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Abstract—We consider scenarios with two sites connected over
a dedicated, long-haul connection that must quickly fail-over in
response to degradations in host-to-host application performance.
We present two methods for path fail-over using OpenFlow-
enabled switches: (a) a light-weight method that utilizes host
scripts to monitor the application performance and dpctl API for
switching, and (b) a generic method that uses two OpenDaylight
(ODL) controllers and REST interfaces. The restoration dynamics
of the application contain significant statistical variations due to
the controllers, north interfaces and switches; in addition, the
variety of vendor implementations further complicates the choice
between different solutions. We present the impulse-response
method to estimate the regressions of performance parameters,
which enables a rigorous and objective comparison of different
solutions. We describe testing results of the two methods, using
TCP throughput and connection rtt as main parameters, over a
testbed consisting of HP and Cisco switches connected over long-
haul connections emulated in hardware by ANUE devices. The
combination of analytical and experimental results demonstrates
that dpctl method responds seconds faster than ODL method on
average, while both methods restore TCP throughput.

Keywords–Software defined networks; OpenFlow; Opendaylight;
controller; long-haul connection; impulse-response; testbed.

I. INTRODUCTION

We consider scenarios with two sites connected over ded-
icated long-haul connections such as transcontinental fibers
or satellite links, as illustrated in Figure 1. Different client-
server application pairs are executed at different times on
host systems at the sites, to support data transfers, on-line
instrument monitoring, and messaging. The connection quality
can degrade due to a variety of factors such as equipment
failures, weather conditions, and geographical events, which
in turn affect the host-to-host application performance. As
a mitigation strategy, a physically diverse and functionally
equivalent standby path is switched to when the application
performance degrades.

The performances of application pairs are monitored on
host systems, and the current primary path is switched out
when needed, for example, by modifying Virtual Local Area
Networks (VLAN) and route tables on border switches and
routers, respectively. In our use cases, human operators watch
the host-level performance monitors, and invoke Command
Line Interface (CLI) commands or web-based interfaces of
network devices for path switching. Since triggers for path
switching are dynamically generated by application pairs,
they are not adequately handled by conventional hot-standby
layer-2/3 solutions that solely utilize connection parameters.
For example, certain losses may be tolerated by messaging
applications but not by monitoring and control applications of
instruments and sensors. Currently, the design and operation

of such application-driven fail-over schemes require a detailed
knowledge of host codes, such as Linux scripts, and the
specialized interfaces and languages of switches, such as CLI
and custom TL1 and CURL scripts (which currently vary
significantly among the vendor products). Furthermore, fail-
over operations must be coordinated between two physically-
separated operations centers located at the end sites.
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Figure 1. Two sites connected over long-haul connections.

A. SDN Solutions
The rapidly evolving Software Defined Networks (SDN)

technologies [1], [2] seem particularly well-suited for au-
tomating the path switching tasks, when combined with host
monitoring codes. In particular, SDN technologies provide two
distinct advantages:
(a) trigger modules of new applications can be “dropped in

place” since they use generic northbound interfaces, and
(b) switches from different vendors with virtual interfaces

can be simply swapped, avoiding the re-work needed for
custom interfaces and network operating systems.
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The execution of this seemingly direct approach, surprisingly
however, requires comparing and selecting from among rather
complex configurations. Due to the rapid development of
SDN technologies [1], there is a wide array of options for
controllers and switches, which in turn leads to a large number
of their solution combinations [3]. Indeed, their complexity and
variety requires systematic analysis and comparison methods
to assess their operational effectiveness and performance [4],
such as recovery times. In addition, compared to certain data-
center and network provisioning scenarios for which SDN
technologies have been successfully applied [5], [6], these
long-haul scenarios present additional challenges that require
newer solutions: (a) single controller solutions that have been
extensively used in several applications [1] are not practical
for managing the border switches at end sites due to the large
latency, and (b) solutions that require a separate control-plane
infrastructure, such as DISCO [7], are cost prohibitive since
they require additional control plane connections.

