
Adaptive Life-cycle Based on Traffic Prediction on ONOS Controller

Seungbeom Song, Jaiyong Lee
School of Electrical and Electronic Engineering

Yonsei University
e-mail: {glistar, jyl}@yonsei.ac.kr

Abstract— Smart device and Internet of Things (IoT) require
high Quality of Service (QoS). A centralized network emerged
as the most suitable alternative network and it is expected to be
the leading future network. At this moment, the most popular
centralized network is Software Defined Network (SDN) which
can be separated into control plane and data plane in terms of
software. SDN reduces complexity in distributed networking
and manages network resources easily. Due to these
advantages, SDN is undergoing a drastic increase in
networking deployment. However, despite these merits, SDN
still has problems with congestion. The congestion problem
with inevitable performance decrease affects the QoS of the
end users. In our study, we propose ALTP based on the Open
Network Operating System (ONOS) controller to provide high
QoS to users through adaptive monitoring and forwarding.
For implementing the traffic estimating subsystem in SDN
controller, we used Time Series Analysis (TSA). We got the
meaningful benefit of performance while increasing overhead
slightly by implementing the adaptive control of ALTP system.

Keywords- SDN; QoS; ONOS; Adaptive Life-cycle

I. INTRODUCTION

In the last few years, with the great increase in the smart
device’s distribution rate, various communication networks
have been constructed and managed globally. Moreover,
various kinds of services, leading real-time services, such as
video streaming, are provided using these networks. About
these communication services, users require high Quality of
Service, which guarantees high throughput reliability.
Network providers satisfy these demands and guarantee
continuous and high throughput or control the network QoS
parameters such as throughput, delay, jitter, bitrate and so
on. But, in today’s legacy network at the congestion
situation, throughput decline is occurring rapidly. By
reducing the window size through congestion control in each
end host [1], it is controlled a little bit. However, it is
impossible to quickly recognize the whole network state and
respond to unstable situations. Because of these points, the
legacy network structure has the limitation to guarantee
consistent high rate throughput required by present users. To
solve this limitation, the network infrastructure should
handle the traffic in a more flexible way.

SDN developed by Berkeley and Stanford University is a
relatively new paradigm. SDN proposed a solution of Open
Shortest Path First (OSPF)’s limitation through centralized
management hierarchy. At the same time, in contrast to
traditional IP networks, it provides a separate data plane and
control plane of the network [2]. In SDN, network control

such as routing table is processed on the controller. It sends
instructions to the data plane. It reduces duplicate and
unnecessary calculation. It suggests complete control of the
network at the controller. SDN infrastructures have a major
advantage from the abundant availability of computing
resources in the control plane layer which is typically hosted
on high-performance commodity servers [6], reduce the
complexity of distributed configuration and ease the network
management tasks programmability [5]. Due to these
advantages, the 5G network architecture is proposed based
on SDN. However, the current controller lacks a system
implementation that takes advantage of the benefits of the
central control. It only consists of the existing method based
on software. For example, topology-based methods such as
cloud distributed routing on Quagga [6] are used instead of
SDN-specific routing. Also, although it provides reactive
forwarding, link connectivity only reacts based on periodic
link level discovery protocols or link events. This is a non-
reactive control that reflects network conditions.

In this paper, we focus on the Open Network Operating
System Controller system which assures high quality using
Adaptive Life-cycle of data plane based on Traffic Prediction
(ALTP) in SDN environment.

The paper is organized as follows. Section Ⅱ gives an
overview of SDN and ONOS [3] controller. Section Ⅲ
introduces reasons for the need for adaptive life-cycle control
in network congestion. Section Ⅳ highlights significant
related work. Section Ⅴ describes the proposed ALTP ONOS
system. Section Ⅵ analyzes the results achieved with ALTP.
We conclude and outline future work in Section Ⅶ.

II. BACKGROUND

Figure1.Comparewith between legacyandSDN architecture.

58Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

Figure2. ONOSsubsystem structure.

A. SDN Overview

SDN [7], developed by Berkeley and Stanford University
in 2008, is a new paradigm for controlling and managing
networks [8]. Unlike other centralized networks such as
OSPF, SDN has a unique concept, which is the separation of
network control and data plane, as shown Figure 1. Network
management functions based on software are centralized.
SDN can help more scalable vendors independently. This
means providers need not consider expensive vendor-
specific devices and protocols when expanding the network,
and easily recognize the whole network’s state [7]. In the
network configuration, these ease the network management
tasks and control forwarding rules of the whole switch more
efficiently [5]. For this reason, SDN lets network managers
configure, manage, store, and optimize management
parameters directly as basic operations [6]. Overall, SDN can
become intelligent, responsive, and programmable [7].

