

Multi-criteria based Optimization of Placement for Software Defined Networking

Controllers and Forwarding Nodes

Eugen Borcoci, Tudor Ambarus, Marius Vochin

University POLITEHNICA of Bucharest - UPB

Bucharest, Romania

Emails: eugen.borcoci@elcom.pub.ro, tudorambarus@yahoo.com, mvochin@elcom.pub.ro

Abstract — Placement of Software Defined Networking

(SDN) controllers and forwarders in large networks contexts is

still a research open issue, given the different network contexts,

providers’ policies and possible optimization criteria. Multi-

criteria decision algorithms can provide valuable solutions.

This paper is an extension of a previous preliminary work,

considering here large network environments and the

additional problem of forwarding nodes assignment to SDN

controllers.

Keywords — Software Defined Networking; Multi-criteria

optimizations; Controller placement; Forwarding nodes

assignment; Reliability;

I. INTRODUCTION

Emergent Software Defined Networking (SDN)

architectures and related technologies are of high interest for

industry and operators, in wire-line and wireless networks

and cloud computing environments, [2][3]. This paper

considers the case of a Wide Area Network (WAN) owned

by an operator and/or a Network/Service Provider (NP/SP).

For large SDN-controlled networks, multi-controller

solutions are proposed to solve the scalability problems,

related to SDN control centralization principle [5][6][7].

Flat or hierarchical organizations for multi-controller SDN

are suggested in [6][7] (in the subsequent text, by

“controller” it is understood a geographically distinct

controller location). The data forwarding network nodes

(called also “forwarders” or simply, “nodes”) should be

allocated to some controllers in a proactive or reactive way.

Some design problems are: What is the optimal number and

placement of the controllers? How to allocate the forwarder

nodes to controllers?

The controller placement problem is a NP-hard one [9].

So, different solutions have been proposed, with specific

optimization criteria, targeting performance in failure-free

or more realistic scenarios. However, some criteria could

lead to different solutions; so, a multi-criteria global

optimization could be attractive. Some specific criteria

could be defined as to: (a) maximize the controller-

forwarder or inter-controller communication throughput,

and/or reduce the latency of the path connecting them; (b)

limit the controller overload (load imbalance) by avoiding

too many forwarders per controller; (c) find an optimum

controllers’ placement and forwarder-to-controller

allocation, offering a fast recovery after failures (controllers,

links, nodes).
Also, other specific optimization goals could be added to

the above list, depending on specific context (wire-line,
wireless/cellular, cloud computing and data center networks)
and on some specific business targets of the Service Provider.

The paper [1] provides a contribution on multi-criteria

optimization algorithms for the controller placement

problem. The target was not to develop specific algorithms

to find an optimum solution for a single given criterion

(several other studies already did that) but to achieve an

overall optimization on controller placement, by applying

multi-criteria decision algorithms (MCDA) [10]. The input

of MCDA is the set of candidates (an instance of controller

placement was called a candidate solution). Simple

examples have been analyzed, proving the usefulness of the

approach.
This paper is an extension of [1] by constructing a

software simulation model; it considers larger realistic
topologies, variation of the MCDA criteria and optimized
allocation of the forwarders to controllers. Simulation
experiments and novel results are presented.

The paper is organized as follows. Section II is an
overview of related work. Section III revisits several metrics
and algorithms used in optimizations and presents some of
their limitations. Section IV develops the framework for
MCDA-RL (reference level variant) to select the best
controller placement solution. Section V presents a set of
simulation experiments performed and the results obtained.
Section VI presents conclusions and future work.

II. SDN CONTROLLER PLACEMENT -RELATED WORK

This short section is included for self containment of this
paper. A more comprehensive overview on some previously
published work on controller placement in SDN-managed
WANs is given in [1]. The basic problem to be solved is on
the number of controllers and their placement in a given
network. The goal is to provide enough performance (e.g.,
low delay for controller-forwarder communications) and also
create robustness to controllers and/or network failures.

The works [8][9] have shown that the above problem is
theoretically not new. If latency is taken as a metric, the

102Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

mailto:eugen.borcoci@elcom.pub.ro

problem is similar to a known one, namely, the facility or
warehouse location problem, solved, e.g., by using Mixed
Integer Linear Program (MILP) tools.

