
Context Aware Group Key Management Model for Internet of Things

Hussein Harb, Ashraf William, Omayma A. El-Mohsen

Switching Department

National Telecommunication Institute

Cairo, Egypt

E-mail: Hussein.Harb@nti.sci.eg, awilliam@nti.sci.eg, Omayma.mohsen@nti.sci.eg

Abstract—Internet of Things (IoT) devices are resource

constrained. Therefore, many IoT applications rely on multicast

in their transmission to preserve IoT node resources. However,

security is a main concern in critical applications such as

actuators control. Consequently, the multicast traffic has to be

secured. Multicast security requires an efficient and scalable

Group Key Management (GKM) protocol. In case of IoT, the

situation is more difficult because of the dynamic nature of IoT

scenarios. This paper introduces a new model for GKM based on

using a context aware security server accompanied by a group of

key distribution servers. The model efficiently distributes group

encryption keys to IoT devices to secure the multicast sessions.

The proposed solution is mathematically evaluated relative to the

Logical Key Hierarchy (LKH) protocol. The comparison shows

that the proposed model efficiently enhanced the performance for

both the members and the key servers regarding load and key

storage cost.

Keywords—Internet of Things; Group Key Management;

Context Awareness.

I. INTRODUCTION

The Internet of Things (IoT) refers to billions of
interconnected smart objects equipped with sensors or
actuators. Existing and evolving communication protocols are
used to enable services to such smart objects and allow them
to communicate among each other and with backend users of
the Internet during different activities of sensing and
controlling. IoT networks, without intelligence, are just
wireless sensor networks. Intelligence in IoT is achieved using
context awareness. Context awareness, as defined in [1], is the
ability of a system to provide information or services to users
using information of a certain entity where the entity can be a
person, place, piece of software, or an object.

On the other hand, the IoT is naturally a resource-
constrained network regarding Central Processing Unit power,
memory, and energy. Therefore, many of the IoT application
scenarios rely on multicast operation to preserve bandwidth
and enhance the sensing and control operation among the
sensors and the actuators. For example group communication
is used in; smart meter applications, in building safety, in
home automation and intelligent transportation
systems.Multicast transmits data efficiently between one
sender or multiple senders to multiple receivers. However, the
constrained nature and the massive size of the IoT network
make it vulnerable to many security attacks.

In order to multicast information among a certain group
securely, the traffic should be encrypted. So, a common group
key should be shared among all members of the group.
Whenever membership changes, the group key should be
updated. Hence, during the registration process, it is

necessary to have strong authentication mechanisms to acquire
the identity of the participants prior to distributing the key
material. Thus, the main concern is around key management,
key distribution, and access control for the key material [2].

Group Key Management (GKM) protocols are divided into
three categories: centralized, decentralized, and distributed
key management protocols [2]-[4]. Nevertheless, all the
conventional GKM protocols under the above mentioned
categories do not suit the dynamic nature of the IoT scenarios
and applications. Consequently, many research directions are
carried out to adapt these protocols to IoT networks [5]-[7].
Yet, most of the research related to GKM focuses on adapting
these protocols by working on just one or two of the IoT
aspects such as mobility, scalability, constrained nature of
devices, application nature, network access technology, or
addressing. They ignore that the majority of IoT scenarios
need to work on most of these aspects combined together and
they lack the ability to address the resulting issues of such
combination.

In this paper, a new GKM security model is proposed, i.e.,
CASMA (Context-Aware Secured Multicast Architecture), to
work with different IoT applications and to suite the dynamic
nature of the IoT scenarios. CASMA relies on adding
intelligence to the security operation by using a Context
Aware Security Server (CASS) that is responsible for
managing the secure multicast session and group key
distribution operation. The key distribution operation itself is
carried out through a set of Key Distribution Servers (KDS).
The CASS collects context information from both members
(sensors or actuators) and KDSs, and analyses it to assign
those members to the appropriate KDS that will be able to
serve them best, while controlling load balancing which
improves both performance and scalability.

