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Abstract—Internet of Things (IoT) devices are resource 

constrained. Therefore, many IoT applications rely on multicast 

in their transmission to preserve IoT node resources. However, 

security is a main concern in critical applications such as 

actuators control. Consequently, the multicast traffic has to be 

secured. Multicast security requires an efficient and scalable 

Group Key Management (GKM) protocol. In case of IoT, the 

situation is more difficult because of the dynamic nature of IoT 

scenarios. This paper introduces a new model for GKM based on 

using a context aware security server accompanied by a group of 

key distribution servers. The model efficiently distributes group 

encryption keys to IoT devices to secure the multicast sessions. 

The proposed solution is mathematically evaluated relative to the 

Logical Key Hierarchy (LKH) protocol. The comparison shows 

that the proposed model efficiently enhanced the performance for 

both the members and the key servers regarding load and key 

storage cost.  

 
Keywords—Internet of Things; Group Key Management; 

Context Awareness. 

I.  INTRODUCTION  

The Internet of Things (IoT) refers to billions of 
interconnected smart objects equipped with sensors or 
actuators. Existing and evolving communication protocols are 
used to enable services to such smart objects and allow them 
to communicate among each other and with backend users of 
the Internet during different activities of sensing and 
controlling. IoT networks, without intelligence, are just 
wireless sensor networks. Intelligence in IoT is achieved using 
context awareness. Context awareness, as defined in [1], is the 
ability of a system to provide information or services to users 
using information of a certain entity where the entity can be a 
person, place, piece of software, or an object. 

On the other hand, the IoT is naturally a resource-
constrained network regarding Central Processing Unit power, 
memory, and energy. Therefore, many of the IoT application 
scenarios rely on multicast operation to preserve bandwidth 
and enhance the sensing and control operation among the 
sensors and the actuators. For example group communication 
is used in; smart meter applications, in building safety, in 
home automation and intelligent transportation 
systems.Multicast transmits data efficiently between one 
sender or multiple senders to multiple receivers. However, the 
constrained nature and the massive size of the IoT network 
make it vulnerable to many security attacks.  

In order to multicast information among a certain group 
securely, the traffic should be encrypted. So, a common group 
key should be shared among all members of the group. 
Whenever membership changes, the group key should be 
updated.  Hence, during the registration process, it is 

necessary to have strong authentication mechanisms to acquire 
the identity of the participants prior to distributing the key 
material. Thus, the main concern is around key management, 
key distribution, and access control for the key material [2]. 

Group Key Management (GKM) protocols are divided into 
three categories: centralized, decentralized, and distributed 
key management protocols [2]-[4]. Nevertheless, all the 
conventional GKM protocols under the above mentioned 
categories do not suit the dynamic nature of the IoT scenarios 
and applications. Consequently, many research directions are 
carried out to adapt these protocols to IoT networks [5]-[7]. 
Yet, most of the research related to GKM focuses on adapting 
these protocols by working on just one or two of the IoT 
aspects such as mobility, scalability, constrained nature of 
devices, application nature, network access technology, or 
addressing. They ignore that the majority of IoT scenarios 
need to work on most of these aspects combined together and 
they lack the ability to address the resulting issues of such 
combination. 

In this paper, a new GKM security model is proposed, i.e., 
CASMA (Context-Aware Secured Multicast Architecture), to 
work with different IoT applications and to suite the dynamic 
nature of the IoT scenarios. CASMA relies on adding 
intelligence to the security operation by using a Context 
Aware Security Server (CASS) that is responsible for 
managing the secure multicast session and group key 
distribution operation. The key distribution operation itself is 
carried out through a set of Key Distribution Servers (KDS). 
The CASS collects context information from both members 
(sensors or actuators) and KDSs, and analyses it to assign 
those members to the appropriate KDS that will be able to 
serve them best, while controlling load balancing which 
improves both performance and scalability.  

The solution advantages can be summarized in the following: 

• CASMA is an open model that is not tied to a specific 
protocol or algorithm and can deploy any of the current or 
future protocols or algorithms. 

• The allocation process is based on context-awareness, which 
improves both performance and scalability. 

• It can be deployed for both private and public application 
scenarios.  

• It provides load balancing control among key servers. 

• It overcomes key servers’ failover.  

