
Lightbulb: A Toolkit for Analysis of Security Policy Interactions

Derrick Kong, David Mandelberg, Andrei Lapets, Ronald Watro, Daniel Smith, and Matthew Runkle
Raytheon BBN Technologies

Cambridge MA USA
email:{dkong, dmandelberg, alapets, rwatro, dsmith, mrunkle}@bbn.com

Abstract— Lightbulb is a toolkit for analysis of the combined
impact of a set of diverse security policies. It is designed to se-
curely access and collect the security policy configuration data
from the hosts, routers, and firewalls that comprise a network
enclave. Lightbulb loads the collected security configuration
data into a modeling tool and allows system administrators to
run queries against the model with the intent to verify desired
security properties of the composite system. If a policy query
fails, the user is given a specific instance of the policy violation
that can be investigated and resolved. The overall toolkit pro-
vides an extensible framework for rigorous verification of se-
curity policies of network devices.

Keywords-cyber security; security policy; network security

policy; access control; logic programming; formal verification.

I. INTRODUCTION
Security configuration management has been a problem-

atic issue ever since security devices have existed. In mod-
ern, heterogeneous networks, misconfigurations are not just
occasional nuisances, but common problems that can lead to
serious security breaches. Current work in the field has
shown that rigorous verification of security policies is pos-
sible, but published research [1][2] has generally been lim-
ited to particular aspects of either policy or security configu-
rations. The next logical step is to apply these principles
across a broader spectrum of policies and security applianc-
es and to compose multiple policies into a coherent system
specification.

The primary challenge for building a coherent system-
wide tool for managing security polices is that there can be
dozens to hundreds of heterogeneous configuration files re-
siding on devices in a typical enterprise network that will
have an impact on some aspect of security. Without an easy
way to collect, organize and provide end-to-end analysis,
administrators must look at configurations in isolation or in
small groups to verify that desired policies are being en-
forced.

This paper presents Lightbulb, an integrated toolkit of
components that support rigorous automated security verifi-
cation of a variety of network devices and clients. These
components have been designed to fit within a general
framework; individual components handle tasks, such as in-
gesting security policy specifications or query inputs (ex-
pressed in a Domain-Specific Language (DSL)), controlling
and extracting the security-relevant configuration files from
components located in a managed network and converting
them to an intermediate form and, finally, performing rigor-
ous verification of security policies against the configuration
data. Models are built using Prolog within the Ciao logic

Figure 1. Toolkit architecture showing detailed data flows and
interfaces with external inputs and devices to be managed.

programming environment and employ features such as
constraint programming.

The paper is organized as follows. Section 2 describes
the general approach of the Lightbulb system. Section 3
provides an overview of the system user interface. Section 4
documents the currently supported network devices. Section
5 covers sample use cases and Section 6 covers currently
supported queries. Related research efforts are described in
Section 7 and the paper concludes with a summary and rec-
ommendations in Section 8.

II. APPROACH
A toolkit architecture diagram for the toolkit is shown in

Fig. 1. Starting at the top left, a user provides inputs such as
a network map and a security policy verification question
via the User Interface. The Input Framework reads the map
and uses it to identify the relevant devices in the network.
It passes the results down to the Capability Manager Tools,
each of which interfaces with one or more specific devices.
An individual Capability Manager possesses the specific da-
ta needed to locate and interpret the security relevant con-
figuration files from particular classes of devices; for exam-
ple, the Router Manager is programmed with information on
routers, including make, model and other relevant differ-
ences. (Support for basic Cisco devices covers a large por-
tion of the install base; see Section VI for notes about exten-
sibility.) A network device with more than one capability
(for example, a firewall which is also a router) will report to
more than one Capability Manager.

151Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

This architecture is easily extensible in that new Capa-
bility Managers can be added to the overall system and new
device configurations can be programmed into existing
Managers. Also, Capability Managers can easily be com-
bined or split up as the Managers can be run on separate
processors or the same processor. Our current architecture
provides examples for the most common devices that should
be present in a typical enterprise network. Extension and
modification of these examples is a relatively straightfor-
ward process, allowing a local administrator to customize
models for their devices, although a radically different ar-
chitecture or device would require some significant work in
order to translate its configuration and capability into our in-
ternal representation.

Once the configuration data have been obtained, the Ca-
pability Managers pass them up to the Central Database
Tool, which stores them. The Database Tool also is respon-
sible for processing the configuration files, including filter-
ing and conversion to our Prolog representation for input to
the Verification Tool.