B. Outline of Contributions
In this paper, we present automated software solutions for

path fail-over by utilizing two controllers, one at each site,
that are coordinated over a single connection through mea-
surements. We first describe a light-weight, custom designed
dpctl method for OpenFlow border switches that uses host
Linux bash scripts. This script is about a hundred lines of
code, which makes it easier to analyze for its performance
and security aspects. We then present a more generic ODL
method that utilizes two OpenDaylight (ODL) controllers [8]
located at the end sites. The executional path of this approach is
more complex compared to the dpctl method since it involves
communications using both northbound and southbound ODL
interfaces and invoking several computing modules within
ODL software stack. Thus, a complete performance and se-
curity analysis of this method requires a closer examination
of a much larger code base that includes both host scripts
and corresponding ODL modules, including its embedded http
server [9].

We present implementation and experimental results using
a testbed consisting of Linux hosts, HP and Cisco border
switches, and ANUE long-haul hardware connection emulation
devices. We utilize TCP throughput as a primary performance
measure for the client-server applications, which is affected by
the connection rtt and jitter possibly caused by path switching,
and the available path capacity. Experimental results show
that both dpctl and ODL methods restore the host-to-host
TCP throughput within seconds by switching to the standby
connection after the current connection’s RTT is degraded (due
to external factors). However, the restoration dynamics of TCP
throughput show significant statistical variations, primarily as a
result of the interactions between the path switching dynamics
of the controllers and switches, and the highly non-linear
dynamics of TCP congestion control mechanisms [10]–[12].
As a result, direct comparisons of individual TCP throughput
traces corresponding to fail-over events are not very instructive
in reflecting the overall performance of the two methods.

To objectively compare the performances [4] of these two
rather dissimilar methods, we propose the impulse-response
method that captures the average performance by utilizing
measurements collected in response to a train of path degrada-
tion events induced externally. We establish a statistical basis
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Figure 2. Configurations of dpctl and ODL controllers.

for this method using the finite-sample theory [13] by exploit-
ing the underlying monotonic properties of the performance
parameters during the degradation and recovery periods. This
analysis enables us to objectively conclude that on average
the dpctl method restores the TCP throughput several seconds
faster than ODL method for these scenarios.

The organization of this paper is as follows. A coordi-
nated controllers approach using dpctl and ODL methods is
described in Section II. An experimental testbed is described
in Section III-A, and the results of experiments using dpctl
and ODL methods using five different configurations are
presented in Section III-B. The impulse response method and
its statistical basis are presented in Sections IV-A and IV-B,
respectively. Conclusions are presented in Section V.

II. COORDINATED SDN CONTROLLERS

For these long-haul scenarios, single controllers solutions
or solutions requiring separate control plane are not effective,
although such approaches with stable control-plane connec-
tions have been effective in path/flow switching over local area
networks using OpenFlow [5], [14] and cross-country networks
using customized methods [6], [7], [15]. Since the controller
has to be located at a site, when the primary connection
degrades, it may not be able to communicate effectively with
the remote site. Our approach is to utilize two controllers,
one at each site, which are “indirectly” coordinated based on
the monitored application-level performance parameters. When
path degradation is inferred by a host script, the controller
at that site switches to the fail-over path by installing the
appropriate flow entries on its border switch. If the primary
path degrades, for example, resulting in increased latency or
loss rate, its effect is typically detected at both hosts by the
monitors, and both border switches fail-over to the standby
path at approximately the same time. If the border switch at
one site fails-over first, the connection loss will be detected
at the other site which in turn triggers the fail-over at the
second site. Also, one-way failures lead to path switching at
one site first, which will be seen as a connection loss at the
other site, thereby leading to path switching at that site as well.
Due to recent developments in the SDN technologies, both in
open software areas [16] and specific vendor implementations
[17], [18], there are many different ways such a solution can
be implemented. We only consider OpenFlow solutions which
are implemented using open standards and software [5].
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A. dpctl Method
As a part of OpenFlow implementation, some vendors

support dpctl API which enables hosts to communicate with
switches to query the status of flows, insert new flows and
delete existing flows. It has been a very useful tool primarily
for diagnosing flow implementations by using simple host
scripts; however, some vendors such as Cisco do not provide
dpctl support. We utilize dpctl API in a light-weight host script
that constantly monitors the connection rtt and detects when it
crosses a threshold and invokes dpctl to implement the fail-over
as shown in Figure 2(a). The OpenFlow entries for switching
to the standby path are communicated to the switch upon
the detection of connection degradation. This script consists
of under one hundred lines of code and is flexible in that
the current connection monitoring module can be replaced
by another one such as TCP throughput monitor using iperf.
Compared to methods that use separate OpenFlow controllers,
this method compresses both performance monitoring and
controller modules into one script, and thereby avoids the
northbound interface altogether; for ease of reference, we refer
to this host code as the dpctl controller.