The solution advantages can be summarized in the following:

• CASMA is an open model that is not tied to a specific
protocol or algorithm and can deploy any of the current or
future protocols or algorithms.

• The allocation process is based on context-awareness, which
improves both performance and scalability.

• It can be deployed for both private and public application
scenarios.

• It provides load balancing control among key servers.

• It overcomes key servers’ failover.

The rest of the paper is organized as follows: Section II
describes background information related to the secured
multicast operation and the protocols used to achieve it along
with an overview of the current related research directions
concerning GKM in IoT scenarios. Section III covers the
proposed GKM model architecture and operation. Section VI

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

presents a mathematical evaluation and analysis of the
proposed GKM model performance. Finally, Section V
concludes the paper and proposes future research directions.

II. BACKGROUND AND RELATED WORK

A. Secured Multicast Operation

In order to secure multicast traffic, a security policy is set
up by Group Owner (GO) and passed to a trusted entity; the
Group Controller and Key server (GCKS), which will manage
the group security operation. Next, the group members register
with the GCKS. Their registration is accepted only if they
meet the security parameters defined in the security policy set
up by the GO. At this time, group members are eligible for
keys download.

The aim of such process is that all authorized users
download the same key that is used to encrypt and decrypt
multicast data messages. This shared key is called Traffic
Encryption Key (TEK). In order to preserve the secrecy of the
multicast data and to achieve forward and backward secrecy,
the TEK needs to be updated periodically or each time a
member joins/leaves the multicast group according to the
rekeying mechanism defined in the group security policy [2]-
[4]. Each authorized member that shares the TEK may need to
download additional Keys, called Key Encryption Key (KEK)
and Group Encryption Key (GEK), which facilitates the
update of the TEK.

B. Group Key Management Protocols

Protecting group information is achieved by defining the
security policy by the GO and enforcing it among group
members. This is accomplished by using protocols such as
Group Security Association Key Management Protocol
(GSAKMP) [8] or Group Domain of Interoperation (GDOI)
[9]. The GO creates the security policy rules for the group and
expresses them in a policy token that is passed to the GCKS.
The GCKS enforces such a policy by granting access only to
members that fulfill the security policy. In this case, members
will have the right to download the group keys. Whenever
membership changes, the keys need to be updated according
to the mechanism defined in the security policy. In general,
protocols used in group key management update can be
classified into centralized, decentralized, and distributed group
management protocols.

In centralized group key management protocols, there is
only one GCKS responsible for group key distribution and
update. The GCKS shares a pairwise key with each member of
the group and distributes group keys to group members on a
point-to-point basis. Examples of protocols working in
centralized fashion are Group Key Management Protocol
(GKMP), Logical Key Hierarchy (LKH), LKH+, One-way
Function Tree (OFT), Centralized Flat Table (CFT), and
Efficient Large-Group Key (ELK) [2]-[4].

In decentralized group key management protocols, the
large group is divided into small subgroups. A group key is
shared among all group members and every subgroup has its
own subgroup key. The GCKS serves all members of the
group. On the other hand, every subgroup has its subgroup key
sever, which manages the subgroup key. Examples of
protocols working in decentralized fashion are Scalable
Multicast Key Distribution (SMKD), Iolus, Dual-Encryption

Protocol (DEP), MARKS, Kronos, and Intra-Domain Group
Key Management protocol (IGKMP) [2]-[4].

In distributed group management protocols, many
members in the group are responsible for new group key
generation and distribution. It has no group controller. The
group key can be generated in a contributory fashion, where
all members aid in generating the group key. However, this
process becomes difficult as group members increase or if the
key is generated by one of the members, which is not secure.
The distributed group key management protocols are the most
complex and difficult ones. Examples of distributed protocols
are Group Diffie–Hellman Key Exchange (G-DH),
Conference Key Agreement (CKA), Distributed Logical Key
Hierarchy (DLKH), Distributed One-way Function Tree
(DOFT), and Diffie–Hellman Logical Key Hierarchy (DH-
LKH) [2]-[4].

