
Scalable Monitoring for Multiple Virtualized Infrastructures for 5G Services

Panagiotis Trakadas, Panagiotis Karkazis, Helen-
Catherine Leligou, Theodore Zahariadis, Andreas

Papadakis
Synelixis Solutions
Chalkida, Greece

email: {ptrak, pkarkazis, nleligou, zahariad,
papadakis}@synelixis.com

Wouter Tavernier, Thomas Soenen, Steven van
Rossem

University of Ghent
Ghent, Belgium

email: {wouter.tavernier, thomas.soenen,
steven.vanrossem}@ugent.be

Luis Miguel Contreras-Murillo
Telefonica

Spain
email: luismiguel.contrerasmurillo@telefonica.com

Abstract— This paper presents a high level architecture and
functionality details of the monitoring framework that has
been implemented and integrated within the SONATA project,
in order to support the management of 5G services under the
Software Defined Networking / Network Function
Virtualization (SDN/NFV) paradigm. The innovative
framework, extending the functionality of Prometheus.io, is
unique in its support for multiple Points of Presence (PoP), its
extensibility using Websockets, and its availability as open-
source.

Keywords-NFV/SDN; Cloud Computing; Monitoring; SDN;
NFV; Network Services.

I. INTRODUCTION
In the next years, 5G infrastructure will become a

ubiquitous, flexible and programmable network that will be
in the core of every social, business and cultural process,
enabling both economic growth and social prosperity. In
order to achieve this goal, the 5G vision poses significant
technical challenges that must be fulfilled, including the
concept of agile programmability and supporting the
introduction of management mechanisms for the efficient
instantiation of innovative services across heterogeneous
network components, virtualized infrastructures and
geographically dispersed cloud environments.

One of the important issues to be addressed in this new
era of 5G service management is related to network and
service monitoring, demanding for collecting data and
metrics on the performance and usage of the resources
involved in the lifecycle management of 5G services.
However, the already available monitoring tools do not
achieve the requirements stemming from the services
envisioned in the 5G landscape, since they are in most of the
cases: (i) intrusive and heavy-handed for short-lived,
lightweight network function instances, (ii) not able to
follow the fast pace of management changes enforced by
continuous dynamic scheduling, provisioning and auto-
scaling, (iii) not covering the requirements of all the involved

emerging technologies, including deployments in both
hypervisor-based and containerized manner, as well as
monitoring data collection from different cloud
environments. This paper presents the monitoring framework
that has been implemented within the SONATA project,
providing an interactive monitoring framework capable of
offering real-time data collection, processing and alerting to
all involved stakeholders of an SDN/NFV-enabled service
platform, i.e., service developers, service platform operators
and end-users, under heterogeneous cloud-enabled
computing environments.

In Section II, we present the related state of the art, while
in Section III the monitoring requirements for 5G services
are discussed. Section IV includes the high-level architecture
and functionality of our monitoring framework. Section V
discusses the scalability of the proposed implementation,
while Section VI includes our conclusions and future work.

II. STATE OF THE ART
Network monitoring has been an active research topic for

more than three decades. Well-established protocols such as
Simple Network Management Protocol (SNMP) [1] and
Internet Protocol Flow Information Export (IPFIX) [2] are
already successfully applied for gathering network metrics
through either passive or active measurements. However,
network metrics in isolation are not very useful in services-
oriented systems; they have to be aggregated and
consolidated with service- and resource-related information
to produce an integrated picture of the performance of the
provided service. Hence, another category of monitoring
tools is mostly focusing on computation, storage and
memory resources of the infrastructure or the deployed
service/application, such as Nagios [3] and Zabbix [4]. One
of the most advanced and modern monitoring tools is
Prometheus [5] that is an open-source service monitoring
system, based on a time series database that implements a
highly dimensional data model, where time series are
identified by a metric name and a set of key-value pairs.
Moreover, Prometheus provides a flexible query language,

41Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

allowing slicing of collected time series data in order to
generate ad-hoc graphs, tables, and alerts. Most importantly,
Prometheus provides probes that allow bridging of third-
party data into Prometheus in a “pull” fashion, but also
supports “push” through an already implemented gateway.