Finally, the Formal Verification Tool takes in all the
processed input that has been loaded into the Central Data-
base, combines it with the input data from the User Inter-
face, and performs the policy query check. The results of the
check (either success or a listing of counterexamples) are
sent back to the User Interface for display.

The formal verification module uses Ciao, a particular
implementation of Prolog (with some extensions). Ciao is a
modern tool for logic programming that supports strong
modularization, which was often lacking in earlier logic
programming systems. Ciao also includes support for con-
straint logic programming, which is very helpful when deal-
ing with network packet data, and also tabling, memoiza-
tion, and higher-order functions.

Logic programming is a very natural approach for mod-
eling security policies, as both make use of the “negation as
failure” concept [3]. In SELinux policy, for example, the ac-
tive access vector rules are just the ALLOW rules, which
permit certain actions. The lack of an ALLOW rule for an
action means that that action is blocked. In our Prolog mod-
els for SELinux policies, the ALLOW rules become first or-
der facts, and the Prolog engine can implicitly interpret the
absence of a fact in a model as the assertion of the fact’s ne-
gation, which matches SELinux semantics. There are indeed
NEVERALLOW rules in SELinux, but they are passive
specification rules, to be checked against the ALLOW rules
after policy compilation. This approach to modeling SELi-
nux policy using Prolog was first popularized by Scott Stol-
ler and his student at SUNY Stony Brook [4].

If desired, a user can swap out the default formal verifi-
cation module in the Lightbulb framework and replace it
with a completely different engine or processor. This might
be done if a particular security policy query requires a dif-
ferent logic or handling process. For example, the Accumu-
lo query on prohibited label combinations employs a Python
engine to handle the data processing as opposed to the Ciao
engine.

III. USER INTERFACE OVERVIEW
The Lightbulb User Interface (UI) is designed to provide a
single, convenient input and control interface for users,
while still allowing developers an easy way of modifying
existing functionality or adding additional modules to the
toolkit. The UI provides the input and output mechanisms
for the network map and policy queries; it works in close
concert with a backend that handles operations for retrieving
and managing configurations from networked devices.

The UI is based on open-web technologies. It makes use
of three main frameworks:

• Flask, a python-based web server that handles pro-
cessing

• Bootstrap, a frontend framework that provides
templating and styling, and

• SigmaJS, a JavaScript graphing library used to
draw network maps.

The UI provides a human interface to the Input Frame-
work and negotiates communication with the Formal Verifi-
cation Tool.

When Lightbulb is started, the user is presented with the
configuration page, starting with the Network Map (Fig. 2).
If this is the first run, the user is given the option of starting
with a blank pane or to input an existing UML map; other-
wise the last edited version of the Network Map is present-
ed. At this stage, the user is free to alter the map to reflect
the current network architecture. Lightbulb currently only
read in maps files that use a UML deployment diagram rep-
resentation.

The second configuration step allows the user to specify
device credentials, including SSH-enabled, telnet-enabled,
and Accumulo (a highly scalable database) node devices.
Devices with common passwords can be supported as well
as devices needing additional authentication (such as enable
mode on Cisco devices).

In the final step of the configuration wizard, the Capabil-
ity Managers are instructed to fetch device security policies.
While the system contacts each device, a visual overlay is
provided to indicate the status of the fetch process. Each de-
vice security configuration is retrieved and converted to an
internal representation (expressed in Prolog) in parallel.
The user interface periodically polls the server for updates,
changing the status as fetches complete (or time out).

A. Security Policy Query Interface

The query page is an interface to the Prolog modeling
engine. In order to make each type of query easy to formu-
late, the page provides a preset structure and list of options

Figure 2. Network Configuration pane detail showing an example network.

152Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Figure 3. Query interface example. Shown is the selector for connection
initiation queries. Values in the pulldown menus are automatically taken

from the network map that is input by the user.

for each type of query. Submitting a query is as simple as
selecting the appropriate options for each field and pressing
submit. A small delay will occur as the system converts the
information to the appropriate Prolog commands and sub-
mits them for processing. A simple “yes” or “no” response
will return in typical Prolog fashion, along with counterex-
ample data (in limited cases) if the answer is “no.” An ex-
ample of the query interface for reachability and connection
queries is shown in Fig. 3 and a complete list of supported
queries is given in Section 6.