B. ONOS subsystem structure and OpenFlow specification

The ONOS subsystem of the control plane is composed
of several elements shown in Figure 2. The provider
component is the interface with data plane. The provider
communicates with the data plane through south-bound
protocols such as OpenFlow [7]. The manager component is
the main body of the controller. It is composed of manager,
service, store, and registry. The manager is the core, which
operates to combine all components of manager body. The
service interface has functions, which help to use methods to
other components and through calling. It can receive another
component's sensing or query data. Store saves methods
which need to utilize and determine to synchronize or persist
manager component's methods. The register interacts with
the provider. The application component is network service
function such as forwarding service, firewall and so on. By
using the service of the manager component, applications
can be more flexible. Any application has its own listener
which helps receive control signaling and use the service
parameter. In the overall control plane, the provider
communicates with several switches, and the manager
processes stats to command query and the application
operates network functions.

III. CONGESTION ANDHIGHQUALITY-SERVICE INSDN

The dissatisfaction with high quality service is the delay
caused by link congestion. If congestion occurred in the
network, the end host’s window size is decreased through
congestion control whereby the average delay is high in the
traditional network. Furthermore, link congestion brings QoS
degradation through the re-routing process handled by traffic
engineering at the point of network management, which can
bring a delay also. In this aspect, for high quality service, it is
important to improve the re-routing process speed for the
average delay when congestion occurred and to avoid
congestion. In ONOS system, re-routing happens when the
flow-table and topology are refreshed or when the switches
links status is changed. Therefore, network status table, flow
table, meter table and topology table should be refreshed to
implement new QoS operations. In other words, updating the
meter table fast and flow entry is very important for fast QoS
operation. However, this frequently updating come from
message communication in controller and switch in SDN
environment. So, for more accurate and faster management,
the controller must communicate with the switch frequently.
This process triggers an increase in messages and leads to
link congestion between controller and switch. Hence, the
tradeoff between controller management messages and
control plane resource usages will be considered.

To solve this problem, we propose the ONOS system
using a method to predict the traffic variation for increasing
the updating life-cycle more only on congestion switch
candidates. But, though we recognize the traffic trend, it was
hard to manipulate because traffic is varied too much
irregularly. However, if we predict traffic a few later times in
SDN environment, controlling congestion can be proactive
in advanced. We suggest TSA [10] to solve this problem.
TSA is one of the mathematical methods to find the trend of
data flow. In this paper, we do not deal with TSA. If we find
a proper trend and suggest a suitable model, forecasting
future traffic models could be predicted. In other words, TSA
is one of the proper methods for this study because it uses
recent data and can predict instantly.

IV. RELATED WORK

There are numerous research studies of predicting flow’s
fluctuation. Bozakov et al. [5] studied how to estimate the
autocorrelation of network flow from monitoring data. To
gather data, they use random sampling, i.e., random inter-
query times. As a consequence, this trial could increase the
quality of the whole network successfully without exceeding
the control plane overhead issue. And there were develop a
system for traffic matrix estimation using the sampling of
OpenFlow counters [11]. But these studies just focused on
reducing message overhead without specific network
function of controller’s query message. Fast recovery after a
node or link failure is very important in any routing protocol.
In the legacy network, the authors of [12] discussed node
recovery efficiency using Lagrange multipliers and
suggested ‘pop-routing’ which is applied in OSPF. But this
approach runs only legacy environment, not a centralized
network, and focused on making the recovery faster and

59Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

reliable. Therefore, this new routing policy cannot help to
reduce the link's own congestion phase. There was an
approach of SDN’s polling command and query, namely
[13], where they used a polling scheme and changed
dramatically based on real-time traffic in the whole network.
But, the fast response of traffic change is a very important
issue and real-time based scheme cannot fulfill in burst
traffic due to the bottleneck effect. There was a suggestion of
adaptive scheme in SDN environment. Authors of [14]
studied the avoidance of congestion in SDN by re-routing
when link utilization is more than 70%. Authors of [15]
studied for control idle flow timeout using several time
interval data. That operated like a Round Trip Time (RTT) in
Transmission Control Protocol (TCP), but compared with
RTT, they don't use weight function and just used raw arrival
rate. Despite the fact that the study does not consider link
bandwidth and congestion, the concept of adjusting interval,
using special network function, is meaningful enough.