Heller et al. [9] have shown that it is possible to find
optimal solutions for realistic network instances, in failure-
free scenarios, by analyzing the entire solution space, with
off-line computations (the metric is latency). Going further,
the works [8][11][14][15][16] additionally considered the
resilience as being important with respect to events like:
controller failures, network links/paths/nodes failures,
controller overload (load imbalance). The Inter-Controller
Latency is also important and generally it cannot be
minimized while simultaneously minimizing controller-
forwarders latency; a tradeoff solution could be the answer.

The works [8][15] developed several placement
algorithms for some real topologies, trying to improve the
reliability of SDN control, but still keep acceptable latencies.
The controller instances are chosen as to minimize
connectivity losses; connections are defined according to the
shortest path between controllers and forwarding devices.
Muller et.al. [16] try to eliminate some restrictions of
previous studies, like: single paths, processing (in
controllers) of the forwarders requests only on-demand and
some constraints imposed on failover mechanisms.

As stated previously, this paper does not aim to develop

a new algorithm for optimized controller placement, based

on a given particular metric, but extends a previous overall

optimization work, while using multiple criteria. The

general part of the problem, exposed in [1] is summarized

here for sake of self-containment.

III. SUMMARY OF CONTROLLER PLACEMENT METRICS

ALGORITHMS

This section is a short presentation of a few typical
metrics and optimization algorithms for controller placement.
A more extended presentation can be found in [1].
Considering a particular metric (criterion) an optimization
algorithm can be run, as in [8][9][11][16]. This paper goal is
not to develop a new particular algorithm - but to search for a
global optimization.

A. Performance-only related metrics (failure-free

scenarios)

The network is represented by an undirected graph G(V,
E), where V,E are the sets of nodes and edges, respectively
and n=|V| is the number of nodes. The edges weights
represent an additive metric (e.g., propagation latency [9]).
The controllers will be co-located to some network nodes.

A simple metric is d(v, c): shortest path distance from a

forwarder node vV to a controller cV. In [9], two kinds of
latencies are defined, for a particular placement Ci of

controllers, where Ci V and |Ci| ≤|V|. The number of
controllers is limited to |Ci|= k for any particular placement
Ci. The set of all possible placements is denoted by C = {C1,
C2 …}. One can define, for a given placement Ci:

Worst_case_latency:

 cvdL

iCcVv
wc ,minmax

Average_latency:

Vv
Cic

iavg
cvd

n
CL),(min

1
)(

The algorithm should find a placement Copt, where either
average latency or the worst case latency is minimized.

The limitations of this optimization process consist in:
static values assumed for latencies, despite that delay is a
dynamic value in IP networks; only free-failure case are
considered; no upper limit on the number of forwarders
assigned to a controller; not taking into account the inter-
controller connectivity. Another possible metric to be
considered in failure-free case is Maximum cover, [9][17].
The algorithm should find a controller placement, as to
maximize the number of nodes within a latency bound, i.e., to
find a placement of k controllers such that they cover a
maximum number of forwarder nodes, while each forwarder
must have a limited latency bound to its controller.

B. Reliability aware metrics

More realistic scenarios consider controller and/or
network failures events. The optimization process aims now
to find trade-offs to preserve a convenient behavior of the
overall system in failure cases.

(1) Controller failures (cf): the work [11] observes that
the node-to-controller mapping can change in case of
controller failures. So, the latency-based metric should
consider both the distance to the (primary) controller and the
distance to other (backup) controllers. For a placement of a
total number of k controllers, the failures are modeled by
constructing a set C of scenarios, including all possible
combinations of faulty controller number, from 0 of up to k -
1. The resulting maximum latency will be:

Worst_case_latency_cf:

 cvdL

ii CcCCVv
cfwc ,minmaxmax

The optimization algorithm should find a placement
which minimizes the expression (3).

Note that in failure-free case, the optimization algorithm
tends to rather equally spread the controllers in the network,
among the forwarders. To minimize (3) and considering
worst case failure, the controllers tend to be placed in the
center of the network. Thus, in a worst case a single
controller can take over all control. However, the scenario
supposed by the expression (3) is very pessimistic; a large
network could be split in some regions/areas, each served by
a primary controller; then some lists of possible backup
controllers can be constructed for each area, as in [16].

The conclusion is that an optimization trade-off should be
found, for the failure-free or failure cases. This, once again,
shows that a multi-criteria approach is attractive.

 (2) Nodes/links failures (Nlf):

103Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

Links or nodes failures can cause some forwarders to lose
access to all controller. An objective could be to find a
controller placement that minimizes the number of nodes
possible to enter into controller-less situations, in various
scenarios of link/node failures. A realistic assumption is to
limit the number of simultaneous failures at only a few (e.g.,
two [11]). If more than two arbitrary link/node failures
happen simultaneously, then the topology can be totally
disconnected and optimization of controller placement would
be no longer useful.