The rest of the paper is organized as follows: Section II 
describes background information related to the secured 
multicast operation and the protocols used to achieve it along 
with an overview of the current related research directions 
concerning GKM in IoT scenarios. Section III covers the 
proposed GKM model architecture and operation. Section VI 
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presents a mathematical evaluation and analysis of the 
proposed GKM model performance. Finally, Section V 
concludes the paper and proposes future research directions.  

II. BACKGROUND AND RELATED WORK 

A. Secured Multicast Operation 

In order to secure multicast traffic, a security policy is set 
up by Group Owner (GO) and passed to a trusted entity; the 
Group Controller and Key server (GCKS), which will manage 
the group security operation. Next, the group members register 
with the GCKS. Their registration is accepted only if they 
meet the security parameters defined in the security policy set 
up by the GO. At this time, group members are eligible for 
keys download. 

The aim of such process is that all authorized users 
download the same key that is used to encrypt and decrypt 
multicast data messages. This shared key is called Traffic 
Encryption Key (TEK). In order to preserve the secrecy of the 
multicast data and to achieve forward and backward secrecy, 
the TEK needs to be updated periodically or each time a 
member joins/leaves the multicast group according to the 
rekeying mechanism defined in the group security policy [2]-
[4]. Each authorized member that shares the TEK may need to 
download additional Keys, called Key Encryption Key (KEK) 
and Group Encryption Key (GEK), which facilitates the 
update of the TEK.  

B. Group Key Management Protocols 

Protecting group information is achieved by defining the 
security policy by the GO and enforcing it among group 
members. This is accomplished by using protocols such as 
Group Security Association Key Management Protocol 
(GSAKMP) [8] or Group Domain of Interoperation (GDOI) 
[9]. The GO creates the security policy rules for the group and 
expresses them in a policy token that is passed to the GCKS. 
The GCKS enforces such a policy by granting access only to 
members that fulfill the security policy. In this case, members 
will have the right to download the group keys. Whenever 
membership changes, the keys need to be updated according 
to the mechanism defined in the security policy. In general, 
protocols used in group key management update can be 
classified into centralized, decentralized, and distributed group 
management protocols. 

In centralized group key management protocols, there is 
only one GCKS responsible for group key distribution and 
update. The GCKS shares a pairwise key with each member of 
the group and distributes group keys to group members on a 
point-to-point basis. Examples of protocols working in 
centralized fashion are Group Key Management Protocol 
(GKMP), Logical Key Hierarchy (LKH), LKH+, One-way 
Function Tree (OFT), Centralized Flat Table (CFT), and 
Efficient Large-Group Key (ELK) [2]-[4].  

In decentralized group key management protocols, the 
large group is divided into small subgroups. A group key is 
shared among all group members and every subgroup has its 
own subgroup key. The GCKS serves all members of the 
group. On the other hand, every subgroup has its subgroup key 
sever, which manages the subgroup key. Examples of 
protocols working in decentralized fashion are Scalable 
Multicast Key Distribution (SMKD), Iolus, Dual-Encryption 

Protocol (DEP), MARKS, Kronos, and Intra-Domain Group 
Key Management protocol (IGKMP) [2]-[4]. 

In distributed group management protocols, many 
members in the group are responsible for new group key 
generation and distribution. It has no group controller. The 
group key can be generated in a contributory fashion, where 
all members aid in generating the group key. However, this 
process becomes difficult as group members increase or if the 
key is generated by one of the members, which is not secure. 
The distributed group key management protocols are the most 
complex and difficult ones. Examples of distributed protocols 
are Group Diffie–Hellman Key Exchange (G-DH), 
Conference Key Agreement (CKA), Distributed Logical Key 
Hierarchy (DLKH), Distributed One-way Function Tree 
(DOFT), and Diffie–Hellman Logical Key Hierarchy (DH-
LKH) [2]-[4]. 

C. Related Work  

Most of the research work carried out in this domain is 
either very specific to an application or a rekeying protocol. 
For example, in [5] Li et al. focus on Privacy Preservation in 
Smart Buildings of the Smart Grid. It is based on Tree Group 
Deffie-Helman (TGDH) evaluating fault tolerance and 
performance. The paper assumed that the key server and the 
trust center are always available; it doesn’t state how security 
is maintained in case of their failure.  

Similarly, Agrawal [6] works on Secure Key Distribution 
Protocols in Smart Meter application focusing on preventing 
man-in-the-middle attack. The paper introduces just a security 
analysis with no performance evaluation. 