B. OpenDaylight Method
We now utilize two ODL Hydrogen controllers and REST

interfaces to implement fail-over functionality using OpenFlow
flows as shown in Figure 2(b). ODL is an open source
controller [8] that communicates with OpenFlow switches,
and is used to query, install and delete flow entries on them
using its southbound interface. The applications communicate
with ODL controller via the northbound interface to query,
install and delete flows. ODL software in our case runs on
Linux workstations called the controller workstations, and the
application monitoring codes can be executed on the same
workstation in the local mode or on a different workstation
in the remote mode.

The same performance monitoring codes of the dpctl
method above are used in this case to detect path degradations
but are enhanced to invoke python code to communicate
new flows for switching paths to ODL controllers via REST
interfaces; the content of these flow entries are identical to
the previous case. Thus, both the software and executional
paths of this method are much more complicated compared to
previous case, and also the ODL controllers are required to
run constantly on the servers at end sites. Also, this code is
much more complex to analyze since it involves not only the
REST scripts but also the ODL stack which by itself is a fairly
complex software. The executional path is more complex since
it involves additional communication over both northbound and
southbound interfaces of ODL controllers.

III. EXPERIMENTAL RESULTS

In this section, we first describe the testbed and then
describe the experimental results.

A. Emulation Testbed
The experimental testbed consists of two site LANs, each

consisting of multiple hosts connected via 10GigE NICs to
the site’s border switch. The border switches are connected
to each other via a local fiber connection of a few meters in
length, and also via two ANUE devices that emulate long-haul
connections in hardware, as shown in Figure 3. Tests use pairs

linux 
workstation 

long-haul connection 
emulation 

server/client 
host 

linux 
workstation 

ANUE OC192 
emulator 

ANUE 10GigE 
emulator 

controller 
host 

OpenFlow 
switch 

Cisco 
3064 

HP 
5406zl 

two OpenFlow switches 

OpenFlow 
switch 

linux 
workstation 

controller 
host 

server/client 
host 

linux 
workstation 

Figure 3. Testbed of two sites connected over local and emulated
connections.

of HP 5064zl and Cisco 3064 devices as border switches, both
of which are OpenFlow-enabled but only HP switches support
dpctl. The OC192 ANUE devices emulate connections with
rtts in the range of [0-800] milliseconds with a peak capacity
of 9.6 Gbps. The conversion between 10GigE LAN packets
from the border switches and long-haul OC192 ANUE packets
is implemented using a Force10 E300 switch, as shown in
Figure 4. ANUE devices are utilized primarily to emulate the
latencies of long-haul connections, both transcontinental fiber
and satellite, to highlight the overall recovery dynamics.

Two classes of Linux hosts are connected to the border
switches. The controller hosts (feynman1 and feynman2) are
utilized to execute ODL controllers, and client and server hosts
(feynman3 and feynman4) are used to execute monitoring and
trigger codes along with client server codes, for example, iperf
clients and servers. Five different configurations are employed
in the tests as shown in Table I. The dpctl tests utilize only
the client and server hosts to execute both monitoring and
switching codes. Configuration A corresponds to these tests
with the monitoring and dpctl scripts running on server/client
hosts, and it uses HP border switches. For ODL remote
mode tests, the monitoring codes on client/server hosts utilize
REST interface to communicate flow message needed for fail-
over; both HP and Cisco switches are used in these tests.
Configurations C-E implement these tests, which employ ODL
controllers running on controller hosts and monitoring scripts
running on server/client hosts. In ODL local mode tests, the
monitoring and client/server codes are executed directly on the
control hosts. Configuration B implements these tests, and it is
identical to Configuration C except its scripts are executed on
controller hosts. The measurements in Configurations B and C
are quite similar, and hence we mostly present the results of
the latter.