Recently, the concepts of SDN and NFV in combination
with the advent of Cloud Computing and containerization of
services, has dictated the implementation of monitoring tools
in conformance with the respective technologies that will
allow the retrieval of SDN-based, per-flow information
directly via the Application Programming Interface (API) of
the Openflow controller (e.g., OpenDaylight Statistics REST
API [6]), the collection of monitoring data within Docker
containers via cAdvisor tool [7] as well as the performance
monitoring of cloud infrastructures and instantiated services,
such as Monasca for OpenStack [8]. Following these trends,
the programmability of 5G software network infrastructure
will require a flexible and expandable monitoring tool to
complement the management of the deployed innovative
services, integrating the benefits of the abovementioned tools
in a unified framework. During the last years a remarkable
effort has been made on the development and integration of
such monitoring frameworks under different viewpoints: In
[9], the authors introduce a management solution for cloud
federation that automates service provisioning and achieves
seamless deployment of services across a future internet
cloud federation; however, this framework lacks inherent
support for NFV deployment. In [10], the challenges of
proper NFV monitoring are discussed, focusing on the
process of collecting NFV Infrastructure (NFVI) metrics and
processing them at Virtualized Infrastructure Management
(VIM) level. Finally, in [11], the authors present a
monitoring and discovery framework for self-organized
network management in virtualized and software defined
networks that, is relevant to the management of 5G services
under the SDN/NFV paradigm, but lacks proof in terms of
scalability.

III. MONITORING FRAMEWORK REQUIREMENTS FOR 5G
SERVICES

This section presents the requirements related to
monitoring arising from the use case scenarios of SONATA
EU-funded project [12], acting as drivers for the monitoring
architecture design that has been followed (Table I).

TABLE I. REQUIREMENTS FULFILLED BY THE SONATA
MONITORING FRAMEWORK

Req. name Description KPIs
VNF status
monitoring

Provide a high level state for
each VNF

Provide a dashboard
displaying status data

VNF
placement
and metrics
modification
during
runtime

Allow the user to deploy
VNFs at arbitrary points into

the network and modify
metrics parameters in

runtime.

SLA/QoS metrics
related to deployment

time, cost, etc and
interfaces for

modification of
metrics and thresholds.

Timely
alarms for
SLA
violation

Provide alarms for SLA
violations in a timely

manner.

Proven performance
and scalability of the

message bus and
websocket creation

Req. name Description KPIs
VNF real-
time
monitoring

VNFs will generate in real
time information useful for
monitoring and response.

Monitoring frequency,
time to process alerts.

Quality of
service
monitoring

Metrics generation and
degradation detection of

network traffic, should be
supported and reported.

Traffic QoS, packet
loss, delays.

Monitoring
Framework
Scalability

Scalable to support multiple
and heterogeneous

infrastructures and a high
traffic load.

Support for multi-PoP
and multi-tenancy

federated environment.

Although not specifically mentioned in the above-
mentioned requirements, it is required that monitoring
system must collect data from Virtual Network Functions
(VNFs) deployed on virtual machines and containers in
different infrastructures. Additionally, in order to facilitate
the resource orchestration process, SONATA monitoring
system must collect and offer information related to the
available resources of the infrastructure, as mandated by
VNF placement. Thus, monitoring system must be able to
collect data from the underlying infrastructures comprising
the SONATA ecosystem. Moreover, the monitoring system
must be able to accommodate VNF-specific alerting rules for
real-time notifications. Also, the presented SONATA
monitoring framework will offer the capability to developers
to define service-specific rules, whose violation will inform
them in real-time. Finally, there is one requirement related to
the Quality of Service that demands special attention with
regards to sampling period and monitoring accuracy and
another one, directly related to scalability of the SONATA
monitoring framework with respect to the Service Platform
and respective infrastructures.