Figure3. ALTP ONOS subsystemstructure

Figure4. Overall mechanism ofALTP.

V. IMPLEMENTATION

For improving the present SDN environment, we propose
the new ONOS subsystem structure satisfying high quality
service. This system’s characteristic can be roughly
categorized into two genres. First, we have the Traffic
prediction using Time-Series Analysis, and second we have a
more rapid response to congestion by the re-configuring life
cycle of the network topology for Adaptive Life-cycle based
on Traffic Prediction (ALTP) mechanism.

A. ALTP ONOS Subsystem Design Concept

Rapid responding to congestion is essential for satisfying high
QoS. In this paper, two measures are suggested for rapid responding
to congestion. The first is the fast re-routing when congestion
occurred, and second is applying QoS to each flow when link
condition is varied by congestion, and consequently reducing delay
as much as possible.

B. Design Requirement

Two measures stated above, the accuracy of meter entry
showing link status and flow entry in charge of routing are needed
on SDN controller management. These can be executed by the
frequent update of those two entries. However, the frequent update
occurs inevitably message overhead between switch and controller.
To improve this overhead problem in meter entry updating, updating
must be executed selectively in the switches which have congested
link or predicted link congestion. Also, flow entry time-out updating
must be executed selectively when congestion occurred or high
probability of congestion is expected.

As a result, the ALTP ONOS subsystem requires two functions,
like below.

1) The Function recognizing switches and links where a risk of
congestion is high or congestion occurred.

2) The Function applying for adaptive meter entry and flow
entry to selected switches and links, which makes message overhead
become the least.

C. ALTP ONOS Subsystem Sturcture

We assume that no packet loss occurs at links and do not assume
link down. Packet loss occurs only in case of congestion. Also,
increasing message overhead between controller and switches only
reduces controller’s handling time by control plane congestion, but
no control packet loss occurs between controller and switch. In this
structure, shown in Figure 3, we modified the manager component
and services to get the information about switches and links where
congestion occurred or predicted the probability of congestion is
high. In addition, to manipulate updating frequency of entry, the
provider component has modified MeterStatCollector and the
application component has modified ReactiveForwarding.

1) Overall Mechanism of ALTP ONOS Subsystem
The diagram which is shown in Figure 4 simply schematizes the

mechanism proposed ALTP ONOS subsystem structure. First, for
the flow path which the service requiring high service level
agreement used, the ALTP ONOS subsystem calculates congestion
potential using TSA for all switches using network status database
updated by periodic polling messages. Congestion potential refers to
the bandwidth utilization of the link interface mentioned in [14]. The
utilization of the link interface is defined as currently used bit rate per
ports divided by the maximum bit rate per ports. It selects the switch

60Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

wherein congestion occurred or congestion risk is high. Congestion
occurred means link utilization is over 90% or packet drop has
occurred. In this case, topology graph except that interface is
requested immediately. In the case of a single path for that service,
diverting other flow using the same link is derived by setting the
weight of the link high. The flow entry is immediately refreshed.
High congestion risk means that predicted link utilization exceeds
100% by TSA in the path meter polling. In this case, it sets the meter
pilling interval and flow entry timeout to half. This is to compensate
for imperfect predicted value. The system reacts more quickly in
congestion situations by using more control messages. The setting
parameters are changed to default after the predicted utilization of
link is 50% or less in a sequence of the system. It is also applied
when current link utilization is 50% or less. Then, adjust flow entry
updating speed according to the flow that passes pertinent switches.
Similarly, by adjusting meter entry updating speed for pertinent
switches, responding to the congestion can be faster.

2) Flowchart of interactions between Subsystems
Figure 5 presents the flowchart showing how subsystems

provide the adaptive updating rate of flow entry and meter entry to
switches by using exchanged data between subsystems. Table I
represents which data is exchanged between subsystems and what is
this data’s meaning. DeviceService provides port state information
of all existing ports of topology to TrafficPredictor. Next,
TrafficPredictor expects the potential of congestion phase of each
port by using TSA and transfers the list of ports which has expected
to be congested to LinkService in the mechanism of ALTP ONOS
Subsystems.