In [7], a centralized approach to distribute and manage  
group keys in ad hoc networks and Internet of Things is used. 
The proposal is applied to Vehicle-to-Vehicle communications 
in Vehicular Ad hoc Networks measuring the communication 
cost. The paper proposes performing batch leave operation 
based on a pre-determined leave time stated by members while 
joining the group. The paper assumes that each member 
knows the exact time to leave the group, which is not always 
the case. Also, the paper ignores leave events due to 
communication loss. 

It is obvious that most of the research work carried out is 
tied to a certain type of application such as smart grids, 
Internet of vehicles, etc., none of which is generic. In addition, 
those researches work on just one or two aspects of IoT 
assuming that the conditions of the application scenario is 
static which is not the case for IoT application scenarios which 
have dynamic and varying nature regarding the network 
access technology, type of application, state of members and 
key servers and the load on them. 

This raises the motivation to introduce our GKM model 
that adapts to the dynamic nature of IoT scenarios regarding 
application nature and scenario conditions.  

III. THE PROPOSED GKM MODEL 

This section presents the new proposed solution. In 
subsection A, the new key management architecture, CASMA, 
is introduced. Next, subsection B explains its operation. 

A.  CASMA Architecture 

The CASMA model is based on the IGKMP protocol 
architecture [2]-[4][10]. IGKMP is a decentralized key 
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management protocol in which subgroups are called areas. 
Each area has one subgroup controller called Area Key 
Distributer (AKD). A common controller, i.e., Domain Key 
Distributer (DKD), is responsible for generating the group key 
and facilitating the co-ordination between AKDs. Each 
member belongs to one area only and registers with one AKD 
according to the location. 

 The CASMA architecture is shown in Figure 1. CASMA 
follows the International Telecommunication Union IoT 
architecture reference model defined in [11]. According to the 
model, the architecture is composed of a Device layer, 
Network layer, Service Support and Application Support 
layer, and finally an Application layer. 

CASMA is based on using a CASS server and a set of 
KDSs. Here, The KDSs are the DKD and the Zone Key 
Distribution servers (ZKDs). The DKD; as in IGKMP; is 
responsible for TEK generation and update, while the ZKDs 
replace the AKDs found in IGKMP. The ZKDs are the 
subgroup controller of their zones, where the zone represents 
the ZKD with its registered members. They are not tied to a 
certain area or location as is the case for AKDs. All these 
servers lie in the Service Support and Application Support 
Layer of the IoT Reference Model, as shown in Figure 1.  

The CASS server acts as the trusted entity that is 
responsible for managing the security sessions, while the 
KDSs are responsible for key distribution and update.  

The CASS collects context information from both 
members (sensors or actuators) and KDSs and stores it in its 
database. The information collected from sensors includes 
location, access network, multicast group to join, application 
accessed and load on KDSs and their availability. On the other 
hand, the information from KDSs is that related to the 
supported multicast groups and the number of members 
associated with each group.  

The CASS server analyses the collected information and 
uses it to assign those members to the appropriate ZKD that 
will be able to serve them best, while controlling load 
balancing. This information is periodically updated. Therefore, 
the allocation process is based on intelligent context-
awareness, which improves both performance and scalability.  

 

Figure 1. CASMA Architecture 

CASS roles can be defined as follows: 

• Acts as a Trusted Entity for security operation. 

• Manages the operation of key distribution. 

• Contains profile for context information of registered 
member (status, location, access network, multicast 
application running). 

• Contains profile for context information of ZKDs 
(status, location, multicast groups supported, number of 
registered members in each group). 

• Collects context information from members and KDSs 
and stores it. This information includes: 

• Access Network (Wi-Fi, Zigbee, 3G and 
4G) 

• Geographical location 

• Multicast group to join  

• Load on ZKD servers 

• Analyses collected information and uses it to assign the 
members to the appropriate KDS that will be able to 
serve them best, while controlling load balancing.  

• Receives members’ query-to-join requests. 

• Assigns members (actuator nodes) to the appropriate 
ZKD to register with according to analyzed context 
information. 

• Keeps track of active ZKDs. 

• Assigns alternative ZKD to members in case of the 
main ZKD failure. 

• Adjusts periodic rekey time according to application 
and network conditions. 
 

ZKD roles are as follows: 

• Communicates with CASS Server, DKD, and 
members. 