IV. HIGH-LEVEL ARCHITECTURE AND FUNCTIONALITY
OF MONITORING FRAMEWORK

In a nutshell, the SONATA monitoring framework
collects and processes data from several sources, offering the
developer the ability to activate metrics and thresholds in
order to capture generic or service-specific behaviour.
Moreover, the developer can define rules based on metrics
gathered from one or more VNFs deployed in one or more
NFVIs in order to receive notifications in real time. In
general, the developer is able to subscribe to a message
queue or he can get the alert notifications by email and/or
SMS on his smartphone. Most importantly, monitoring data
and alerts are also accessible through an API or directly
accessing a websocket URL. The internal architecture of
Monitoring Framework is depicted in Figure 1 and explained
in the next subsections.

A. Collecting data from several sources
It is of paramount importance to collect monitoring data

from as many as possible sources. In the implemented
framework, there are four different types of sources for
collecting data: 1) container probe which runs inside the
container-based VNFs to collect data related to their
performance, 2) VM probe that collects data from Virtual
Machines (VMs) hosting VNFs, 3) OpenFlow probe which
is a Python software that utilizes OpenDayLight API to

42Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

collect data from the OpenFlow controller, and 4) OpenStack
probe that has also been developed as a software module (in
Python language) that uses OpenStack API to collect data
from all OpenStack components.

B. Push Gateway
This component is part of the open source Prometheus

monitoring solution [5] that has been adopted and extended
to cover the needs of SONATA Monitoring Framework.
Push Gateway is utilized so that the probes/sources use
HTTP POST method to “push” monitoring data to the Push
Gateway, while Prometheus server collects the data in a
predefined time interval. The advantage of this approach is
that in the case of the deployment of a new service, there is
no need for the Prometheus monitoring server to search for
data related to the newly deployed VNF, but rather collect
them from the PushGateway.

C. Prometheus Monitoring Server
Prometheus is an open-source service monitoring system,

based on time series database that implements a highly
dimensional data model. A time series entry is identified by a
metric name and a set of key-value pairs. Prometheus has a
sophisticated local storage subsystem (LevelDB), which is
essentially dealing with data on disk and relies on the disk
caches of the operating system for optimal performance.
Prometheus server is responsible for collecting the data and
communicating with the time-series database for retrieving
data upon request.

D. Monitoring Manager

The monitoring manager is a Django-based server that
offers APIs to the users with respect to the monitoring data
of their instantiated 5G services, including: 1) the relation
among services, network functions, NFVIs and users, 2) the
ability to modify rules and thresholds during service/function

runtime, 3) the reconfiguration of Prometheus server, 4) the
ability to define the notification methods in case of alert
generation, 5) the definition of a new websocket to get data
in real-time and many other features.

E. Alert Manager
As previously discussed, the Alert Manager is

responsible (along with the implementation of a message
queuing mechanism, such as RabbitMQ) for sending
notifications about firing alerts to the subscribed users. After
this notification, the user can take advantage of the API to
further investigate the fault or activate a websocket to
receive real-time monitoring data.

F. Websocket server
The implementation of websockets (Tornado web server)

allows the user to collect streaming data from VNFs that
have been deployed in the Service Platform. This is highly
beneficial to the developers, as they would be able to
monitor the performance of a new service in real
environment. Prior to the establishment of a new websocket,
the user must be aware of the metrics collected per VNF, the
VNFs comprising his deployed Network Services and other
related information and this information is already provided
by the existing Monitoring Manager API framework, as
depicted in Figure 2.

After selecting the VNF and the respective metrics to be

sent, the user requests the creation of a new websocket from
the Monitoring Manager. After checking the validity of the
request, the Monitoring Manager communicates with the
Websocket server that creates and sends a new URL for the
user to connect to and where metric values are pushed.