LinkService returns the list of links which is connected to
received port list information and is already congested. This means
that LinkService returns the list of links which is expected to be
congested or is already congested and transfers this list to
ReactiveForwarding and DeviceService. ReactiveForwarding
adjusts the life-cycle of flow entry. DeviceService, by using the
information of the list of links, returns the list of devices which has
the congestion-expected link or has congested link and transfer it to
MeterStatsCollector. MeterStatsCollector, by using this information,
adjust the updating rate of meter entry and monitoring rule.

For ALTP ONOS subsystem we proposed, we added and
modified five classes in ONOS system, as follows.

Traffic predictor (Added): Traffic predictor is newly added
device service function, which is involved in Manager Component.
The autoregressive integrated moving average (ARIMA) of TSA
models [16] is used and predicts the traffic transition. Traffic
predictor collects all the amount of present traffic-bandwidth usage
calculated in [14] from each port of each switch in current topology.
According to this collected data, it predicts if the congestion will
occur or not in that port. At this moment, for accurate prediction of
traffic bandwidth usage amount, at least past 50 usage amount data is
needed. So, the predicted value will not be returned before
accumulate 50 data and only return present traffic bandwidth. Using
predicted value, traffic predictor returns the list of ports that have a
high probability of congestion, and it transmits the info to the
LinkService and DeviceService.

LinkService (Modified): In modified LinkService, the
transmitted port list which has high congestion probability from the
Traffic Predictor is used. If any link is connected to the congested
port interface, it decides predicted congestion link or has congestion

now for all links in topology now. We get the list of links that have
congestion or has a high probability of congestion.

DeviceService (Modified): Modified DeviceService recognizes
devices expected congestion for all links. We can get the list of
switches expected to be congested and already congested.

ReactiveForwarding (Modified): In modified ReactiveFor-
warding, when the congestion occurrs, ONOS controller processes
the re-routing by using this class. When we want to make this re-
routing time faster, we should update the flow entry, which sets the
path of each flow faster. So, by getting the links which are the
member of flow`s path, SDN controller decides the potential of
congestion of links of that path using the proposed system. This also
means deciding the possibility of re-routing. If the path is expected to
be re-routed, it should increase the updating rate of flow entry for
reacting faster to this situation. This can be executed by reducing
flow timeout of flow entry.

MeterStatsCollector (Modified): In modified MeterStatCol-
lector, when the congestion and re-routing occurrs, the new path is
set and the link state that the flow uses as the path is changed.
Therefore, it is necessary to provide changed QoS to each flow by
updating the meter entry faster. Therefore, by increasing the updating
rate of meter entry for switches that are expected to be congested or
are already congested, we should provide changed QoS as fast as
possible. By doing this, ALTP ONOS controller can react to
congestion phase faster.

TABLE I. THEMESSAGEDESCRIPTIONOFALTP

Data Description

1 Port statistics For everyperiod, computewholeport statistics

2 Port list
Attain and transferport list which expected to be
congested throughport statistics

3 Link list
Transfer link list which expected tobecongested
through theport list

4 Device list
Transferdevice list which expected tobecongested
through theport list

5 Monitoring rule
Command adjusted meter entrypolling interval to
selected switch

6 Forwarding rule
Command adjusted flowtimeout to everyflow
which passes the selected switch

Figure5. Flowchart of interactionsbetween sub systems

61Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

Figure6.Topologysettingfor simulation

VI. RESULTS AND DISCUSSION

Here we describe the analysis of the result of the
experiment showing how much ONOS controller’s
performance is improved when ALTP ONOS controller we
suggested is used. We use the ALTP ONOS controller based
on ONOS version 1.5.2 with OpenFlow version 1.3. To
verify the fast reaction of ALTP ONOS controller for
congestion, we set the simple topology as experiment
environment shown in Figure 6.

We generate the traffic from host 1 to host 2 in Poisson’s
distribution which has average 2Mbps velocity while link1
has 1Mbps bandwidth. This is for deliberate congestion
occurrence. Link2 and link3 on the re-routing path have
10Mbps bandwidth, respectively. By setting like this, when
the routing path is changed, which means ALTP changes the
life-cycle time interval of flow entry and meter entry form 10
seconds (default life-cycle time interval) to 5 seconds when
congestion is expected, we can observe how much delay is
improved by faster updating meter entry. Because in case of
meter entry that is applied by prior routing path, it cannot
guarantee 2Mbps to each flow. However, after the meter
entry update, it can guarantee 2Mbps to each flow, so the
delay would be considerably improved. In other words,
ALTP ONOS controller can provide High-QoS by reacting
faster in case of congestion occurrence.