In our experiments, connection degradation events are
implemented by external codes using two different methods:

(a) Path switching using dpctl: The current physical path
with a smaller rtt is switched to a longer emulated path,
whose rtt is sufficiently long to trigger the fail-over. This
switching is accomplished by using dpctl codes that install
OpenFlow entries on the border switches to divert the flow
from current path to the longer path. The packets enroute
on the current path will be simply dropped and the short-
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Figure 4. Remote and local modes of ODL controller configurations.

term TCP throughput becomes zero. After the fail-over,
the path is switched back to the original path, and the
TCP flow recovers gradually back to previous levels.

(b) RTT extension using curl scripts: The current connec-
tion’s rtt is increased by changing the setting on ANUE
device to a value above the threshold to trigger the fail-
over. This is accomplished by using curl scripts that
access ANUE http interface. Unlike the previous case,
the packets enroute on the current path are not dropped
but are delayed; thus, the instantaneous TCP throughput
does not always become zero but is reduced significantly.
After the fail-over, the original rtt is restored, and TCP
throughput recovers gradually to previous levels.

The first degradation method using dpctl to switch the paths is
only implemented for configurations with HP border switches
in Configurations A - C. The second method is used for both
HP and Cisco systems in Configurations D and E, and since the
curl scripts are used here to change delay settings on ANUE
devices, the border switches are not accessed.

B. Controller Performance

TCP throughput measurements of the connection are con-
stantly monitored using iperf, and the Linux hosts use the
default CUBIC congestion control modules [19]. The rtt be-
tween end hosts is also constantly monitored using ping, and

test controller path switch
configuration method degradation vendor

A dpctl path switch HP
B ODL local path switch HP
C ODL remote path switch HP
D ODL remote rtt extension HP
E ODL remote rtt extension Cisco

Table I. Five test configurations with two controllers, two connection
degradation methods and two switch vendors.

path switching is triggered when it crosses a set threshold.
The path degradations are implemented as periodic impulses
and the responses are assessed using the recovery profiles of
TCP throughput captured at one second intervals. Also, the
ANUE dynamics in extending the rtt affect the TCP throughput
recovery, and we obtain additional baseline measurements by
utilizing a direct fiber connection that avoids packets being
routed through ANUE devices. Thus, TCP throughout traces
in our tests capture the performances of: (a) controllers,
namely, dpctl and ODL, in responding to fail-over triggers
from monitoring codes, and in modifying the flow entries on
switches, typically by deleting the current flows and inserting
the ones for the standby path, and (b) border switches in
modifying the flows entries in response to controller messages
and re-routing the packets as per new flow entries.

  Example Trace:  

path switch 

TCP throughput loss 

latency increase 

input 
impulse train 

throughput 

rtt 

Figure 5. Trace of impulse response of TCP throughput for dpctl method
with local primary path and path switching degradation.

An example TCP throughput trace of a test run of Con-
figuration A is shown in Figure 5 for the dpctl method,
with fiber connection as the primary path, and using the path
switching degradation method. The connection rtt is degraded
at a periodicity of 50 seconds by externally switching to the
longer ANUE path, and the change is detected, as shown in the
bottom plot, which in turn triggers the fail-over. Three different
TCP recovery profiles from the tests are shown in Figure 6: (a)
Configuration A: dpctl method using HP switches with con-
nection degradation by path switching, (b) Configuration D:
ODL method using HP switches with connection degradation
by rtt extension, and (c) Configuration E: ODL method using
Cisco switches with connection degradation by rtt extension.
As seen in these plots, TCP response dynamics contain sig-
nificant variations for different degradation events of the same
configuration as well as between different configurations.
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Figure 6. TCP throughput for dpctl method for configuration A and ODL
methods for configuration D and E.

The individual TCP throughput recovery responses to
single path degradation events reveal more details of the
difference between the configurations as shown in Figure 7.
The delayed response of ODL method compared to dpctl
method can be seen in Figure 7(a) for Configurations A and
B. Since the packets in transit during the switching are simply
lost during path switching, the instantaneous TCP throughput
rapidly drops to zero for Configuration A. On the other
hand, some of the packets in transit when rrt is extended
are delivered, and as a result TCP throughput may be non-
zero in some cases, as shown in Figure 7(b). Another aspect
is that, TCP throughput recovers to 10Gbps when the direct
fiber connection is used between the switches, but only peaks
around 9 Gbps when packets are sent via ANUE connection
with zero delay setting as shown in Figure 7(b). Also, the
recovery profiles are different between HP and Cisco switches
in otherwise identical Configurations D and E as shown in
Figure 7(c). Thus, TCP dynamics depend both on the controller
in terms of recovery times, and on the switches in terms of
peak throughput achieved and its temporal stability.