IV. CURRENTLY SUPPORTED DEVICES
We currently support policy analysis for multiple types

of devices: Iptables, Cisco routers/firewalls, SELinux,
UNIX discretionary access control, and Accumulo hosts.
Each of these analyses is discussed below.

A. Iptables

Iptables is an application program that allows a system
administrator to configure the tables provided by the Linux
kernel firewall and thus the firewall policy. We have com-
pleted a Prolog model that implements the iptables policy.
Because iptables is so general, we are able to use our model
as a basis for covering other packet polices, such as the Cis-
co IOS access list rules (discussed in the next section).

In constructing an iptables policy, the largest granularity
item is called a table. Tables consist of one or more chains,
where chains can be built-in or user-defined. Chains may
contain multiple rules, where rules determine an action to
take on packets.

There are four built-in tables: filter, NAT, raw, and
mangle. Each built-in table contains a few built-in chains.
Each rule in a chain contains a goal and a target. If the rule
goal is matched, then processing continues onto the rules
specified in the target. If the goal is not matched, then pro-
cesses moves to the next rule. The default value in iptables
is to accept if no rule applies, but this default can be
changed by the policy. Lightbulb currently only considers
the filter table for its policy analyses.

A rule in iptables may take a number of actions on a
packet, including:

• Accept the packet
• Drop the packet
• Queue the packet for user interaction
• Return the packet to the calling chain.

An example of a very basic set of rules that Lightlbulb can
parse and verify is shown below:

iptables -A INPUT -j ACCEPT -p all -s 192.168.1.0/24 -i eth1
iptables -A OUTPUT -j ACCEPT -p all -d 192.168.1.0/24 -o eth1

These rules allow traffic to/from a specific subnet to pass
through the firewall.

Our Prolog implementation of iptables policy uses nest-
ed lists to represent the chains and rules inside each table.
We use recursive list traversal in order to ensure that the
chains and rules are examined in order and that the first rule
matching a particular connection (i.e., a hypothetical packet
with particular source and destination addresses and ports)
is selected for application.

B. Cisco Routers/Firewalls

The Cisco IOS support for router and firewall access
control lists has evolved over the years and currently in-
cludes a wide array of options. In IOS, access control lists
are numbered or named, and a numbered list can be applied
to either the in-bound or out-bound traffic on an interface.
Each access control list may contain explicit permit or deny
rules, and the order of the rules is important, as the first
match of a packet to a rule determines the status of the
packet. There is also an implicit deny at the end of each ac-
cess control list, so that if a packet matches no rule, it is re-
jected. Due to the presence of both explicit and implicit de-
nial, we explicitly process Cisco access control lists to find
the first match to a packet, rather than storing them as
Prolog facts and allowing failure to define denial.

The general syntax for a CISCO extended rule is:

[permit/deny] protocol source destination parameters

The protocol can be one of IP, TCP, ICMP, and UDP. The
exact syntax of a rule varies for each protocol. In general,
the source and destination can be ranges of IP addresses,
expressed using an IP address and a host mask; in this man-
ner, “host 192.168.30.5” means the same as “192.168.30.5
0.0.0.0”. Ports can be specified either numerically or by us-
ing names for the well-known ports.

For the current system, we have chosen to model the
Cisco extended rule set, an example of which is verifiable
by Lightbulb is shown here:

access-list 101 permit tcp any host 192.168.35.1 range 20 21
access-list 101 permit tcp host 192.168.30.5 host 192.168.35.1
 eq telnet
access-list 102 permit tcp host 192.168.35.1 any
access-list 102 permit tcp host 192.168.35.1 eq 20 any gt 1023
access-list 102 deny udp any

interface Ethernet0
access-group 101 out
access-group 102 in

153Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

C. SELinux
As described in Section 2 above, we start with the

Prolog approach found in previous work [4] to build a mod-
el of the security policy for SELinux hosts. We include al-
low rules, type transitions, conditional rules and SELinux
policy booleans in the model. In addition, we link the SEL-
inux policy to the network activity by explicit tracking of
both the assignment of port numbers to types and then ena-
bled allow access rules for sockets associated with these
port numbers. Under SELinux, the use of a network port
number in TCP or UDP traffic communications is limited
by policy and our tool analyzes these limitations when it
performs checks on connections.

D. Unix Discretional Access Control

We include a Prolog model for the well-known discre-
tionary access control in conventional Unix, based on set-
tings for the user that owns the object, the group that the ob-
ject is in, and all others. This was implemented without use
of the Prolog cut operation, which is commonly used to con-
trol backtracking, but in this case would limit the usability
of the definition. Instead of cuts, the group and other rules
contain explicit hypotheses that express the proper order
handling of user/group/world permissions.