• Receives request to join messages from members. 

• Each ZKD Creates a zone that contains itself and the 
members that register with it. 

• Shares a unique key; Member-Private-Key (MbrPKey) 
with each accompanied member. This key is used to 
provide a secure unicast channel between the ZKD and 
the member. 

• Shares a common Zone group Key (ZKey) between 
itself and all accompanied members. This key is used 
to assist TEK distribution from the ZKD to the 
associated members. 

• The MbrPKey and the ZKey as shown in Figure 2 are 
both generated and downloaded from the ZKD to the 
members during the registration process.  

• Shares a unique key ZKDkey with the DKD. This key 
is used to provide secure unicast channel between the 
ZKD and the DKD. 

• Shares a common Domain group Key (DGkey) 
between the DKD and all ZKDs. This is used to assist 
in the distribution of TEK from the DKD to all ZKDs. 

• The ZKDKey and the DGKey as shown in Figure 2 are 
both generated and downloaded from the DKD to the 
ZKDs during the registration process between ZKD 
and DKD.  

• Updates members with TEK during rekeying. 
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Figure 2. Architecture Keys 

DKD roles are defined as follows: 

• Communicates with the CASS Server and the ZKDs. 

• Shares the unique ZKDkey with each ZKD. 

• Shares the common multicast DGkey with all ZKDs. 

• Generates the TEK and transmit it to the ZKDs over a 
secured channel. 

• Notified by the CASS in case of membership change or 
periodic rekeying. 

• Updates TEK according to membership change or 
periodic rekeying. 

• Keeps track of key synchronization among ZKDs. 

It is worth mentioning that within each zone, rekeying can 
take place using the above mentioned MbrPKey and Zkey. It 
can also take place using any of the centralized rekeying 
protocols mentioned in Section II-B (LKH, LKH+, OFT, CFT, 
and ELK). This solution can be implemented in either private 
application scenarios, such as buildings automation, smart 
home, and buildings safety or public application scenarios, 
such as in smart cities and Internet of vehicle applications.  

B. CASMA operation 

The following explains the rekeying operation in CASMA 
solution. This process takes place whether periodically or due 
to member change.  

Member Join: 

With every new member joining the group, the group key 
needs to be changed in order to assure backward secrecy (new 
members have no access to previous secured data). The 
messages flow is shown in Figure 3. 

First, the new member (Actuator) sends a "Query-to-Join" 
request to the CASS server. The CASS server analyses its 
database and selects the appropriate ZKD according to the 
scenario logic. The address of the assigned ZKD is sent to the 
joining member in the "Query-Response" message. 

 

Figure 3. Join Multicast Group Message Flow 

Second, the member sends a "Request-to-Join" message to 
the assigned ZKD. The ZKD authenticates the joining member 
and ensures that it meets the security policy specification. If it 
succeeds, the ZKD sends an "Accept-Join-Notification" 
message to the CASS server to update its database with the 
context information related to the ZKD (number of 
accompanied members relative to the multicast group) and to 
the member (successfully registered with the assigned ZKD).  

 Third, the ZKD sends a "Join-Notify" message to the DKD 
to update the TEK. Consequently, the DKD performs key 
update and multicasts the new key to all ZKDs encrypted with 
the DGkey. Finally, the ZKDs extract the TEK and multicast it 
to their zone members encrypted using their Zone key. 
Simultaneously, the ZKD with the new joining member 
updates its ZKey and sends the new keys (TEK and ZKey) to 
the new member encrypted with its private key (MbrPKey). 

Member Leave: 

When a member leaves a group, the multicast key and its 
zone key need to be updated to assure forward secrecy (the 
leaving member has no access to forthcoming data 
transmitted). The messages flow is shown in Figure 4.  

