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Abstract— Lightbulb is a toolkit for analysis of the combined 
impact of a set of diverse security policies.  It is designed to se-
curely access and collect the security policy configuration data 
from the hosts, routers, and firewalls that comprise a network 
enclave.  Lightbulb loads the collected security configuration 
data into a modeling tool and allows system administrators to 
run queries against the model with the intent to verify desired 
security properties of the composite system.  If a policy query 
fails, the user is given a specific instance of the policy violation 
that can be investigated and resolved.  The overall toolkit pro-
vides an extensible framework for rigorous verification of se-
curity policies of network devices. 

 
Keywords-cyber security; security policy; network security 

policy; access control; logic programming; formal verification. 

I.    INTRODUCTION 
Security configuration management has been a problem-

atic issue ever since security devices have existed.  In mod-
ern, heterogeneous networks, misconfigurations are not just 
occasional nuisances, but common problems that can lead to 
serious security breaches. Current work in the field has 
shown that rigorous verification of security policies is pos-
sible, but published research [1][2] has generally been lim-
ited to particular aspects of either policy or security configu-
rations. The next logical step is to apply these principles 
across a broader spectrum of policies and security applianc-
es and to compose multiple policies into a coherent system 
specification. 

The primary challenge for building a coherent system-
wide tool for managing security polices is that there can be 
dozens to hundreds of heterogeneous configuration files re-
siding on devices in a typical enterprise network that will 
have an impact on some aspect of security.  Without an easy 
way to collect, organize and provide end-to-end analysis, 
administrators must look at configurations in isolation or in 
small groups to verify that desired policies are being en-
forced.   

This paper presents Lightbulb, an integrated toolkit of 
components that support rigorous automated security verifi-
cation of a variety of network devices and clients.  These 
components have been designed to fit within a general 
framework; individual components handle tasks, such as in-
gesting security policy specifications or query inputs (ex-
pressed in a Domain-Specific Language (DSL)), controlling 
and extracting the security-relevant configuration files from 
components located in a managed network and converting 
them to an intermediate form and, finally, performing rigor-
ous verification of security policies against the configuration 
data.  Models are built using Prolog within the Ciao logic  

 
 

Figure 1.  Toolkit architecture showing detailed data flows and 
interfaces with external inputs and devices to be managed. 

 
programming environment and employ features such as 
constraint programming. 

The paper is organized as follows. Section 2 describes 
the general approach of the Lightbulb system. Section 3 
provides an overview of the system user interface. Section 4 
documents the currently supported network devices. Section 
5 covers sample use cases and Section 6 covers currently 
supported queries. Related research efforts are described in 
Section 7 and the paper concludes with a summary and rec-
ommendations in Section 8. 

II.    APPROACH 
A toolkit architecture diagram for the toolkit is shown in 

Fig. 1.  Starting at the top left, a user provides inputs such as 
a network map and a security policy verification question 
via the User Interface.   The Input Framework reads the map 
and uses it to identify the relevant devices in the network.   
It passes the results down to the Capability Manager Tools, 
each of which interfaces with one or more specific devices.  
An individual Capability Manager possesses the specific da-
ta needed to locate and interpret the security relevant con-
figuration files from particular classes of devices; for exam-
ple, the Router Manager is programmed with information on 
routers, including make, model and other relevant differ-
ences.  (Support for basic Cisco devices covers a large por-
tion of the install base; see Section VI for notes about exten-
sibility.) A network device with more than one capability 
(for example, a firewall which is also a router) will report to 
more than one Capability Manager. 
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This architecture is easily extensible in that new Capa-
bility Managers can be added to the overall system and new 
device configurations can be programmed into existing 
Managers.  Also, Capability Managers can easily be com-
bined or split up as the Managers can be run on separate 
processors or the same processor.  Our current architecture 
provides examples for the most common devices that should 
be present in a typical enterprise network.  Extension and 
modification of these examples is a relatively straightfor-
ward process, allowing a local administrator to customize 
models for their devices, although a radically different ar-
chitecture or device would require some significant work in 
order to translate its configuration and capability into our in-
ternal representation. 