Note that the user interface does not currently support
preformed queries for discretionary access control, but it is
accessible via direct Prolog input.

E. Accumulo

Apache Accumulo is a scalable data store based on
Google’s BigTable model. One of its enhancements beyond
BigTable is the implementation of cell-level access controls
which allow data cells at different security levels to be
stored in the same table.

 Accumulo clusters may be composed of a variety of
complex network configurations and storage topologies;
Lightbulb enables seamless reasoning over Accumulo clus-
ter security by modeling policies at both the network and
database configuration levels. While Accumulo may not be
as common as other data storage technologies like MySQL,
it uses access control permissions similar to those found in
other databases and combines them with new types of secu-
rity controls. As a result, the models and queries developed
for Lightbulb’s Accumulo support can be ported to support
other database systems.

Like many common databases, an Accumulo cluster
does not have a single well-defined policy file for the entire
system. Instead, its security properties are defined by four
separate configurations: the configuration files, user authen-
tication, database access control permissions, and data cell
visibilities.

Of these configuration types, the configuration files are
of comparatively minor importance. The configuration files
primarily specify the network configuration of the Accumu-
lo cluster and the user authentication information required to
provide management oversight of the system. They can be
used to derive the network topology of the Accumulo cluster
given direct access to an Accumulo master server, but they
do not contain information on Accumulo user accounts, ac-

cess controls, or visibilities. The other configuration types
must be obtained by interacting directly with the Accumulo
database.

The Accumulo configuration structure described above
presents a challenge to the Lightbulb data ingest model. To
interface with Accumulo, a new access module was devel-
oped to extract configuration files and interact directly with
the Accumulo database to extract the security properties.
Because each cell in an Accumulo database has its own vis-
ibility, it is impractical to recover all of the relevant security
data. Lightbulb captures only the information required to
construct a Prolog model of the basic system and access
control configuration and does not attempt to recover the
visibility of individual cells. As a result, some security que-
ries are executed using the Prolog system model while que-
ries requiring access to data cell visibility are executed using
a Python query engine and run against the live Accumulo
cluster.

V. USE CASES
In this section, we present a set of typical use cases in

which a network administrator might desire to verify securi-
ty policies. These use cases were used to derive the set of
supported queries that are listed in the next section.

A. Typical Enterprise Network

The first use case is a typical enterprise enclave with two
independent connections to the Internet, a DMZ zone, and
an internal backbone that spans multiple subnets. A set of
standard security policies applicable to many typical corpo-
rate and university networks is relevant here, such as the
provision of particular public services in the DMZ to the
outside world, but limited or no exposure of services and
hosts inside the inner firewalls, except in particular cases to
the DMZ (such as an internal database accessed by a DMZ
web service). Verification of firewall, routing, and service
access rules would be relevant in this case.

B. Multiple Enclave Enterprise
 A variant of the first use case is one in which an enter-
prise consists of multiple independent enclaves separated
across the Internet. In addition to the questions in the previ-
ous section, relevant policy questions include enclave-to-
enclave communication configurations, such as verification
that VPN traffic between enclaves is encrypted and is being
correctly routed through the designated endpoints.

C. Combined Network and SELinux
 The next use case is shown in Fig. 4. The policy question
illustrated in the figure is whether it is possible for data to
flow from Host A to Host Z. The key concept here is the
need to combine security policies; in this case, the access
control policies on firewalls 1 and 2 must be combined with
the security policies on the host systems, which are assumed
to be SELinux. The blow-up of Host C illustrates the issue
that data may transition in type as it flows across an SELi-
nux host.
 We note that enforcement of SELinux types upon data
transmitted across a network is generally not enabled. To

154Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

Figure 4. Basic combination of host (SELinux) and network policies.

do so would require all network hosts to be SELinux ena-
bled or for mechanisms such as IPsec tunneling (with bind-
ings established between Security Associations and types)
between all relevant hosts to be enabled. While the latter is
a more interesting case in terms of security policy, it is
much less common in practice. Thus, we do not address
this latter case in this version of the toolkit. Also, we as-
sume that the Tresys tools are available to answer security
policy questions that are completely self-contained on a sin-
gle host.