C. Switch Performance

TCP performance is effected by the path traversed by
the packets between the border switches, in addition to its
dependence on dpctl and ODL methods as described in the
previous section. In configurations A and B, the primary
connection is a few meters of fiber between the switches,
and TCP throughput is restored to around 10 Gbps after the
fail-over as shown in Figure 7(a). In Configurations D and E,
the packets are sent through the emulated connection OC192
ANUE emulator with a peak capacity of 9.6 Gbps, and both
peak value and the dynamics of TCP throughput are affected
as shown in Figure 7(b). Furthermore, the connection modality
affects HP and Cisco switches differently as shown in Figure
7(c) in that the latter reach somewhat lower peak throughput
and exhibit larger fluctuations.

IV. IMPULSE RESPONSE METHOD

We present the impulse response method in this section
that captures the overall recovery response by “aggregating”
generic (scalar) performance measurements (such as TCP
throughput as in previous section) collected in response to
periodic connection degradations.
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Figure 7. Trace of impulse response of TCP throughput for dpctl method
with local primary path and path switching degradation.

A. Response Regression Function
A configuration X that implements the fail-over is specified

by its controllers and switches that implement fail-over, and
also the monitoring and detection modules that trigger it. Let
δ(t − iT ), i = 0, 1, . . . , n, denote the input impulse train that
degrades the connection at times iT + TD, where t represents
time, T is the period between degradations and TD < T is
the time of degradation event within the period. Let TX(t)
denote the parameter of interest, such as TCP throughput,
corresponding to δ(t−iT ), i = 0, 1, . . . , n as shown in Figure 6
for configurations X=A,D,E. Let RX(t) = B−TX(t) denote
the response that captures the “unrealized” portion of peak
performance level B, for example, the residual bandwidth of
a connection with capacity B. We define the impulse response
function RX(t) such that

RXi (t) = RX(t− iT ), t ∈ [0, T )

is the response to ith degradation event δ(t − iT ), i =
0, 1, . . . , n. An ideal impulse response function is also an
impulse train that matches the input, wherein each impulse rep-
resents the instantaneous degradation detection, fail-over and
complete recovery. But in practice, each RXi (t) is a “flattened”
impulse function whose shape is indicative of the effectiveness
of fail-over. In particular, its leading edge represents the effect
of degradation and its trailing edge represents that of recovery,
and the narrower this function is the quicker is the recovery.
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Figure 8. Examples of impulse response functions for Configurations A-E
for a single path degradation.

Examples of RX1 (.) are shown Figure 8 for configurations A-E;
these TCP measurements show significant temporal variations
that persist across the different degradation events, which make
it difficult to objectively compare these single-event time plots.

We define the response regression of configuration X as

R̄X(t) = E
[
RXi (t)

]
=

∫
RXi (t)dPRX

i (t),

for t ∈ [0, T ), where the underlying distribution PRX
i (t) is

quite complex in general since it depends on the dynamics of
controllers, switches, end hosts, application stack and mon-
itoring and detection modules that constitute X . It exhibits
an overall decreasing profile for t ∈ [0, TD + TI ] followed
by an increasing profile for t ∈ (TD + TI , T ], where TI is
the time needed for the application to react to connection
degradation. After the fail-over, TCP measurements exhibit an
overall increasing throughput until it reaches its peak as it
recovers after becoming nearly zero following the degradation.
We consider that a similar overall behavior is exhibited by the
general performance parameters of interest.

The response mean R̂i(t) of R̄i(t) based on discrete
measurements at times t = jδ, j = 0, 1, ..., T/δ, is

R̂X(jδ) =
1

n

n∑
i=1

(
RXi (jδ)

)
which captures the average profile. Examples of R̂Xi (.) for
TCP throughput are shown Figure 9 for different configurations
based on 10 path degradations with T = 50 seconds between
them, which show the following general trends.