Once the configuration data have been obtained, the Ca-
pability Managers pass them up to the Central Database 
Tool, which stores them. The Database Tool also is respon-
sible for processing the configuration files, including filter-
ing and conversion to our Prolog representation for input to 
the Verification Tool. 

Finally, the Formal Verification Tool takes in all the 
processed input that has been loaded into the Central Data-
base, combines it with the input data from the User Inter-
face, and performs the policy query check. The results of the 
check (either success or a listing of counterexamples) are 
sent back to the User Interface for display. 

The formal verification module uses Ciao, a particular 
implementation of Prolog (with some extensions).  Ciao is a 
modern tool for logic programming that supports strong 
modularization, which was often lacking in earlier logic 
programming systems. Ciao also includes support for con-
straint logic programming, which is very helpful when deal-
ing with network packet data, and also tabling, memoiza-
tion, and higher-order functions. 

Logic programming is a very natural approach for mod-
eling security policies, as both make use of the “negation as 
failure” concept [3]. In SELinux policy, for example, the ac-
tive access vector rules are just the ALLOW rules, which 
permit certain actions. The lack of an ALLOW rule for an 
action means that that action is blocked. In our Prolog mod-
els for SELinux policies, the ALLOW rules become first or-
der facts, and the Prolog engine can implicitly interpret the 
absence of a fact in a model as the assertion of the fact’s ne-
gation, which matches SELinux semantics. There are indeed 
NEVERALLOW rules in SELinux, but they are passive 
specification rules, to be checked against the ALLOW rules 
after policy compilation.  This approach to modeling SELi-
nux policy using Prolog was first popularized by Scott Stol-
ler and his student at SUNY Stony Brook [4]. 

If desired, a user can swap out the default formal verifi-
cation module in the Lightbulb framework and replace it 
with a completely different engine or processor.  This might 
be done if a particular security policy query requires a dif-
ferent logic or handling process.  For example, the Accumu-
lo query on prohibited label combinations employs a Python 
engine to handle the data processing as opposed to the Ciao 
engine. 

III.   USER INTERFACE OVERVIEW 
The Lightbulb User Interface (UI) is designed to provide a 
single, convenient input and control interface for users, 
while still allowing developers an easy way of modifying 
existing functionality or adding additional modules to the 
toolkit.  The UI provides the input and output mechanisms 
for the network map and policy queries; it works in close 
concert with a backend that handles operations for retrieving 
and managing configurations from networked devices. 

The UI is based on open-web technologies.  It makes use 
of three main frameworks:  

• Flask, a python-based web server that handles pro-
cessing 

• Bootstrap, a frontend framework that provides 
templating and styling, and 

• SigmaJS, a JavaScript graphing library used to 
draw network maps. 

The UI provides a human interface to the Input Frame-
work and negotiates communication with the Formal Verifi-
cation Tool. 

When Lightbulb is started, the user is presented with the 
configuration page, starting with the Network Map (Fig. 2).  
If this is the first run, the user is given the option of starting 
with a blank pane or to input an existing UML map; other-
wise the last edited version of the Network Map is present-
ed.  At this stage, the user is free to alter the map to reflect 
the current network architecture.  Lightbulb currently only 
read in maps files that use a UML deployment diagram rep-
resentation. 

The second configuration step allows the user to specify 
device credentials, including SSH-enabled, telnet-enabled, 
and Accumulo (a highly scalable database) node devices.  
Devices with common passwords can be supported as well 
as devices needing additional authentication (such as enable 
mode on Cisco devices). 

In the final step of the configuration wizard, the Capabil-
ity Managers are instructed to fetch device security policies.   
While the system contacts each device, a visual overlay is 
provided to indicate the status of the fetch process. Each de-
vice security configuration is retrieved and converted to an 
internal representation (expressed in Prolog) in parallel.  
The user interface periodically polls the server for updates, 
changing the status as fetches complete (or time out).   

