
Performance Evaluation of MultiPath TCP Congestion Control

Toshihiko Kato1)2), Adhikari Diwakar1), Ryo Yamamoto1), Satoshi Ohzahata1), and Nobuo Suzuki2)

1) University of Electro-Communications, Tokyo, Japan

2) Advanced Telecommunication Research Institute International, Kyoto, Japan

e-mail: kato@is.uec.ac.jp, diwakaradh@net.is.uec.ac.jp, ryo_yamamoto@is.uec.ac.jp, ohzahata@is.uec.ac.jp,

nu-suzuki@atr.jp

Abstract— In Multiptah TCP (MPTCP), the congestion control

is realized by individual subflows (conventional TCP

connections). However, it is required to avoid increasing

congestion window too fast resulting from subflows’ increasing

their own congestion windows independently. So, a coupled

increase scheme of congestion windows, called Linked Increase

Adaptation (LIA), is adopted as a standard congestion control

algorithm for subflows comprising a MPTCP connection. But

this algorithm supposes that TCP connections use Additive

Increase and Multiplicative Decrease (AIMD) based congestion

control, and if high speed algorithms such as CUBIC TCP are

used, the throughput of MPTCP connections might be

decreased. This paper analyzes this issue through experiments.

Specifically, this paper examines two experiments; one is to

apply one of LIA, TCP Reno and CUBIC TCP to MPTCP flow,

and another is to compare LIA based MPTCP flow and a single

TCP flow with TCP Reno or CUBIC TCP. These experiments

show that LIA is conservative compared with TCP Reno and

CUBIC TCP.

Keywords- MPTCP; Congestion Control; Linked Increase

Adaptation; TCP Reno; CUBIC TCP.

I. INTRODUCTION

Recent mobile terminals are equipped with multiple
interfaces. For example, most smart phones have interfaces
for 4G Long Term Evolution (LTE) and WLAN. In the next
generation (5G) mobile network, it is expected that mobile
terminals will be equipped with more interfaces by using
multiple communication paths provided multiple network
operators [1].

However, the conventional Transmission Control Protocol
(TCP) establishes a connection between a single IP address at
either end, and so it cannot handle multiple interfaces at the
same time. In order to utilize the multiple interface
configuration, Multipath TCP (MPTCP) [2], which is an
extension of TCP, has been introduced in several operating
systems, such as Linux, Apple OS/iOS [3] and Android [4].
Conventional TCP applications can use MPTCP as if they
were working over conventional TCP and are provided with
multiple byte streams through different interfaces.

MPTCP is defined in three Request for Comments (RFC)
documents by the Internet Engineering Task Force. RFC
6182 [5] outlines architecture guidelines. RFC 6824 [6]
presents the details of extensions to support multipath
operation, including the maintenance of an MPTCP
connection and subflows (TCP connections associated with an
MPTCP connection), and the data transfer over an MPTCP
connection. RFC 6356 [7] presents a congestion control

algorithm that couples the congestion control algorithms
running on different subflows.

One significant point on the MPTCP congestion control is
that, even in MPTCP, individual subflows perform their own
control. RFC 6356 requires that an MPTCP data stream do
not provide too large throughput compared with other (single)
TCP data streams sharing a congested link. For this purpose,
RFC 6356 defines an algorithm called Linked Increase
Adaptation (LIA), which couples and suppresses the
congestion window size of individual subflows. Besides,
more aggressive algorithms, such as Opportunistic LIA
(OLIA) [8] and Balanced Linked Adaptation (BALIA) [9], are
proposed.

However, all of those algorithms are based on the TCP
Reno [10]. That is, the increase of congestion window at
receiving a new ACK segment is in the order of 1/(congestion
window size). On the other hand, current modern operating
systems uses high speed congestion control algorithms, such
as CUBIC TCP [11] and Compound TCP [12]. These
algorithms increase the congestion window more aggressively
than TCP Reno. So, it is possible that the throughput of LIA
is suppressed when it coexists with them.

Based on these considerations, we conducted two kinds of
experiments. One is for comparing the performance of LIA,
the standard congestion control algorithm of MPTCP, with
that of the case when subflows use TCP Reno or CUBIC TCP.
The other is for evaluating the performance when MPTCP
with LIA and TCP Reno / CUBIC TCP share a bottleneck link.
This paper describes the results of those experiments.