In Table II, by increasing the Life-cycle interval of
selected switches’ entries, two important factors that have a
dominant effect on high QoS are considerably improved.
However, this result is reasonable because it is ached by
increasing message overhead between controller and
switches.

However, when we compare the results of the cases
which increasing updating rate is applied to selected switches
or not, we can find that the performance we can achieve by
increasing adaptive message is much bigger. Table II
indicates the performance and message overhead in three
cases. The first case is applying the default life-cycle rate in
the traditional ONOS controller. The second case is applying
the faster life-cycle rate to selected switches in ALTP ONOS
controller. The last one is applying the faster updating rate to
all switches in the traditional ONOS controller.

We achieve better performance of updating entries more
frequently for all switches (not selective). However, the
messages are increased too, which lead to an overhead of
control plane. This indicates that ALTP ONOS controller has
better performance compared to the traditional ONOS

controller by increasing message overhead as small as
possible.

TABLE II. RESULTDATAWITH ADPTIVELIFE-CYCLERATE

(Life-cycle interval)
updating rate

Default (10)
Life-cycle

(non-selective)

ALTP (5or10)
Life-cycle
(adaptive)

Double (5)
Life-cycle (non-

selective)
Theaveragenumber of
message in control plane

3766 4114 4775

Message Increase rate - 9.2% 26.7%

AverageFlowDelay(s) 2.5356 2.1011 2.03976

AveragePacket drop
rate

10.24% 8.03% 7.76%

AverageRe-routing
Convergence time(ms)

51.598 43.969 42.844

VII. CONCLUSION AND FUTURE WORK

In this paper, to provide high QoS in IoT services, we
design ALTP ONOS controller which predicts or recognizes
congestion phase and executes a fast response to congestion
phase. The method for congestion phase estimation is
performed by TSA. Moreover, the method for fast response
to congestion phase is updating flow and meter entry more
frequently. In the experiment, it is verified that traffic
prediction by using ARIMA model in TSA is sufficiently
reliable. By using these methods, the components such as
traffic delay, throughput, and drop rate which have a
dominant effect on high QoS are improved. This result
indicates that the suggested methods perform fast response in
congestion phase. Also, adjusting entries process is
performed only on selected devices. So, we can minimize
message overhead increment between controller and switch
due to frequent entry update.

The proposed ALTP ONOS controller induced
performance improvement successfully. However, in case of
ARIMA model used in ALTP, it is strong for trend analysis
but weak for burst analysis. So, to perform burst analysis
more accurately, an additional prediction model would be
beneficial for further performance improvement. Long-term
analysis can be one of the alternatives, and it is possible to
predict burst potential by accumulating data for various time
periods. Therefore, adjustment of flexible monitoring rule is
possible. Deep-learning can be helpful for trend analysis by
accumulating data.

In brief, the suggested method in this paper is capable of
managing congestion with minimized message overhead.

ACKNOWLEDGMENT

This research was supported by the MSIT (Ministry of Science
and ICT), Korea, under the ITRC (Information Technology
Research Center) support program (IITP-2018-2017-0-01633)
supervised by the IITP (Institute for Information & communications
Technology Promotion)

REFERENCES

[1] Network working group, “TCP Congestion Control”, Purdue
University, 2009.

62Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

[2] A. l-Najjar, S. Layeghy, M. Portmann, “Pushing SDN to the End-Host,
Network Load Balancing using OpenFlow”, IEEE 13th International
Workshop on Managing Ubiquitous Communications and Services,
pp. 1-6, 2016.

[3] U. Krishnaswamy et al., ‘‘ONOS: An open source distributed SDN
OS,’’ 2013. [Online]. Available: http://www.slideshare.net/
umeshkrishnaswamy/open-networkoperating-system

[4] Z. Bozakov, A. Rizk, D. Bhat and M. Zink, “Measurement-based Flow
Characterization in Centrally Controlled Networks”, IEEE INFOCOM
2016, pp. 1-9, 2016.

[5] H. Kim and N. Feamster, “Improving network management with
software defined networking”, IEEE Communications Magazine,
pp.114–119, Feb. 2013.

[6] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador and M. F.
Magalhães, “Quagflow: partnering quagga with openflow”, In ACM
SIGCOMM Computer Communication Review ,Vol. 40, No. 4, pp.
441-442, 2010.