 
A. Security Policy Query Interface 

The query page is an interface to the Prolog modeling 
engine.  In order to make each type of query easy to formu- 
late, the page provides a preset structure and list of options 

 
Figure 2.  Network Configuration pane detail showing an example network. 
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Figure 3.  Query interface example.  Shown is the selector for connection 
initiation queries.  Values in the pulldown menus are automatically taken 

from the network map that is input by the user.  
 

for each type of query.  Submitting a query is as simple as 
selecting the appropriate options for each field and pressing 
submit.  A small delay will occur as the system converts the 
information to the appropriate Prolog commands and sub-
mits them for processing.  A simple “yes” or “no” response 
will return in typical Prolog fashion, along with counterex-
ample data (in limited cases) if the answer is “no.”  An ex-
ample of the query interface for reachability and connection 
queries is shown in Fig. 3 and a complete list of supported 
queries is given in Section 6. 

IV. CURRENTLY SUPPORTED DEVICES 
We currently support policy analysis for multiple types 

of devices: Iptables, Cisco routers/firewalls, SELinux, 
UNIX discretionary access control, and Accumulo hosts.  
Each of these analyses is discussed below. 

 
A. Iptables 

Iptables is an application program that allows a system 
administrator to configure the tables provided by the Linux 
kernel firewall and thus the firewall policy. We have com-
pleted a Prolog model that implements the iptables policy.  
Because iptables is so general, we are able to use our model 
as a basis for covering other packet polices, such as the Cis-
co IOS access list rules (discussed in the next section).   

In constructing an iptables policy, the largest granularity 
item is called a table.  Tables consist of one or more chains, 
where chains can be built-in or user-defined.  Chains may 
contain multiple rules, where rules determine an action to 
take on packets. 

There are four built-in tables: filter, NAT, raw, and 
mangle.  Each built-in table contains a few built-in chains.  
Each rule in a chain contains a goal and a target.  If the rule 
goal is matched, then processing continues onto the rules 
specified in the target.  If the goal is not matched, then pro-
cesses moves to the next rule.  The default value in iptables 
is to accept if no rule applies, but this default can be 
changed by the policy.  Lightbulb currently only considers 
the filter table for its policy analyses. 

A rule in iptables may take a number of actions on a 
packet, including: 

• Accept the packet 
• Drop the packet 
• Queue the packet for user interaction 
• Return the packet to the calling chain. 

An example of a very basic set of rules that Lightlbulb can 
parse and verify is shown below: 
 

iptables -A INPUT  -j ACCEPT -p all -s 192.168.1.0/24 -i eth1 
iptables -A OUTPUT -j ACCEPT -p all -d 192.168.1.0/24 -o eth1 
 

These rules allow traffic to/from a specific subnet to pass 
through the firewall. 

Our Prolog implementation of iptables policy uses nest-
ed lists to represent the chains and rules inside each table.  
We use recursive list traversal in order to ensure that the 
chains and rules are examined in order and that the first rule 
matching a particular connection (i.e., a hypothetical packet 
with particular source and destination addresses and ports) 
is selected for application. 

 
B. Cisco Routers/Firewalls 

The Cisco IOS support for router and firewall access 
control lists has evolved over the years and currently in-
cludes a wide array of options.  In IOS, access control lists 
are numbered or named, and a numbered list can be applied 
to either the in-bound or out-bound traffic on an interface.  
Each access control list may contain explicit permit or deny 
rules, and the order of the rules is important, as the first 
match of a packet to a rule determines the status of the 
packet.  There is also an implicit deny at the end of each ac-
cess control list, so that if a packet matches no rule, it is re-
jected.  Due to the presence of both explicit and implicit de-
nial, we explicitly process Cisco access control lists to find 
the first match to a packet, rather than storing them as 
Prolog facts and allowing failure to define denial.  

The general syntax for a CISCO extended rule is: 
 

[permit/deny]  protocol  source  destination  parameters 
 

The protocol can be one of IP, TCP, ICMP, and UDP.  The 
exact syntax of a rule varies for each protocol.  In general, 
the source and destination can be ranges of IP addresses, 
expressed using an IP address and a host mask; in this man-
ner, “host 192.168.30.5” means the same as “192.168.30.5 
0.0.0.0”.  Ports can be specified either numerically or by us-
ing names for the well-known ports. 