For any given placement Ci of the controllers, an additive
integer value metric Nlf(Ci) could be defined, as below:

consider a failure scenario denoted by fk, with fkF, where F
is the set of all network failure scenarios (suppose that in an
instance scenario, at most two link/nodes are down);

initialize Nlfk(Ci) =0; then for each node vV, add one to

Nlfk(Ci) if the node v has no path to any controller cCi and
add zero otherwise; compute the maximum value (i.e.,
consider the worst failure scenario). One obtains the formula
(4) where k covers all scenarios of F.

 iki CNlfCNlf max

The optimization algorithm should find a placement
which minimizes (4). It is expected that increasing the
number of controllers, will decrease the Nlf value. However,
the optimum solution based on the metric (4) could be very
different from those provided by the algorithms using the
metrics (1) or (2).

 (3) Load balancing for controllers
A good balance of the node-to-controller distribution is

desired. A metric Ib(Ci) will measure the degree of
imbalance of a given placement Ci as the difference between
the maximum and minimum number of forwarders nodes
assigned to a controller. If the failure scenarios set S is
considered, then the worst case should evaluate the
maximum imbalance as:

 }minmax{max)(
s
c

Cc

s
c

CcSs
i nnCIb

ii

where
s

c
n is the number of forwarder nodes assigned to a

controller c. Equation (5) takes into account that in case of
failures, the forwarders can be reassigned to other controllers
and therefore, the load of those controllers will increase. An
optimization algorithm should find that placement which
minimizes the expression (5).

 (4) Multiple-path connectivity metrics
One can exploit the possible multiple paths between a

forwarder node and a controller [16], hoping to reduce the
frequency of controller-less events, in cases of failures of
nodes/links. The goal in this case is to maximize connectivity
between forwarding nodes and controller instances. The
metric is defined as:

VvCc

i cvndp
V

CM

i

),(
||

1
)(

In (6), ndp(v,c) is the number of disjoint paths between a
node v and a controller c, for an instance placement Ci. An
optimization algorithm should find the placement Copt which
maximizes M(Ci).

C. Inter-controller latency (Icl)

The inter-controller latency has impact on the response
time of the inter-controller mutual updating. For a given
placement Ci, the Icl can be given by the maximum latency
between two controllers:

), cd(c)Icl(C nki max =

Minimizing (7) will lead to a placement with controllers
close to each other. However this can increase the forwarder-
controller distance (latency) given by (1) and (2). Therefore,
a trade-off is necessary, thus justifying the necessity to apply
some multi-criteria optimization algorithms, e.g., like Pareto
frontier - based ones [10].

IV. MULTI-CITERIA OPTIMIZATION ALGORITHM APPLIED FOR

CONTROLLER PLACEMENT PROBLEM

While particular metrics and optimization algorithms can
be applied (see Section III), some criteria lead to partially
contradictory controller placement solutions. As shown in
introduction (and [1]) an MCDA can provide an answer. It
allows selection of a trade-off solution, based on several
criteria. Note that partially such an approach has been
already applied by Hock et.al. [11], for some combinations
of the metrics defined there (e.g., max. latency and controller
load imbalance for failure-free and respectively failure use
cases).

This paper uses the same variant of MCDA
implementation as in [1], i.e., the reference level (RL)
decision algorithm [10] as a general way to optimize the
controller placement, while considering an arbitrary number
metrics. The MCDA-RL selects the optimal solution based
on normalized values of different criteria (metrics).

Given m objectives functions (values to be minimized)
one can identify the solutions as points in an objectives space
R

m
, where decision parameters/variables are: vi, i = 1, ..m,

with i, vi ≥ 0; the image of a candidate solution is
Sls=(vs1,vs2, ..,vsm), represented as a point in R

m
 and where

S = number of candidate solutions.
The basic MCDA-RL [10], defines two reference

parameters: ri =reservation level=the upper limit, which the
actual decision variable vi of a solution should not cross;
ai=aspiration level=the lower bound beyond which the
decision variables (and therefore, the associate solutions) are
seen as similar. Applying these for each decision variable vi,
one can define two values named ri and ai, by computing
among all solutions s = 1, 2, ..S:

, ..S, , s = v = a

, ..S, s = v r

isi

isi

21][min

21],[max =

104Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

In [10], modifications of the decision variables are
proposed: replace each variable with distance from it to the
reservation level: vi ri-vi; (increasing vi will decrease the
distance); normalization is also introduced, in order to get
non-dimensional values, which can be numerically
compared. For each variable vsi, a ratio is computed:

 is)-a)/(r-v' = (rv iisiisi ,,

The factor 1/(ri-ai) - plays also the role of a weight. The
variable having high dispersion of values (max – min) will
have lower weights and so, greater chances to determine the
minimum in the next relation (10). So, if the values min, max
are rather close to each other, then solution is chosen is
“good”, w.r.t. that respective decision variable.