C. Related Work

Most of the research work carried out in this domain is
either very specific to an application or a rekeying protocol.
For example, in [5] Li et al. focus on Privacy Preservation in
Smart Buildings of the Smart Grid. It is based on Tree Group
Deffie-Helman (TGDH) evaluating fault tolerance and
performance. The paper assumed that the key server and the
trust center are always available; it doesn’t state how security
is maintained in case of their failure.

Similarly, Agrawal [6] works on Secure Key Distribution
Protocols in Smart Meter application focusing on preventing
man-in-the-middle attack. The paper introduces just a security
analysis with no performance evaluation.

In [7], a centralized approach to distribute and manage
group keys in ad hoc networks and Internet of Things is used.
The proposal is applied to Vehicle-to-Vehicle communications
in Vehicular Ad hoc Networks measuring the communication
cost. The paper proposes performing batch leave operation
based on a pre-determined leave time stated by members while
joining the group. The paper assumes that each member
knows the exact time to leave the group, which is not always
the case. Also, the paper ignores leave events due to
communication loss.

It is obvious that most of the research work carried out is
tied to a certain type of application such as smart grids,
Internet of vehicles, etc., none of which is generic. In addition,
those researches work on just one or two aspects of IoT
assuming that the conditions of the application scenario is
static which is not the case for IoT application scenarios which
have dynamic and varying nature regarding the network
access technology, type of application, state of members and
key servers and the load on them.

This raises the motivation to introduce our GKM model
that adapts to the dynamic nature of IoT scenarios regarding
application nature and scenario conditions.

III. THE PROPOSED GKM MODEL

This section presents the new proposed solution. In
subsection A, the new key management architecture, CASMA,
is introduced. Next, subsection B explains its operation.

A. CASMA Architecture

The CASMA model is based on the IGKMP protocol
architecture [2]-[4][10]. IGKMP is a decentralized key

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

management protocol in which subgroups are called areas.
Each area has one subgroup controller called Area Key
Distributer (AKD). A common controller, i.e., Domain Key
Distributer (DKD), is responsible for generating the group key
and facilitating the co-ordination between AKDs. Each
member belongs to one area only and registers with one AKD
according to the location.

 The CASMA architecture is shown in Figure 1. CASMA
follows the International Telecommunication Union IoT
architecture reference model defined in [11]. According to the
model, the architecture is composed of a Device layer,
Network layer, Service Support and Application Support
layer, and finally an Application layer.

CASMA is based on using a CASS server and a set of
KDSs. Here, The KDSs are the DKD and the Zone Key
Distribution servers (ZKDs). The DKD; as in IGKMP; is
responsible for TEK generation and update, while the ZKDs
replace the AKDs found in IGKMP. The ZKDs are the
subgroup controller of their zones, where the zone represents
the ZKD with its registered members. They are not tied to a
certain area or location as is the case for AKDs. All these
servers lie in the Service Support and Application Support
Layer of the IoT Reference Model, as shown in Figure 1.

The CASS server acts as the trusted entity that is
responsible for managing the security sessions, while the
KDSs are responsible for key distribution and update.

The CASS collects context information from both
members (sensors or actuators) and KDSs and stores it in its
database. The information collected from sensors includes
location, access network, multicast group to join, application
accessed and load on KDSs and their availability. On the other
hand, the information from KDSs is that related to the
supported multicast groups and the number of members
associated with each group.

The CASS server analyses the collected information and
uses it to assign those members to the appropriate ZKD that
will be able to serve them best, while controlling load
balancing. This information is periodically updated. Therefore,
the allocation process is based on intelligent context-
awareness, which improves both performance and scalability.