For the current system, we have chosen to model the 
Cisco extended rule set, an example of which is verifiable 
by Lightbulb is shown here: 

 

access-list 101 permit tcp any host 192.168.35.1 range 20 21 
access-list 101 permit tcp host 192.168.30.5 host 192.168.35.1 
     eq telnet 
access-list 102 permit tcp host 192.168.35.1 any 
access-list 102 permit tcp host 192.168.35.1 eq 20 any gt 1023 
access-list 102 deny udp any 

 
interface Ethernet0 
access-group 101 out 
access-group 102 in 
  

153Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks



C. SELinux 
As described in Section 2 above, we start with the 

Prolog approach found in previous work [4] to build a mod-
el of the security policy for SELinux hosts.  We include al-
low rules, type transitions, conditional rules and SELinux 
policy booleans in the model.  In addition, we link the SEL-
inux policy to the network activity by explicit tracking of 
both the assignment of port numbers to types and then ena-
bled allow access rules for sockets associated with these 
port numbers.  Under SELinux, the use of a network port 
number in TCP or UDP traffic communications is limited 
by policy and our tool analyzes these limitations when it 
performs checks on connections. 

 
D. Unix Discretional Access Control 

We include a Prolog model for the well-known discre-
tionary access control in conventional Unix, based on set-
tings for the user that owns the object, the group that the ob-
ject is in, and all others.  This was implemented without use 
of the Prolog cut operation, which is commonly used to con-
trol backtracking, but in this case would limit the usability 
of the definition.  Instead of cuts, the group and other rules 
contain explicit hypotheses that express the proper order 
handling of user/group/world permissions. 

Note that the user interface does not currently support 
preformed queries for discretionary access control, but it is 
accessible via direct Prolog input. 

 
E. Accumulo 

Apache Accumulo is a scalable data store based on 
Google’s BigTable model. One of its enhancements beyond 
BigTable is the implementation of cell-level access controls 
which allow data cells at different security levels to be 
stored in the same table. 

 Accumulo clusters may be composed of a variety of 
complex network configurations and storage topologies; 
Lightbulb enables seamless reasoning over Accumulo clus-
ter security by modeling policies at both the network and 
database configuration levels. While Accumulo may not be 
as common as other data storage technologies like MySQL, 
it uses access control permissions similar to those found in 
other databases and combines them with new types of secu-
rity controls. As a result, the models and queries developed 
for Lightbulb’s Accumulo support can be ported to support 
other database systems. 

Like many common databases, an Accumulo cluster 
does not have a single well-defined policy file for the entire 
system. Instead, its security properties are defined by four 
separate configurations: the configuration files, user authen-
tication, database access control permissions, and data cell 
visibilities. 

Of these configuration types, the configuration files are 
of comparatively minor importance. The configuration files 
primarily specify the network configuration of the Accumu-
lo cluster and the user authentication information required to 
provide management oversight of the system. They can be 
used to derive the network topology of the Accumulo cluster 
given direct access to an Accumulo master server, but they 
do not contain information on Accumulo user accounts, ac-

cess controls, or visibilities. The other configuration types 
must be obtained by interacting directly with the Accumulo 
database. 

The Accumulo configuration structure described above 
presents a challenge to the Lightbulb data ingest model. To 
interface with Accumulo, a new access module was devel-
oped to extract configuration files and interact directly with 
the Accumulo database to extract the security properties. 
Because each cell in an Accumulo database has its own vis-
ibility, it is impractical to recover all of the relevant security 
data. Lightbulb captures only the information required to 
construct a Prolog model of the basic system and access 
control configuration and does not attempt to recover the 
visibility of individual cells. As a result, some security que-
ries are executed using the Prolog system model while que-
ries requiring access to data cell visibility are executed using 
a Python query engine and run against the live Accumulo 
cluster. 

V. USE CASES 
In this section, we present a set of typical use cases in 

which a network administrator might desire to verify securi-
ty policies.  These use cases were used to derive the set of 
supported queries that are listed in the next section. 