First, the leaving member (Actuator) sends a "Leave" 
request to its ZKD. Second, The ZKD forwards the “Leave” 
request to the DKD to perform TEK update. Third, the ZKD 
sends a “Leave_Notification” message to the CASS server to 
update its context information database indicating that the load 
on this ZKD is decremented by the effect of the leaving 
member. Fourth, the ZKD creates a new ZKey and sends this 
key to each one of the remaining zone members encrypted by 
each member private key (MbrPKey). This is represented by 
the zone key download operation taking place on the zone 
existing members throughout all ZKDs. Fifth, the TEK update 
takes place when the DKD creates the new TEK and 
multicasts it to all ZKDs encrypted by the DGkey. Finally, 
each ZKD decrypts this message carrying the TEK, re-
encrypts it using its ZKey, and multicasts it to its zone existing 
members. 
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Figure 4.  Leave Multicast Group Message Flow 
  

Periodic Rekeying: 

The CASS server periodically informs the DKD server to 
update the Keys to avoid security breaches. By keeping track 
of the server status, the CASS informs the DKD about the 
appropriate time for rekeying to avoid network and server 
loading as shown in Figure 5. As a result the DKD creates the 
new TEK and multicasts it to all ZKDs encrypted by the 
DGkey. Each ZKD decrypts this message carrying the TEK, 
re-encrypts it using its ZKey, and multicasts it to its zone 
members. Furthermore, the CASS can adjust the time interval 
needed for periodic rekeying according to application type and 
strength of the encryption key.  

IV. PERFORMANCE ANALYSIS 

As previously mentioned in Section III-A, rekeying within 
each zone can take place using one of the centralized key 
management protocols. Consequently and in order to evaluate 
the performance of CASMA, a comparison is held between 
two cases. In the first one, LKH is used in the traditional 
centralized way. In the second case, LKH protocol is used for 
rekeying within each zone in CASMA. 

 

Figure 5.  Periodic Rekeying Message Flow 

The LKH protocol is chosen for comparison as it is 
considered one of the most efficient rekeying protocols. The 
operation of LKH as shown in Figure 6 begins by building a 
hierarchal key tree with members acting as leaves and the 
GKCS acting as the root of the tree. Each node in the tree 
represents a key in the key hierarchy. The root key is the TEK 
used to secure the group data. The leaf key is the unique key 
shared between the node and the key server. The intermediate 
nodes represent keys that are a set of KEKs used to help in the 
distribution and update of TEK. According to the tree 
structure, each member stores all the keys in the path from 
itself to the root. With members change, all the keys in its path 
need to be changed to maintain forward and backward secrecy 
[12].  

In our evaluation, the LKH key tree is built as a balanced 
binary tree where each node has just two children. The context 
information that is used here by the CASS server for 
members’ distribution among ZKDs is the load on these 
servers. The members register with the first ZKD until a 
threshold level is reached. Next, the members will begin to 
register with the next ZKD. The threshold level used in this 
evaluation is sixteen. In a balanced binary tree, this threshold 
gives rise to five keys to be stored in each member per 
multicast group. This is considered appropriate for such 
constrained devices. 

The evaluation studies two critical parameters for multicast 
security in IoT: storage cost in members and key servers and 
communication cost during the join and leave operations. 

A. Storage Cost 

Storage cost is defined as the number of keys stored in 
each member and in the key servers.  

Member Keys: 

 According to the LKH protocol, each member stores 
log2(n)+1 keys, where n represents the number of members 
[12]. In our proposal, each zone implements LKH. 
Accordingly, the number of keys stored in each member is 
log2(nmz)+2, where nmz represents the number of members in 
each zone. This number originates from the fact that, each 
zone member stores log2(nmz)+1 keys according to LKH 
(which covers the individual MbrPKey and Zkey). 
Additionally, each member stores the global TEK. 

 

Figure 6 LKH Architecture 
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Figure 7 shows the members storage cost for both 
traditional LKH and CASMA. In traditional LKH, as the 
number of members increases, the number of stored keys also 
increases. In our proposal, the members are distributed among 
many ZKDs with a maximum number of sixteen members per 
zone. This leads to a maximum of six keys to be stored per 
zone member. As a result, much less keys are stored in 
members using CASMA compared to the traditional LKH 
protocol.  

Server Keys: 

In traditional LKH, there is only one key server that stores 
2n-1 keys [12]. In CASMA, there are two types of servers: the 
DKD and the ZKDs. For the ZKD, the number of keys stored 
is 2nmz+2. This number originates from implementing LKH 
within the zone, which gives rise to 2nmz-1 stored keys in each 
ZKD. Additionally, each ZKD stores three extra keys; the 
Zkey, the ZKDkey, and the TEK. Adding these three keys to 
the existing 2n-1 keys results in 2nmz+2 keys stored in each 
ZKD. For the DKD, the number of keys stored is nz+2, where 
nz is the number of ZKDs. This number represents the 
individual ZKDkey of each ZKD in addition to the DGkey and 
TEK.  