Figure 1. CASMA Architecture

CASS roles can be defined as follows:

• Acts as a Trusted Entity for security operation.

• Manages the operation of key distribution.

• Contains profile for context information of registered
member (status, location, access network, multicast
application running).

• Contains profile for context information of ZKDs
(status, location, multicast groups supported, number of
registered members in each group).

• Collects context information from members and KDSs
and stores it. This information includes:

• Access Network (Wi-Fi, Zigbee, 3G and
4G)

• Geographical location

• Multicast group to join

• Load on ZKD servers

• Analyses collected information and uses it to assign the
members to the appropriate KDS that will be able to
serve them best, while controlling load balancing.

• Receives members’ query-to-join requests.

• Assigns members (actuator nodes) to the appropriate
ZKD to register with according to analyzed context
information.

• Keeps track of active ZKDs.

• Assigns alternative ZKD to members in case of the
main ZKD failure.

• Adjusts periodic rekey time according to application
and network conditions.

ZKD roles are as follows:

• Communicates with CASS Server, DKD, and
members.

• Receives request to join messages from members.

• Each ZKD Creates a zone that contains itself and the
members that register with it.

• Shares a unique key; Member-Private-Key (MbrPKey)
with each accompanied member. This key is used to
provide a secure unicast channel between the ZKD and
the member.

• Shares a common Zone group Key (ZKey) between
itself and all accompanied members. This key is used
to assist TEK distribution from the ZKD to the
associated members.

• The MbrPKey and the ZKey as shown in Figure 2 are
both generated and downloaded from the ZKD to the
members during the registration process.

• Shares a unique key ZKDkey with the DKD. This key
is used to provide secure unicast channel between the
ZKD and the DKD.

• Shares a common Domain group Key (DGkey)
between the DKD and all ZKDs. This is used to assist
in the distribution of TEK from the DKD to all ZKDs.

• The ZKDKey and the DGKey as shown in Figure 2 are
both generated and downloaded from the DKD to the
ZKDs during the registration process between ZKD
and DKD.

• Updates members with TEK during rekeying.

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

Figure 2. Architecture Keys

DKD roles are defined as follows:

• Communicates with the CASS Server and the ZKDs.

• Shares the unique ZKDkey with each ZKD.

• Shares the common multicast DGkey with all ZKDs.

• Generates the TEK and transmit it to the ZKDs over a
secured channel.

• Notified by the CASS in case of membership change or
periodic rekeying.

• Updates TEK according to membership change or
periodic rekeying.

• Keeps track of key synchronization among ZKDs.

It is worth mentioning that within each zone, rekeying can
take place using the above mentioned MbrPKey and Zkey. It
can also take place using any of the centralized rekeying
protocols mentioned in Section II-B (LKH, LKH+, OFT, CFT,
and ELK). This solution can be implemented in either private
application scenarios, such as buildings automation, smart
home, and buildings safety or public application scenarios,
such as in smart cities and Internet of vehicle applications.

B. CASMA operation

The following explains the rekeying operation in CASMA
solution. This process takes place whether periodically or due
to member change.

Member Join:

With every new member joining the group, the group key
needs to be changed in order to assure backward secrecy (new
members have no access to previous secured data). The
messages flow is shown in Figure 3.

First, the new member (Actuator) sends a "Query-to-Join"
request to the CASS server. The CASS server analyses its
database and selects the appropriate ZKD according to the
scenario logic. The address of the assigned ZKD is sent to the
joining member in the "Query-Response" message.

Figure 3. Join Multicast Group Message Flow

Second, the member sends a "Request-to-Join" message to
the assigned ZKD. The ZKD authenticates the joining member
and ensures that it meets the security policy specification. If it
succeeds, the ZKD sends an "Accept-Join-Notification"
message to the CASS server to update its database with the
context information related to the ZKD (number of
accompanied members relative to the multicast group) and to
the member (successfully registered with the assigned ZKD).