Relevant queries then include basic routing questions as
well as whether information flow can occur from one do-
main on an initial host to another domain on a destination
host. For purposes of this work, we assume that identically
labeled types on different hosts are equivalent; this is not
enforced on general networks, but is often assumed to be so
in practice. Type transition rules, as well as roles, are also
relevant to policy queries, but require more advanced han-
dling; Lightbulb currently does not support analyses using
such transitions, but could do so with some additional de-
velopment support.

D. Accumulo

In addition to the network connectivity and routing re-
lated queries described previously, a network administrator
must be able to assess the security properties of the Accu-
mulo database itself in addition to those of the hosts it runs
on. Network related queries are still relevant for an Accu-
mulo cluster, but new queries are also required to validate
its user account, table access control, and cell visibility

properties.
An administrator may need to determine whether Accu-

mulo users have certain permissions (read, write, etc.) on
tables in the database or hold other system-wide administra-
tive rights, a type of query equally applicable to other data-
bases. In addition to this general database permissions que-
ry, the data cell visibilities particular to Accumulo demand
two unique queries.

The first addresses the need to determine if an Accumulo
user account has the proper authorizations to view a cell
with a particular visibility. The result allows an administra-
tor to confirm that a user account’s access to system data is
not overly restricted by unintentional consequences of the
applied security configuration.

The second type of query allows an administrator to de-
termine if restricted cell data is leaking between users with
exclusive authorizations due to cell-level misconfigurations.
Accumulo’s data cell visibilities allow the storage of data at
different security levels within the same table; if cells are
inserted with misconfigured combinations of security labels
(e.g., the visibility is restricted to users holding SECRET or
PUBLIC authorizations), restricted data can become visible
to unintended users. This invalid visibility query allows an
administrator to quickly identify every data cell violation in
the system given a policy that describes the permitted rela-
tionships of security labels.

VI. CURRENTLY SUPPORTED QUERIES AND
EXTENSIBILITY

The set of preformatted policy queries supported within
Lightbulb is shown in Table 1. These policies were chosen
as exemplars of each class of query; future work will extend
these to related domains such as confidentiality, authoriza-
tions, etc. In addition to these, the Lightbulb interface al-
lows an expert user to formulate an arbitrary query in Prolog
that is passed directly to the Formal Verification Tool; no
checks or constraints are applied to this query, so only ex-
pert users should attempt to use this option.

A user can create additional preformatted policy queries
by formulating a native Prolog query and following the ex-
isting templates presented in the user interface to provide
arguments. This process requires Javascript programming
knowledge and understanding of the Prolog modules, which
will require in-depth knowledge in those areas.

Lightbulb currently supports SELinux hosts, basic Cisco
firewall/routers, hosts running IPtables, and Accumulo clus-
ters. Lightbulb also provides a generic temple (in Python)
that a user can adapt to read the configuration files from
other similar device types. However, a device using a com-

TABLE 1: Currently Supported Preformatted Queries

Query Type Query Parameters
Reachability Does a path exist between these hosts or networks? From (host/network), To (host/network)
Connection Is it possible to start a connection from one host or network

to another?
Protocol, From (host/network), From (port number),
To (host/network), To (port number), Via (hosts/networks)

SELinux Is it possible for data of a one type on a SELinux host to
transition to data of another type on another SELinux host?

Originating host, Originating type, Destination Host,
Destination Type

Accumulo Permissions Do users have a specified permission on particular tables? Host, Users, Tables, Permission (read/write)

Accumulo Visibility Are invalid visibilities present in the database? Host, Tables, System Labels, Allowed Label Coexistence

VPN Is it possible to start a connection from one host to another,
going through VPNs?

Protocol, From (host/network), From (port number),
Originating VPN, Receiving VPN, To (host/network/port)

Database (MySQL) Is a user connecting from a host authorized with a particular
permission on a particular table?

User, Host, Permission, Table

 155Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

pletely new paradigm of storing and reading configuration
data may require a new access method not currently sup-
ported by the existing work.

VII. RELATED WORK
Early concepts related to the current Lightbulb toolkit

where developed at BBN under the Cyber Command Sys-
tem (CCS) project in the DARPA Information Assurance
program [5].

The applicability of logic programming for security pol-
icy modeling has been noted and exploited in numerous pa-
pers [4][6][7]. The early research of this type used the orig-
inal Prolog language [8] but the later work, including this
paper, employ more general logic programming techniques
such as tabling and data constraints. Bounded model check-
ing is another approach to the policy analysis problem, us-
ing tools such as Alloy [9] and Margrave [10]. The model
checking approaches can excel at analyzing changes in se-
curity policies.