The basic MCDA-RL algorithm steps are:
Step 0. Compute the matrix M{vsi'}, s=1…S, i=1…m

Step 1. Compute for each candidate solution s, the minimum

among all its normalized variables vsi':

 ...m'}; i={v = sis 1minmin

Step 2. Make selection among solutions by computing:

 , ..S}, s= { = v sopt 1minmax

Formula (10) selects for each candidate solution s, the

worst case, i.e., the closest solution to the reservation level

(after searching among all decision variables). Then the

formula (11) selects among the solutions, the best one, i.e.,

that one having the highest value of the normalized

parameter. One can also finally select more than one

solution (quasi-optimum solutions in a given range). The

network provider might want to apply different policies

when deciding the controller placement; so, some decision

variables could be “more important” than others. A simple

modification of the algorithm can support a variety of

provider policies. The new normalized decision variables

will be:

)-a)/(r-v(r' = wv iisiiisi

where wi (0,1] is a weight (priority), depending on policy
considerations. Its value can significantly influence the final
selection. A lower value of wi represents actually a higher
priority of that parameter in the selection process.

The controller placement computing procedure (given the
graph, link costs/capacities, constraints, desired number of
controllers, etc.) is composed of two phases:

 (1)Phase 1: Identify the parameters of interest, and
compute the values of the metrics for all possible controller
placements, using specialized algorithms and metrics like
those defined in formulas (1) - (7). This Phase will produce
the set of candidate solutions (i.e., placement instances). This
procedure could be time consuming (depending on network
size) and therefore, could be performed off-line [9].

 (2)Phase 2: MCDA-RL: define ri and ai, for each
decision variable; eliminate those candidates having
parameter values out of range defined by ri; define – if
wanted – convenient weights wi for different decision
variables; compute the normalized variables (formula (12));
run the MCDA Step 0, 1 and 2 of the (formulas (10) and
(11)).

The decision variables could be among those of Section

III, i.e.: Worst_case (1) or Average (2) latency (failure-free

case); Worst_case_latency_cf (3); Nodes/links failures (Nlf)

(4); Controller Load imbalance (5);Multi-path connectivity

metric (6); Inter-controller latency (7).
For a particular problem, a set of relevant variables

should be defined. For instance, in a high reliable network
environment one could consider only failure free metrics.

V. USE CASE STUDIES AND SIMULATION RESULTS

A proof of concept simulation program (written in
Python language [18]) has been constructed by the authors,
to validate the MCDA–RL based controller assignment
procedure and allocation of forwarders to controllers.

The input information (of the current program version)
are: the network (overlay or physical) topology graph and
link costs (it is supposed an additive metric representing the
estimated delays, or 1/bandwidth on network links); the
number of controllers wanted; decision parameters – e.g.,
some of the metrics (1) – (7); priorities/weights (policy
derived) assigned to the decision variables; the set of
possible solutions (e.g., possible placement of the controllers
- candidate solutions- resulted from some other specific
metric algorithms). Note that the topology and costs can be
deterministic or randomly generated. The program works on
all possible placements and then selects the best solution
based on weighted MCDA-RL.

In [1], very simple topologies have been considered as
examples. In this study, real networks are considered (see
Figure 1), taken from [12]. Note that usually the backbone
nodes are not supposed to be simple forwarders, but such
topology provides a relevant network graph, to illustrate the
solving of the SDN controllers placement problem.

Figure 1. Real network topology example [19]

105Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

The average bandwidth of each link is estimated to 45
Mbps. From the computation point of view, one can estimate
that such costs are equivalent to an additive metric
normalized to link_cost = 1. In an equivalent way, one can
assume that link latency is also normalized and can be
measured relatively in few integer units. The network can be
represented by an abstract graph, where each link has a cost
equal to 1.