 Third, the ZKD sends a "Join-Notify" message to the DKD
to update the TEK. Consequently, the DKD performs key
update and multicasts the new key to all ZKDs encrypted with
the DGkey. Finally, the ZKDs extract the TEK and multicast it
to their zone members encrypted using their Zone key.
Simultaneously, the ZKD with the new joining member
updates its ZKey and sends the new keys (TEK and ZKey) to
the new member encrypted with its private key (MbrPKey).

Member Leave:

When a member leaves a group, the multicast key and its
zone key need to be updated to assure forward secrecy (the
leaving member has no access to forthcoming data
transmitted). The messages flow is shown in Figure 4.

First, the leaving member (Actuator) sends a "Leave"
request to its ZKD. Second, The ZKD forwards the “Leave”
request to the DKD to perform TEK update. Third, the ZKD
sends a “Leave_Notification” message to the CASS server to
update its context information database indicating that the load
on this ZKD is decremented by the effect of the leaving
member. Fourth, the ZKD creates a new ZKey and sends this
key to each one of the remaining zone members encrypted by
each member private key (MbrPKey). This is represented by
the zone key download operation taking place on the zone
existing members throughout all ZKDs. Fifth, the TEK update
takes place when the DKD creates the new TEK and
multicasts it to all ZKDs encrypted by the DGkey. Finally,
each ZKD decrypts this message carrying the TEK, re-
encrypts it using its ZKey, and multicasts it to its zone existing
members.

31Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

Figure 4. Leave Multicast Group Message Flow

Periodic Rekeying:

The CASS server periodically informs the DKD server to
update the Keys to avoid security breaches. By keeping track
of the server status, the CASS informs the DKD about the
appropriate time for rekeying to avoid network and server
loading as shown in Figure 5. As a result the DKD creates the
new TEK and multicasts it to all ZKDs encrypted by the
DGkey. Each ZKD decrypts this message carrying the TEK,
re-encrypts it using its ZKey, and multicasts it to its zone
members. Furthermore, the CASS can adjust the time interval
needed for periodic rekeying according to application type and
strength of the encryption key.

IV. PERFORMANCE ANALYSIS

As previously mentioned in Section III-A, rekeying within
each zone can take place using one of the centralized key
management protocols. Consequently and in order to evaluate
the performance of CASMA, a comparison is held between
two cases. In the first one, LKH is used in the traditional
centralized way. In the second case, LKH protocol is used for
rekeying within each zone in CASMA.

Figure 5. Periodic Rekeying Message Flow

The LKH protocol is chosen for comparison as it is
considered one of the most efficient rekeying protocols. The
operation of LKH as shown in Figure 6 begins by building a
hierarchal key tree with members acting as leaves and the
GKCS acting as the root of the tree. Each node in the tree
represents a key in the key hierarchy. The root key is the TEK
used to secure the group data. The leaf key is the unique key
shared between the node and the key server. The intermediate
nodes represent keys that are a set of KEKs used to help in the
distribution and update of TEK. According to the tree
structure, each member stores all the keys in the path from
itself to the root. With members change, all the keys in its path
need to be changed to maintain forward and backward secrecy
[12].

In our evaluation, the LKH key tree is built as a balanced
binary tree where each node has just two children. The context
information that is used here by the CASS server for
members’ distribution among ZKDs is the load on these
servers. The members register with the first ZKD until a
threshold level is reached. Next, the members will begin to
register with the next ZKD. The threshold level used in this
evaluation is sixteen. In a balanced binary tree, this threshold
gives rise to five keys to be stored in each member per
multicast group. This is considered appropriate for such
constrained devices.

The evaluation studies two critical parameters for multicast
security in IoT: storage cost in members and key servers and
communication cost during the join and leave operations.

A. Storage Cost

Storage cost is defined as the number of keys stored in
each member and in the key servers.

