signature based 
detection is not suitable for fast growing and changing 
mobile malware.  

Static analysis is suitable for analyzing fast growing 
mobile malware. This study proposes a static analysis based 
detection method which identifies efficient feature sets from 
the API calls and system commands. Two phases of feature 
set reductions are developed and the experimental results 
show that the proposed detection using the feature selection 
method performs efficiently with the detection rate of 96.5%.  

Further evaluation and investigation should be made to 
compare the proposed static analysis approach with signature 
based detection method and to analyze the process time 
required by the proposed system in the reverse engineering 
and model training phases. 

Static analysis might have limitations. Malware with 
botnet capability which receives and executes attack 
commands from command and control server might not be 
detectable from static analysis. 

The reverse engineering tools and techniques used in this 
study can be improved to extract better quality of source 
code. Some applications use NDK (Native Development Kit) 
which allows to develop functions in language C and to 
extend invocation via JNI (Java Native Interface). The C 
functions are compiled into share object (.so file) and hard to 
decompile back to the source code. The software which 
invokes malicious functions in C requires better detection 
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and reverse engineering methods to identify the anomalous 
behaviors.  
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