A. Controller placement

Suppose that for this network the metrics of interest and
decision variables are: d1: Worst latency (1,) d2: Average
latency (2), (failure-free case); (failure-free case); d3: Inter-
controller latency (7).

The reference levels are defined as (8) and in the first set
of simulation we selected: r1=6, a1=0; r2=3, a2=0; r3=6, a3=0.
For the first experiment we have chosen equal weights of the
decision variables: wi= w= 1, w2= a= 1, w3= i= 1.

The total number of controllers is k=2. The first set of
results illustrate the best controller placement.

In Phase 1 one should compute the metrics (1), (2) and
(7) and then generate the populations of candidate solutions
for controller placement. To do this, it is first necessary to
know the distances between different nodes while adopting
the shortest path approach. By using the classic Dijkstra
algorithm the shortest distances from each node to any of
others (bi-directional links are supposed) can be computed
(these are shortest path trees). Then for each candidate
placement solution the metrics (1), (2) and (7) are computed.

Note that for large networks the Phase 1 computing time
could be large, given that a complete population of solutions
should be generated. However, in this study such
computations are considered to be offline, i.e., the objective
is not to optimize the algorithm from this point of view (see
Heller [11], for discussion of such aspects).

In Phase 2, the MCDA-RL is executed (launching
command is [atudor@localhost mcda]$ python mcda.py -w
1 -a 1 -i 1]). The results are: Optimum Ci placement is Ci =
176 (among the total number of solutions which is C

2
26 =

351); Controllers are placed in node 23 and node 7.
This is the best trade-off solution, while considering the

three objectives defined by the metrics (1) (2) and (7) (see
Figure 2).

B. Allocation of forwarder nodes to controllers

Once the placement of controllers is known, the
allocation of the forwarder nodes to controllers should be
performed. The solution applied here is a constructive one,
given that a single natural criterion could be applied – i.e., to
select for a forwarder the closest controller. Additionally, the
allocation procedure might have a constraint: a limit for the
maximum numbers of forwarders allowed to be allocated to
a single controller, in order to prevent imbalances.

As an example, considering the shortest path criterion
and placement of two controllers in nodes (C7, C23), the
allocation of the forwarders to these controllers is shown in
Figure 2, marked by different colors. No limit on the number
of forwarders assigned to a given controllers have been

considered in this scenario. Therefore, there is some
imbalance (16 forwarders assigned to C23 and only 9 to C7).
If the imbalance is considered to be too high then, additional
optimizations are needed.

Figure 2. Controller placement and forwarder allocation (equal weights of

decision variables: w1= w2= w3=1); k= 2 controllers

C. Applying different weights – driven by policies

If policies should be enforced by the Network/Service
Provider, then different weights can be assigned to the
decision variables (see formula (12)). As an example, let us
suppose that a low inter-domain latency should have higher
priority than the latencies forwarders-controllers. In this case
the metric (7) should have a weight <1; an example is given
below, where one has the values: w= 1, a=1, i= 0.5 (the last
weight is assigned to the metric (7)). The MCDA-RL will
select as best, another solution for controller placement, i.e.,
C11 and C15 as presented in Figure 3. Note that C11 and
C15 are closed to one another (C11-C15 distance = 1).
However, the worst and average latencies in such case will
be higher than for Figure 2 solution.

Figure 3. Controller placement and forwarder allocation with non-equal

weights of decision variables: w1= w2=1; w3=0.5; k= 2 controllers

106Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

D. Extension of set of objective functions

 In this example, the set of metrics is more rich: in
additionally to the previous three metrics, one considers the
load imbalance metric (formula 5), with reference levels
defined as r=6, a= 0. Also, backup controllers are assigned
for each primary controller.

Figure 4. Controller placement and forwarder allocation with different

weights of decision variables: w1= w2= w3=1; w3=0.5; k= 3 controllers;

backup controllers are computed

 To give more priority to the load imbalance metric, the
weights have been selected as w1=w=1; w2=a=1; w3=i=1;
w1=l=1 (for the load imbalance metric). The selected best
controller placement is: C1, C7, C23. One can see (Figure 4)
that allocation of forwarders to controllers is rather balanced:
C1, C7, C23 have respectively 7, 9, 8 forwarders assigned to
them. Also, the primary controllers C1, C7, C23 have as
backup ones respectively C23, C1, C1.