Member Keys:

 According to the LKH protocol, each member stores
log2(n)+1 keys, where n represents the number of members
[12]. In our proposal, each zone implements LKH.
Accordingly, the number of keys stored in each member is
log2(nmz)+2, where nmz represents the number of members in
each zone. This number originates from the fact that, each
zone member stores log2(nmz)+1 keys according to LKH
(which covers the individual MbrPKey and Zkey).
Additionally, each member stores the global TEK.

Figure 6 LKH Architecture

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

Figure 7 shows the members storage cost for both
traditional LKH and CASMA. In traditional LKH, as the
number of members increases, the number of stored keys also
increases. In our proposal, the members are distributed among
many ZKDs with a maximum number of sixteen members per
zone. This leads to a maximum of six keys to be stored per
zone member. As a result, much less keys are stored in
members using CASMA compared to the traditional LKH
protocol.

Server Keys:

In traditional LKH, there is only one key server that stores
2n-1 keys [12]. In CASMA, there are two types of servers: the
DKD and the ZKDs. For the ZKD, the number of keys stored
is 2nmz+2. This number originates from implementing LKH
within the zone, which gives rise to 2nmz-1 stored keys in each
ZKD. Additionally, each ZKD stores three extra keys; the
Zkey, the ZKDkey, and the TEK. Adding these three keys to
the existing 2n-1 keys results in 2nmz+2 keys stored in each
ZKD. For the DKD, the number of keys stored is nz+2, where
nz is the number of ZKDs. This number represents the
individual ZKDkey of each ZKD in addition to the DGkey and
TEK.

Figure 8 shows the key servers storage cost. For the single
key server in traditional LKH, the storage load increases
linearly with the addition of new members. For CASMA, the
load is nearly constant. This is due to the distribution of
members among several servers. CASMA is clearly much
more efficient as it balances the load among the servers and
avoids overloading a single server. Hence, it outperforms in
terms of scalability. Furthermore, members are re-assigned to
other servers in case their primarily assigned server fails
providing resilience and redundancy.

Table I summarizes the comparison of the key storage for
CASMA versus traditional LKH.

TABLE I. COMPARISON OF STORAGE COST

 Member Key Server

CASMA log2(nmz)+2
DKD ZKD

nz+2 2nmz+2

LKH log2(n)+1 2n-1

Figure 7. Multicast Group Members Storage Cost

Figure 8. Multicast Group Key Servers Storage Cost

Both Figures 7 and 8 show the great memory savings
achieved by the CASMA model.

B. Communication Cost

Communication cost is defined as the number of required
rekeying messages sent by the key servers during the join and
leave operations.

Communication Cost during Join operation:

In LKH, the number of join messages is 2*log2(n) with
single key distribution per message [12]. On the other hand,
when a new member joins the group in CASMA, the DKD
multicasts the new TEK to all ZKDs in one message. In the
unaffected zones, the ZKD multicasts this TEK to its zone
members in only one message as well. For the zone with the
new joining member, the ZKD updates the other members
with the new ZKey according to LKH with 2*log2(nmz)
messages. Additionally, it multicasts the new TEK to all zone
members using the new ZKey. Therefore, the total number of
messages transmitted by this ZKD is 2*log2(nmz)+1.

The number of Join messages versus the number of
members is shown in Figure 9 for both CASMA and
traditional LKH protocols. The number of messages sent by
ZKD in CASMA does not exceed 9, which is less than half the
number sent by LKH server in LHK. CASMA surpasses
traditional LKH in accommodating large groups of members
and is hence more scalable.

Communication Cost during Leave operation:

For a binary tree and a single key distribution per message,
the number of leave messages in LKH is (2*log2(n))-1
messages [12]. In CASMA, when a member in a certain zone
leaves the group, the ZKD in this zone updates the ZKey of its
tree using (2*log2(nmz))-1 messages. Next, the DKD multicasts
the new TEK to all ZKDs using one message. Finally, all
ZKDs multicast the new TEK to their zone members in one
message too. This includes the ZKD with the leaving member.
As a result, the total number of messages transmitted by the
ZKD with the leaving member equals (2*log2(nmz)).