• The dpctl method responds seconds faster than ODL
method as indicated by its sharper shape, although their
leading edges are aligned as shown in Figure 9(a).

• The connection degradation implemented by the rtt ex-
tension has a delayed effect on reducing the throughput
compared to the path switching degradation method as
indicated by its delayed leading edge in Figure 9(b).

• The dynamic response of regression profiles of HP 5604zl
and Cisco 3064 switches are qualitatively quite similar as
shown in Figure 9(c), but the latter achieved somewhat
lower peak throughput overall.

In view of the faster response of dpctl method, we collected
additional measurements in configurations A and C using
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ODL (configuration C) methods using 100 path degradations with T = 50
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100 path degradations, and the resultant response means are
somewhat smoother compared to 10 degradations as shown in
Figure 10 (a) for both dpctl and ODL methods. Furthermore,
the response mean of ODL method remains consistent with
more measurements, and a histogram of the relative delays of
ODL method compared to dpctl method is plotted in Figure
10(b), and they are in the range of 2-3 seconds in the majority
of cases. These measurements clearly show the faster response
of the dpctl method for these scenarios.

B. Statistical Analysis
A generic empirical estimate R̃X(t) of R̄(t) based on

measurements at times t = jδ, j = 0, 1, ..., T/δ, is

R̃X(jδ) =
1

n

n∑
i=1

[
g
(
RXi (jδ)

)]
for an estimator function g. We consider that the function class
M of R̃X(.) consists of unimodal functions, each of which
consists of degradation and recovery parts when viewed as a
function of time. For ease of notation, we also denote R̃X(.)
by f in this section such that it is composed of a degradation
function fD and a recovery function fR as follows:

f(Ri(t)) =

{
fD(Ri(t)) if t ∈ [0, TD + TI ]

fR(Ri(t)) if t ∈ (TD + TI , T ]
(1)

where fD ∈ MD and fR ∈ MR correspond to the leading
and trailing edges of the response regression. The expected
error I(f) of the estimator f is given by

I(f) =

∫
[f(t)−RXi (t)]2dPRX

i (t),t

=

∫
[0,TD+TI ]

[fD(t)−RXi (t)]2dPRX
i (t),t

+

∫
(TD+TI ,T ]

[fD(t)−RXi (t)]2dPRX
i (t),t

= ID(fD) + IR(fR).

The best expected estimator f∗ = (f∗D, f
∗
R) ∈ M minimizes

the expected error I(.), that is

I(f∗) = min
f∈M

I(f).

The empirical error of an estimator f is given by

Î(f) =
δ

Tn

n∑
i=1

T/δ∑
j=1

[
f(jδ)−

(
RXi (jδ)

)]2
.

The best empirical estimator f̂ = (f̂D, f̂R) ∈ M minimizes
the empirical error Î(.), that is,

Î(f̂) = min
f∈M

Î(f).

Since the response mean R̂(t) is the mean at each observation
time jδ, it achieves zero mean error, which in turn leads to
zero empirical error, that is, Î

(
R̂
)

= 0; thus, it is a best
empirical estimator. By ignoring the minor variations for the
smaller values of n, we assume that R̂ is composed of a non-
decreasing function R̂D followed by a non-increasing function
R̂R that correspond to decreasing and increasing parts of the

performance parameter (such as TCP throughput), respectively.
This assumption is valid for the response means of dpctl and
ODL methods in Configurations A and C, respectively, shown
in Figure 10. In both cases, the response mean is composed
of an increasing part followed by a decreasing part once the
small variations in the tail of ODL method are ignored.