 
A. Typical Enterprise Network 

The first use case is a typical enterprise enclave with two 
independent connections to the Internet, a DMZ zone, and 
an internal backbone that spans multiple subnets. A set of 
standard security policies applicable to many typical corpo-
rate and university networks is relevant here, such as the 
provision of particular public services in the DMZ to the 
outside world, but limited or no exposure of services and 
hosts inside the inner firewalls, except in particular cases to 
the DMZ (such as an internal database accessed by a DMZ 
web service).  Verification of firewall, routing, and service 
access rules would be relevant in this case. 

 
B. Multiple Enclave Enterprise 
 A variant of the first use case is one in which an enter-
prise consists of multiple independent enclaves separated 
across the Internet.  In addition to the questions in the previ-
ous section, relevant policy questions include enclave-to-
enclave communication configurations, such as verification 
that VPN traffic between enclaves is encrypted and is being 
correctly routed through the designated endpoints. 
 
C. Combined Network and SELinux 
 The next use case is shown in Fig. 4. The policy question 
illustrated in the figure is whether it is possible for data to 
flow from Host A to Host Z.  The key concept here is the 
need to combine security policies; in this case, the access 
control policies on firewalls 1 and 2 must be combined with 
the security policies on the host systems, which are assumed 
to be SELinux. The blow-up of Host C illustrates the issue 
that data may transition in type as it flows across an SELi-
nux host. 
 We note that enforcement of SELinux types upon data 
transmitted across a network is generally not enabled.  To  
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Figure 4.  Basic combination of host (SELinux) and network policies.  
 
do so would require all network hosts to be SELinux ena-
bled or for mechanisms such as IPsec tunneling (with bind-
ings established between Security Associations and types) 
between all relevant hosts to be enabled.  While the latter is 
a more interesting case in terms of security policy, it is 
much less common in practice.  Thus, we do not address 
this latter case in this version of the toolkit.  Also, we as-
sume that the Tresys tools are available to answer security 
policy questions that are completely self-contained on a sin-
gle host. 

Relevant queries then include basic routing questions as 
well as whether information flow can occur from one do-
main on an initial host to another domain on a destination 
host.  For purposes of this work, we assume that identically 
labeled types on different hosts are equivalent; this is not 
enforced on general networks, but is often assumed to be so 
in practice.  Type transition rules, as well as roles, are also 
relevant to policy queries, but require more advanced han-
dling; Lightbulb currently does not support analyses using 
such transitions, but could do so with some additional de-
velopment support. 

 
D. Accumulo 

In addition to the network connectivity and routing re-
lated queries described previously, a network administrator 
must be able to assess the security properties of the Accu-
mulo database itself in addition to those of the hosts it runs 
on. Network related queries are still relevant for an Accu-
mulo cluster, but new queries are also required to validate 
its user account, table access control, and cell visibility 

properties.  
An administrator may need to determine whether Accu-

mulo users have certain permissions (read, write, etc.) on 
tables in the database or hold other system-wide administra-
tive rights, a type of query equally applicable to other data-
bases. In addition to this general database permissions que-
ry, the data cell visibilities particular to Accumulo demand 
two unique queries.  

The first addresses the need to determine if an Accumulo 
user account has the proper authorizations to view a cell 
with a particular visibility. The result allows an administra-
tor to confirm that a user account’s access to system data is 
not overly restricted by unintentional consequences of the 
applied security configuration. 

The second type of query allows an administrator to de-
termine if restricted cell data is leaking between users with 
exclusive authorizations due to cell-level misconfigurations. 
Accumulo’s data cell visibilities allow the storage of data at 
different security levels within the same table; if cells are 
inserted with misconfigured combinations of security labels 
(e.g., the visibility is restricted to users holding SECRET or 
PUBLIC authorizations), restricted data can become visible 
to unintended users. This invalid visibility query allows an 
administrator to quickly identify every data cell violation in 
the system given a policy that describes the permitted rela-
tionships of security labels. 

VI. CURRENTLY SUPPORTED QUERIES AND 
EXTENSIBILITY 

The set of preformatted policy queries supported within 
Lightbulb is shown in Table 1.  These policies were chosen 
as exemplars of each class of query; future work will extend 
these to related domains such as confidentiality, authoriza-
tions, etc. In addition to these, the Lightbulb interface al-
lows an expert user to formulate an arbitrary query in Prolog 
that is passed directly to the Formal Verification Tool; no 
checks or constraints are applied to this query, so only ex-
pert users should attempt to use this option. 