Figure 10 shows the communication cost versus the
number of members for both CASMA and traditional LKH
protocols. Once again, the number of messages sent by ZKD

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

servers in CASMA is less than half the number of messages
sent by LKH server in LHK. The new proposal surpasses
traditional LKH in scalability.

Table II summarizes the comparison of the communication
cost for the new proposal versus traditional LKH.

TABLE II. COMPARISON OF COMMUNICATION COST IN
KEY SERVERS

 Join Messages Leave Messages

CASMA
DKD ZKD ZKD* DKD ZKD ZKD*

1 1 2*log2(nmz)+1 1 1 2*log2(nmz)

LKH 2*log2(n) 2*log2(n)-1

ZKD*: ZKD with joining or leaving member

Figure 9. Join Messages Communication Cost

Figure 10. Leave Messages Communication Cost

Both Figures 9 and 10 show the great reduction in the
number of messages during the join and leave operation in the
CASMA model.

V. CONCLUSION AND FUTURE WORK

This paper introduces a new GKM security model;
CASMA. The model deals with the dynamic nature of IoT
application scenarios using a context aware security server.
This server assigns members to the appropriate key server to
register with and obtain the keying materials based on
collected context information. The proposal is evaluated by
measuring and comparing both communication and storage
costs of CASMA to the traditional LKH protocol. The
evaluation shows a significant improvement in performance,
scalability, resilience, and redundancy when CASMA is used
instead of traditional LKH.

REFERENCES

[1] G. D. Abowd et al., “Towards a better understanding of context and
context-awareness”, Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing, London, UK, 1999, pp. 304–307.

[2] R. Barskar and M. Chawla, “A Survey on Efficient Group Key
Management Schemes in Wireless Networks”, Indian Journal of Science
and Technology, Vol 9(14), April 2016.

[3] B. Jiang and X. Hu, “A Survey of Group Key Management”,
International Conference on Computer Science and Software
Engineering, 2008.

[4] S. Rafaeli and D. Hutchison, “A Survey of Key Management for Secure
Group Communication”, Journal ACM Computing Surveys (CSUR),
Volume 35 Issue 3, Pages 309-329, September 2003.

[5] D. Li, Z. Aung, S. Sampalli, J. Williams and A. Sanchez, “Privacy
Preservation Scheme for Multicast Communications in Smart Buildings
of the Smart Grid”, Journal, Smart Grid and Renewable Energy
(SGRE),Vol 4 No. 4, July 2013.

[6] N. Agrawal, “Secure Key Distribution Protocol with Smart Meter”,
International Journal of Current Engineering and Technology, Vol.5,
No.5, Oct 2015.

[7] L. Veltri, S. Cirani, S. Busanelli and G. Ferrari, “A novel batch-based
group key management protocol applied to the Internet of Things”,
Elsevier Journal, Ad Hoc Networks, Volume 11, Issue 8, November
2013, Pages 2724–2737.

[8] Harney, Meth and Colegrove, “GSAKMP: Group Secure Association
Key Management Protocol”, RFC 4535, June 2006.

[9] Weis, Rowles and Hardjono, “The Group Domain of Interpretation”,
RFC 6407, October 2011.

[10] T. Hardjono, B. Cain, and L. Monga, “Intra-domain Group key
Management for Multicast Security”, IETF internet Draft, September
2000.

[11] International Telecommunication Union - ITU-T Y.2060 - (06/2012) -
Next Generation Networks - Frameworks and functional architecture
models - Overview of the Internet of things.

[12] D. Wallner, E. Harder and R. Agee, “Key Management for Multicast:
Issues and Architecture”, RFC 2627, June 1999.

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