We will now show that Vapnik-Chervonenkis theory [13]
guarantees that the response mean R̂(t) is a good approxi-
mation of the response regression R̄(t), and furthermore its
performance improves with more measurements from connec-
tion degradation events. Such performance guarantee is a direct
consequence of the monotone nature of the underlying fD
and fR functions. Furthermore, this performance guarantee
is distribution-free, that is, independent of the underlying
distributions due to controllers and switches, and is valid under
very general conditions [13] on the variations of performance
(such as TCP throughput) measurements. We now provide an
outline of the proof of this result. Let R̂ =

(
R̂D, R̂R

)
such

that the estimator is decomposed into two monotone parts,
namely non-decreasing R̂D and non-increasing R̂R such that
Î(R̂) = ÎD(R̂D) + ÎR(R̂R). By using Vapnik-Chervonenkis
theory [13] we have

P
{
I
(
R̂
)
− I(f∗) > ε

}
≤ P

{
I
(
R̂D

)
− I(f∗D) > ε/2

}
+P

{
I
(
R̂R

)
− I(f∗R) > ε/2

}
≤ P

{
max
h∈MD

|ID (h)− ÎD(h)| > ε/4

}
+P

{
max
h∈MR

|IR (h)− ÎR(h)| > ε/4

}
≤ 16N∞

( ε

2B
,MD

)
ne−ε

2n/(8B)2

+16N∞
( ε

2B
,MR

)
ne−ε

2n/(8B)2

where N∞ (ε,A) is the ε-cover of function class A under L∞
norm. In the above derivation, the first inequality follows since
the negation of the condition in either right term implies the
negation of the condition in left term. The second inequality
follows from the uniform convergence property applied to
each term [13], and the third inequality follows by applying
the uniform bound for each term ( [20], p. 143). Due to
the monotonicity of functions in MD and MR, their total
variation is upper bounded by B, which provides us the
following upper bound ( [20], p. 175): for A = MD,MR,
we have

N∞
( ε

2B
,A
)
< 2

(
4n

ε2

)(1+2B/ε) log2(2ε/B)

.

By using this bound, we obtain

P
{
I
(
R̂i

)
− I(f∗) > ε

}
< 64

(
4n

ε2

)(1+2B/ε) log2(2ε/B)

ne−ε
2n/(8B)2 .

The exponential term on the right hand side decays faster
in n than other terms, and hence for sufficiently large n it can
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be made smaller than a given probability α. Thus, the expected
error I(R̂) of the response mean used in the previous section
is within ε of the optimal error I(f∗) with a probability that
increases with the number of observations, and is independent
of the underlying distributions. An indirect evidence of this
is the increased stability of the response mean as we increase
the number of connection degradation events from 10 to 100
in Figures 9(a) and 10, respectively. In summary, this analysis
provides a statistical basis for using the response mean R̂ as
an approximation to the underlying response regression R̄ in
comparing different methods and configurations.

V. CONCLUSION

We considered two sites connected over a dedicated, long-
haul connection, which must fail-over to a standby connection
upon degradations that affect the host-to-host application per-
formance. Current solutions require significant customization
due to the vendor-specific software of network devices and
applications, which have to be repeated with upgrades and
changes. Our objective is to exploit recent SDN and Network
Function Virtualization (NFV) technologies to develop faster
and more flexible fail-over solutions implemented entirely in
software. We first presented a light-weight method that utilizes
host scripts to monitor the connection rtt and OpenFlow
dpctl API to implement the fail-over. We then presented a
second method using two OpenDaylight (ODL) controllers and
REST interfaces. We performed experiments using a testbed
consisting of HP and Cisco switches connected over long-
haul connections emulated in hardware. They showed that both
methods restore TCP throughput, but their comparison was
complicated by the restoration dynamics of TCP throughput
which contained significant statistical variations. To account
for them, we developed the impulse-response method to esti-
mate the response regressions, which enabled us to compare
these methods under different configurations, and conclude
that on the average the dpctl method responds several seconds
faster than ODL method.

It would also be of future interest to generalize the
proposed methods to trigger fail-overs based on parameters
of more complex client-server applications. The performance
analysis of such methods will likely be much more complicated
since the application dynamics may be modulated by the
already complicated TCP recovery dynamics. Currently there
seems to be an explosive growth in the variety of SDN
controllers [4], including open source and vendor specific
ones. Also, there is a wide variety of implementations of
OpenFlow standards by switch vendors [1], ranging from
building additional software layers on existing products to
developing completely native software stacks. It would be
of future interest to develop general performance analysis
methods that enable us to compare various SDN solutions (that
comprise of controllers, switches and application modules)
for more complex scenarios such as data centers and cloud
services distributed across wide-area networks. In particular, it
would be of interest to develop methods that directly estimate
the performance differences between different configurations
from measurements using methods such as the differential
regression [21].
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