Figure 8 shows the key servers storage cost. For the single 
key server in traditional LKH, the storage load increases 
linearly with the addition of new members. For CASMA, the 
load is nearly constant. This is due to the distribution of 
members among several servers. CASMA is clearly much 
more efficient as it balances the load among the servers and 
avoids overloading a single server. Hence, it outperforms in 
terms of scalability. Furthermore, members are re-assigned to 
other servers in case their primarily assigned server fails 
providing resilience and redundancy. 

Table I summarizes the comparison of the key storage for 
CASMA versus traditional LKH. 

TABLE I. COMPARISON OF STORAGE COST 

 Member Key Server 

CASMA log2(nmz)+2 
DKD ZKD 

nz+2 2nmz+2 

LKH log2(n)+1 2n-1 

 

 

Figure 7.  Multicast Group Members Storage Cost 

 

Figure 8.  Multicast Group Key Servers Storage Cost 

 

Both Figures 7 and 8 show the great memory savings 
achieved by the CASMA model. 

B. Communication Cost 

Communication cost is defined as the number of required 
rekeying messages sent by the key servers during the join and 
leave operations. 

Communication Cost during Join operation: 

In LKH, the number of join messages is 2*log2(n) with 
single key distribution per message [12]. On the other hand, 
when a new member joins the group in CASMA, the DKD 
multicasts the new TEK to all ZKDs in one message. In the 
unaffected zones, the ZKD multicasts this TEK to its zone 
members in only one message as well. For the zone with the 
new joining member, the ZKD updates the other members 
with the new ZKey according to LKH with 2*log2(nmz) 
messages. Additionally, it multicasts the new TEK to all zone 
members using the new ZKey. Therefore, the total number of 
messages transmitted by this ZKD  is 2*log2(nmz)+1.   

The number of Join messages versus the number of 
members is shown in Figure 9 for both CASMA and 
traditional LKH protocols. The number of messages sent by 
ZKD in CASMA does not exceed 9, which is less than half the 
number sent by LKH server in LHK. CASMA surpasses 
traditional LKH in accommodating large groups of members 
and is hence more scalable. 

Communication Cost during Leave operation: 

For a binary tree and a single key distribution per message, 
the number of leave messages in LKH is (2*log2(n))-1 
messages [12]. In CASMA, when a member in a certain zone 
leaves the group, the ZKD in this zone updates the ZKey of its 
tree using (2*log2(nmz))-1 messages. Next, the DKD multicasts 
the new TEK to all ZKDs using one message. Finally, all 
ZKDs multicast the new TEK to their zone members in one 
message too. This includes the ZKD with the leaving member. 
As a result, the total number of messages transmitted by the 
ZKD with the leaving member equals (2*log2(nmz)). 

Figure 10 shows the communication cost versus the 
number of members for both CASMA and traditional LKH 
protocols. Once again, the number of messages sent by ZKD 
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servers in CASMA is less than half the number of messages 
sent by LKH server in LHK. The new proposal surpasses 
traditional LKH in scalability. 

Table II summarizes the comparison of the communication 
cost for the new proposal versus traditional LKH. 

TABLE II. COMPARISON OF COMMUNICATION COST IN 
KEY SERVERS 

 Join Messages Leave Messages 

CASMA 
DKD ZKD ZKD* DKD ZKD ZKD* 

1 1 2*log2(nmz)+1 1 1 2*log2(nmz) 

LKH 2*log2(n) 2*log2(n)-1 

ZKD*: ZKD with joining or leaving member 

 

 

Figure 9.  Join Messages Communication Cost 

 

 

Figure 10.  Leave Messages Communication Cost 

 
 

 

 

 

 

 
 

 

 

 

 

Both Figures 9 and 10 show the great reduction in the 
number of messages during the join and leave operation in the 
CASMA model. 

V. CONCLUSION AND FUTURE WORK  

This paper introduces a new GKM security model; 
CASMA. The model deals with the dynamic nature of IoT 
application scenarios using a context aware security server. 
This server assigns members to the appropriate key server to 
register with and obtain the keying materials based on 
collected context information. The proposal is evaluated by 
measuring and comparing both communication and storage 
costs of CASMA to the traditional LKH protocol. The 
evaluation shows a significant improvement in performance, 
scalability, resilience, and redundancy when CASMA is used 
instead of traditional LKH. 
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