Previous work has addressed information flow polices in
networks and in SELinux [1][2]. The current paper builds
off that work by creating a single model that includes the
policy requirements from all the components in an enclave.

Accumulo is a relatively recent system and as such, most
existing research for it has been in developing architectures
and analyzing performance; a few analyses of security have
been performed [11], but not in conjunction with other sys-
tems.

Finally, there is much current research on Software De-
fined Networks (SDNs), where specific custom-built net-
work hardware such as routers or firewalls are being re-
placed with generalized all-purpose network appliance with
the power to dramatically redesign a network just by accept-
ed new configuration data [12][13]. Creating assurance in
the configuration settings of an SDN is a vitally important
challenge that could be supported by future extensions of
the Lightbulb toolkit.

VIII. SUMMARY AND CONCLUSIONS
This paper has presented the Lightbulb, an integrated set

of toolkit components for networked system security analy-
sis. Lightbulb allows a network administrator to collect and
analyze the various access control and security policies that
exist inside a network or collection of networks. Lightbulb
includes a user interface tool for network system definition
and also automated support for extracting policy data from
various configuration files. A query tool is provided with
templates for common policy statements. A user can submit
a security assertion as a query and receive a verification that
the assertion holds for the policy, or a counterexample to the
assertion that the user can examine to refine the policy.

We plan to continue to develop the Lightbulb toolkit.
Our highest priorities are to expand the set of supported
queries and to construct models for new devices from the
realm of Software Defined Networking.

REFERENCES
[1] J. D. Guttman, and A. L. Herzog, “Rigorous automated

network security management,” International Journal for
Information Security, vol. 3, no. 3, pp. 29-48, 2004.

[2] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W.
Skorupka, “Verifiyng information-flow goals in Security-
Enhanced Linux,” Journal of Computer Security, vol. 13, no.
1, pp. 115-134, 2005.

[3] K. L. Clark, “Negation as failure,” in Logic and Data Bases,
H. Gallaire and J. Minker, Eds., Springer-Verlag, 1978, pp.
293–322, doi:10.1007/978-1-4684-3384-5_11.

[4] B. Sarna-Starosta, and S. D. Stoller, “Policy analysis for
Security-Enhanced Linux,” In WITS’04: Workshop on Issues
in the Theory of Security, 2004. Available at
http://www.cs.sunysb.edu/~stoller/WITS2004.html [retrieved:
February 2015]

[5] D. F. Vukelich, D. Levin, and J. Lowry, “Architecture for
cyber command and control: experiences and future
directions,” DARPA information survivability conference and
exposition, vol. 1, DARPA Information Survivability
Conference and Exposition (DISCEX II'01), Volume I, 2001,
pp. 155-164.

[6] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel,
“A logical specification and analysis for SELinux MLS
policy,” Proceedings of the 12th ACM Symposium on Access
Control Models and Technologies, June 2007, pp. 91-100.

[7] L. A. Wahsheh, D. Conte de Leon, and J. Alves-Foss,
“Formal verification and visualization of security policies,”
Journal of Computers, vol. 3, no. 6, June 2008, pp. 22-31.

[8] W. F. Clocksin, and C. S. Mellish, Programming in
PROLOG, Springer-Verlag, 1981.

[9] D. Jackson, Software Abstractions, revised edition, Logic,
Language, and Analysis, MIT Press, 2011.

[10] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz, “Verification and change-impact analysis of access-
control policies,” Proceeding ICSE '05 Proceedings of the
27th International Conference on Software Engineering,
ACM New York, NY, 2005, pp. 196-205.

[11] M. Allen, “Past and Future Threats: Encryption and security
in Accumulo.” Presentation at Accumulo Summit, June 2014.

[12] G. Lauer, R. Irwin, C. Kappler, and I. Nishioka, “Distributed
resource control using shadowed subgraphs,” ACM
Conference on Networking Experiments and Technologies
(CoN-EXT), 2013, pp. 43-48, ISBN: 978-1-4503-2101-3.

[13] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S.
Krishnamurthi, “Tierless programming and reasoning for
software-defined networks,” NSDI'14 Proceedings of the 11th
USENIX Conference on Networked Systems Design and Im-
plementation, April 2014, pp. 519-531, ISBN: 978-1-931971-
09-6

156Copyright (c) IARIA, 2015. ISBN: 978-1-61208-398-8

ICN 2015 : The Fourteenth International Conference on Networks