VI. CONCLUSIONS AND FUTURE WORK

This paper extended the study [1], on using multi-
criteria decision algorithms (MCDA) to optimally select
among several controller placements solutions in WAN
SDN, based on weighted criteria. The MCDA-RL can
produce a tradeoff (optimum) result, while considering
several criteria, part of them even being partially
contradictory. The method proposed here is general and can
be applied in various scenarios (including failure-free
assumption ones or reliability - aware), given that it achieves
an overall optimization. In this study, a simulation program
has been constructed and real network topologies considered.
The optimum controller placement has been found, while
different weights policy-driven have been introduced. Also,
forwarder-controller mapping optimization and backup
controller selection have been also considered. The examples
given demonstrate the flexibility of the approach in selecting
the best solution while considering various criteria.

Future work will be done to apply the method proposed
to other – metrics, considering multi-path approach for
forwarder-controller paths hierarchical networks and
studying the static/dynamic aspects of this approach.

REFERENCES

[1] E. Borcoci, R. Badea, S. G. Obreja, and M. Vochin, “On
Multi-controller Placement Optimization in Software Defined
Networking -based WANs”, The International Symposium on
Advances in Software Defined Networks
SOFTNETWORKING 2015, Barcelona, Spain,
http://www.iaria.org/conferences2015/SOFTNETWORKING.
html, [retrieved: 1, 2016]

[2] B. N. Astuto, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks”,
Communications Surveys and Tutorials, IEEE
Communications Society, (IEEE), 2014, 16 (3), pp. 1617 –
1634.

[3] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On
Scalability of Software-Defined Networking”, IEEE Comm.
Magazine, February 2013, pp. 136-141.

[4] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A
Flexible OpenFlow-Controller Benchmark,” in European
Workshop on Software Defined Networks (EWSDN),
Darmstadt, Germany, October 2012.

[5] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed
control plane for openflow” in Proc. INM/WREN, 2010.

[6] T. Koponen, et. al., “Onix: a distributed control platform for
large-scale production networks,” in Proc. OSDI, 2010.

[7] S. H. Yeganeh and Y. Ganjali, “Kandoo: A Framework for
Efficient and Scalable Offloading of Control Applications,”
Proc. HotSDN ’12 Wksp., 2012.

[8] H. Yan-nan, W. Wen-dong, G. Xiang-yang, Q. Xi-rong, and
C. Shi-duan, ”On the placement of controllers in software-
defined networks”, ELSEVIER, Science Direct, vol. 19,
Suppl.2, October 2012, pp. 92–97,
http://www.sciencedirect.com/science/article/pii/S100588851
160438X, [retrieved: 1, 2016].

[9] B. Heller, R. Sherwood, and N. McKeown, “The controller
placement problem,” in Proc. HotSDN, 2012, pp. 7–12.

[10] A. P. Wierzbicki, “The use of reference objectives in
multiobjective optimization”. Lecture Notes in Economics
and Mathematical Systems, vol. 177. Springer-Verlag, pp.
468–486.

[11] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and
P. Tran-Gia, “Pareto-Optimal Resilient Controller Placement
in SDN-based Core Networks,” in ITC, Shanghai, China,
2013.

[12] Internet2 open science, scholarship and services exchange.
http://www.internet2.edu/network/ose/, [retrieved: 1, 2016].

[13] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M.
Roughan, “The Internet Topology Zoo,” IEEE JSAC, vol. 29,
no. 9, 2011.

[14] Y. Zhang, N. Beheshti, and M. Tatipamula, “On Resilience of
Split-Architecture Networks,” in GLOBECOM 2011, 2011.

[15] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan,
“Reliability aware controller placement for software-defined
networks,” in Proc. IM. IEEE, 2013, pp. 672–675.

[16] L. Muller, R. Oliveira, M. Luizelli, L. Gaspary, and M.
Barcellos, “Survivor: an Enhanced Controller Placement
Strategy for Improving SDN Survivability”, IEEE Global
Comm. Conference (GLOBECOM); 12/2014.

[17] D. Hochba “Approximation algorithms for np-hard problems”,
ACM SIGACT News, 28(2), 1997, pp. 40–52.

[18] https://www.python.org/doc/essays/blurb/, [retrieved: 1,
2016].

107Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

http://www.iaria.org/conferences2015/SOFTNETWORKING.html
http://www.iaria.org/conferences2015/SOFTNETWORKING.html
http://www.sciencedirect.com/science/article/pii/S100588851160438X
http://www.sciencedirect.com/science/article/pii/S100588851160438X
http://www.internet2.edu/network/ose/
https://www.python.org/doc/essays/blurb/