V. SCALABILITY AND DISTRIBUTED ARCHITECTURE
One of the cornerstones of the monitoring framework

implementation was to deliver a carrier-grade solution that
would fulfill scalability requirements in a multi-PoP
environment. As noticed from Figure 3, several components
of the Monitoring Framework had to be distributed across
the SONATA PoPs. First, each PoP must have its own
websocket server to accommodate developers’ demands for
streaming data, although the management of websockets is
handled by the Monitoring Manager instance in a centralized
way. Second, Prometheus Monitoring servers follow a
distributed (cascaded) architecture. The local Prometheus

Figure 2: Websocket interactions.

Figure 1: Monitoring Framework high-level architecture.

43Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

servers collect and store metric data from the VNFs deployed
in the PoP, while only the alerts are sent to the federated
Prometheus server for further processing and forwarding to
the subscribed users. Moreover, the alerting rules and
notifications are based on monitoring data collected in
different PoPs and thus the decision must be made on a
federation level. Another scalability requirement concerns
the large flow of data from the monitoring probes to the
Monitoring Server and its respective database that might
affect the service performance in extreme cases. In this
respect, an architectural decision to address this scalability
issue was to support a distributed architecture regarding the
monitoring server and its database, working in a cascaded
fashion along with proper modifications on component level.
In particular, the functionality of the monitoring probe will
change so that it will not send data to the monitoring server
in cases where the value difference is less than a threshold
defined by the developer.

VI. CONCLUSIONS AND FUTURE WORK
The innovative SONATA monitoring framework builds

further on state-of-the-art technology including RabbitMQ,
Prometheus and Websockets, enabling a multi-PoP
framework with extensible and user-friendly monitoring of
NFV services involving both containers and Virtual
Machines, empowering service management components to
dynamically react on triggered monitoring alerts. As a future
work, in the context of 5G-TANGO EU-funded project [13],
the described Monitoring Framework will be further
enhanced by introducing the concept of autonomic
management, as described in the respective European
Telecommunication Standardization Institute (ETSI)
documents [14].

ACKNOWLEDGMENT
This work has been performed in the framework of the

SONATA and 5GTANGO projects, funded by the European

Commission through the Horizon 2020 and 5G-PPP
programmes.

REFERENCES
[1] J.D. Case, M. Fedor, M. Schoffstall, and J. Davin RFC1157

Simple Network Management Protocol (SNMP), IETF, 1990
[2] B. Claise, Ed., RFC3954, Cisco Systems NetFlow Services

Export Version 9, IETF, 2004
[3] Nagios monitoring solution, https://www.nagios.org/

[retrieved: March, 2018]
[4] Zabbix, Enterprise class Open Source Network Monitoring,

http://www.zabbix.com/ [retrieved: March 2018]
[5] Prometheus open source monitoring solution,

https://prometheus.io/ [retrieved: March 2018]
[6] OpenDaylight Statistics REST API,

https://www.opendaylight.org/ [retrieved: March 2018]
[7] cAdvisor, Monitor containers,

https://hub.docker.com/r/google/cadvisor/ [retrieved: March
2018]

[8] Monasca OpenStack project,
https://wiki.openstack.org/wiki/Monasca [retrieved: March
2018]

[9] Th. Zahariadis, et al., “FI-Lab: Managing Resources and
Services in a Cloud Federation supporting Future Internet
Applications”, 7th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC 2014).

[10] G. Gardikis, et al., “An Integrating Framework for Efficient
NFV Monitoring”, Proceedings of the IEEE NetSoft
Conference and Workshops, Seoul, Korea, 6-10 June 2016,
pp. 1-5.

[11] A. L. V. Caraguay and L. J. G. Villalba, “Monitoring and
Discovery for Self-Organized Network Management in
Virtualized and Software Defined Networks”, Sensors, 2017,
17, 731, DOI: 10.3390/s17040731.

[12] SONATA project, http://sonata-nfv.eu/ [retrieved: March
2018]

[13] 5GTANGO project, http://5gtango.eu [retrieved: March 2018]
[14] ETSI GS AFI 002, v1.1.1, Autonomic network engineering

for the self-managing Future Internet (AFI); Generic
Autonomic Network Architecture, 2013.

Figure 3: Architecture addressing scalability requirements with respect to the monitoring framework.

44Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