[7] Software-Defined Networking (SDN) Definition, ONF (Open
Networking Foundation), Available:
https://www.opennetworking.org/sdn-resources/sdn-definition/

[8] A. l-Najjar, S. Layeghy and M. Portmann, “Pushing SDN to the End-
Host, Network Load Balancing using OpenFlow”, IEEE 13th
International Workshop on Managing Ubiquitous Communications and
Services, pp. 1-6, 2016.

[9] Software Defined Networking, TechCentral, Available:
http://www.techcentral.ie/software-defined-networking/

[10] Hamilton, J. D. (1994). Time series analysis (Vol. 2). Princeton:
Princeton University Press.

[11] A. Tootoonchian, M. Ghobadi, Y. Ganjali, “OpenTM: Traffic matrix
estimator for openflow networks”, University of Toronto, p.201–210,
2010.

[12] L. Maccari, and R. L. Cigno, “Messages for Faster Route Convergence
Pop-Routing: Centrality-based Tuning of Control”, IEEE INFOCOM
2016, p.694, 2016.

[13] Z. Su, T. Wang, Y. Xia and M. Hamdi, “FlowCover: Low-cost Flow
Monitoring Scheme in Software Defined Networks”, In IEEE Global
Communications Conference 2014 (GLOBECOM 2014), pp. 1956-
1961, 2014

[14] S. Song, J. Lee, K. Son, H. Jung and J. Lee, “A congestion avoidance
algorithm in SDN environment”, IEEE 30st Intnternational Conference
on in Information Networking (ICOIN 2016), pp. 420-423, 2016.

[15] L. Xie, Z. Zhao, Y. Zhou, G. Wang, Q. Ying and H. Zhang, "An
Adaptive Scheme for Data Forwarding in Software Defined Network",
IEEE. 2014 Sixth International Conference on Wireless
Communications and SignalProcessing (WCSP), pp.1-5.

[16] S. Basu, A. Mukherjee and S. Klivansky, “Time series models for
internet traffic”, In IEEE INFOCOM'96, pp. 611-620, 1996.

APPENDIX

Traffic predictor (Added)

Public boolean TrafficPredictor(port, currentspeed, maxspeed)
Make list of fifty current speed samples. If the list is not set, return

currentspeed;
Expected speed = getArima(current speed list);
If (expected speed > max speed)

Return true; Return false; }
Public List<Port> getCongestionExpectedPort(){

For(about all existing ports in topology);
Get current speed, maxspeed, portnumber from each port statistics using

DeviceService’s getPortstatistics;
If(TrafficPredictor(port,currentspeed,maxspeed) == true)

Return the list of ports;}
LinkService (Modified)

Public Iterable<Link> getInActiveLinks(){
Return list of links its state is inactive; }

Public boolean RecognizeLinkisCongested(Link link){
If (link is connected to getCongestionExpectedPort()’s port list)

Return true;
Else{ Return false; }

Public Iterable<Link> getCongestionExpectedLinks(){
for(all existing links){

if(RecognizeLinkisCongested(link)==true);
return link list which is connected to congested port;}

Public Iterable<Link> getAllCongestionLinks(){
Return list of links which is already congested + lists of links which is

expected to be congested;}
DeviceService (Modified)
Public Iterable<Device> getAllCongestionDevices(){

Return list ofdevices which has congested link + listof devices expected
to be congested;}
Public Iterable<Device> getCongestionDevices(){

For(all existing devices)
If(RecognizeDeviceCongestion(deviceId)==true){
Return list of devices;}

Public Iterable<Device> getCongestionExpectedDevices(){
For(all existing devices)

If (RecognizeDeviceisExpectedCongestion (deviceId)==true){
Return list of devices;}

Public boolean RecognizeDeviceisExpectedCongestion(DeviceId deviceId){
For(all links of this device)

If (RecognizeLinkisCongested(links)==true)
Return true; Break; return false; }

Public boolean RecognizeDeviceCongestion(DeviceId deviceId){
For(all links of this device)

If (link state is inactive
Return true;
Break; return false; }

ReactiveForwarding (Modified)
Flow Time out = DEFAULT_TIMEOUT;
phase or already has congestion
For(all links which are members of selected path){

If(link is in getAllCongestionLinks){
FlowTimeout = DEFAULT_TIMEOUT / 2;}}

InstallRule;

MeterStatsCollector (Modified)
Public void run(Timeout timeout){

adaptvieInterval = DEFAULT;
if(this device is in getAllCongestionDevices){

adaptiveInterval = DEFAULT / 2;}
timeout.getTimer().newTimeout(adaptiveInterval); }

63Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