A user can create additional preformatted policy queries 
by formulating a native Prolog query and following the ex-
isting templates presented in the user interface to provide 
arguments.  This process requires Javascript programming 
knowledge and understanding of the Prolog modules, which 
will require in-depth knowledge in those areas. 

Lightbulb currently supports SELinux hosts, basic Cisco 
firewall/routers, hosts running IPtables, and Accumulo clus-
ters.  Lightbulb also provides a generic temple (in Python) 
that a user can adapt to read the configuration files from 
other similar device types.  However, a device using a com-

TABLE 1: Currently Supported Preformatted Queries 

Query Type Query Parameters 
Reachability Does a path exist between these hosts or networks? From (host/network), To (host/network) 
Connection Is it possible to start a connection from one host or network 

to another? 
Protocol, From (host/network), From (port number),  
To (host/network), To (port number), Via (hosts/networks) 

SELinux Is it possible for data of a one type on a SELinux host to 
transition to data of another type on another SELinux host? 

Originating host, Originating type, Destination Host,  
Destination Type 

Accumulo Permissions Do users have a specified permission on particular tables? Host, Users, Tables, Permission (read/write) 

Accumulo Visibility Are invalid visibilities present in the database? Host, Tables, System Labels, Allowed Label Coexistence 

VPN Is it possible to start a connection from one host to another, 
going through VPNs? 

Protocol, From (host/network), From (port number),  
Originating VPN, Receiving VPN, To (host/network/port) 

Database (MySQL) Is a user connecting from a host authorized with a particular 
permission on a particular table? 

User, Host, Permission, Table 
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pletely new paradigm of storing and reading configuration 
data may require a new access method not currently sup-
ported by the existing work. 

VII. RELATED WORK 
Early concepts related to the current Lightbulb toolkit 

where developed at BBN under the Cyber Command Sys-
tem (CCS) project in the DARPA Information Assurance 
program [5].  

The applicability of logic programming for security pol-
icy modeling has been noted and exploited in numerous pa-
pers [4][6][7].  The early research of this type used the orig-
inal Prolog language [8] but the later work, including this 
paper, employ more general logic programming techniques 
such as tabling and data constraints.  Bounded model check-
ing is another approach to the policy analysis problem, us-
ing tools such as Alloy [9] and Margrave [10].  The model 
checking approaches can excel at analyzing changes in se-
curity policies. 

Previous work has addressed information flow polices in 
networks and in SELinux [1][2]. The current paper builds 
off that work by creating a single model that includes the 
policy requirements from all the components in an enclave. 

Accumulo is a relatively recent system and as such, most 
existing research for it has been in developing architectures 
and analyzing performance; a few analyses of security have 
been performed [11], but not in conjunction with other sys-
tems. 

Finally, there is much current research on Software De-
fined Networks (SDNs), where specific custom-built net-
work hardware such as routers or firewalls are being re-
placed with generalized all-purpose network appliance with 
the power to dramatically redesign a network just by accept-
ed new configuration data [12][13]. Creating assurance in 
the configuration settings of an SDN is a vitally important 
challenge that could be supported by future extensions of 
the Lightbulb toolkit. 

VIII. SUMMARY AND CONCLUSIONS 
This paper has presented the Lightbulb, an integrated set 

of toolkit components for networked system security analy-
sis.  Lightbulb allows a network administrator to collect and 
analyze the various access control and security policies that 
exist inside a network or collection of networks.  Lightbulb 
includes a user interface tool for network system definition 
and also automated support for extracting policy data from 
various configuration files.  A query tool is provided with 
templates for common policy statements.  A user can submit 
a security assertion as a query and receive a verification that 
the assertion holds for the policy, or a counterexample to the 
assertion that the user can examine to refine the policy.  

We plan to continue to develop the Lightbulb toolkit.  
Our highest priorities are to expand the set of supported 
queries and to construct models for new devices from the 
realm of Software Defined Networking. 
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