The rest of this paper is organized as follows. Section II
explains the overview of MPTCP and the details of LIA. Here
we discuss how LIA algorithm is derived. Section III
describes the LIA implementation in the Linux operating
system. Section IV shows the performance evaluation of LIA
itself and the cases when subflows use TCP Reno or CUBIC
TCP. Section V shows the performance evaluation when
MPTCP with LIA and TCP with Reno/CUBIC coexist over a
bottleneck link. In the end, Section V concludes this paper.

II. OVERVIEW OF MPTCP AND DETAILS OF LIA

A. Overview of MPTCP

As described in Figure 1, the MPTCP module is located
on top of TCP. MPTCP is designed so that the conventional
applications do not need to care about the existence of MPTCP.
MPTCP establishes an MPTCP connection associated with
two or more regular TCP connections called subflows. The
management and data transfer over an MPTCP connection is
done by newly introduced TCP options for MPTCP operation.

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

mailto:%7d@net.is.uec.ac.jp

When the first subflow is established, a TCP option called
MP_CAPABLE is used within SYN, SYN+ACK, and the
following ACK segments. When the following subflows are
established, the MP_JOIN option is used so that the new TCP
connections are associated with the existing MPTCP
connection.

An MPTCP implementation will take one input data
stream from an application, and split it into one or more
subflows, with sufficient control information to allow it to be
reassembled and delivered to the receiver side application
reliably and in order. The MPTCP connection maintains the
data sequence number independent of the subflow level
sequence numbers. The data and ACK segments may contain
a Data Sequence Signal (DSS) option depicted in Figure 2.

The data sequence number and data ACK is 4 or 8 byte
long, depending on the flags in the option. The number is
assigned on a byte-by-byte basis similarly with the TCP
sequence number. The value of data sequence number is the
number assigned to the first byte conveyed in that TCP
segment. The data sequence number, subflow sequence
number (relative value) and data-level length define the
mapping between the MPTCP connection level and the
subflow level. The data ACK is analogous to the behavior of
the standard TCP cumulative ACK. It specifies the next data
sequence number a receiver expects to receive.

B. Overview of MPTCP Congetion Control

As described above, in MPTCP, only subflows manage
their congestion windows, that is, an MPTCP connection does
not have its congestion window size. Under this condition, if
subflows perform their congestion control independently, the
throughput of MPTCP connection will be larger than single
TCP connections sharing a bottleneck link. RFC 6356 decides
that such a method is unfair for conventional TCP. RFC 6356
introduces the following three requirements for the congestion
control for MPTCP connection.
 Goal 1 (Improve throughput): An MPTCP flow should

perform at least as well as a single TCP flow would on the
best of the paths available to it.

 Goal 2 (Do no harm): All MPTCP subflows on one link
should not take more capacity than a single TCP flow
would get on this link.

 Goal 3 (Balance congestion): An MPTCP connection
should use individual subflow dependent on the
congestion on the path.

In order to satisfy these three goals, RC6356 proposes an
algorithm that couples the additive increase function of the
subflows, and uses unmodified decreasing behavior in case of

a packet loss. This algorithm is called LIA and summarized
in the following way.

Let 𝑐𝑤𝑛𝑑𝑖 and 𝑐𝑤𝑛𝑑_𝑡𝑜𝑡𝑎𝑙 be the congestion window
size on subflow i, and the sum of the congestion window sizes
of all subflows in an MPTCP connection, respectively. Here,
we assume they are maintained in packets. Let 𝑟𝑡𝑡𝑖 be the
Round-Trip Time (RTT) on subflow i. For each ACK
received on subflow i, 𝑐𝑤𝑛𝑑𝑖 is increased by

 𝑚𝑖𝑛 (
𝛼

𝑐𝑤𝑛𝑑_𝑡𝑜𝑡𝑎𝑙
,

1

𝑐𝑤𝑛𝑑𝑖
). (1)

The first argument of min function is designed to satisfy Goal
2 requirement. Here, 𝛼 is defined by

 𝛼 = 𝑐𝑤𝑛𝑑_𝑡𝑜𝑡𝑎𝑙 ∙
𝑚𝑎𝑥

𝑖
(

𝑐𝑤𝑛𝑑𝑖

𝑟𝑡𝑡𝑖
2)

(∑
𝑐𝑤𝑛𝑑𝑖

𝑟𝑡𝑡𝑖
𝑖)

2 . (2)

By substituting (2) to (1), we obtain the following equation.

 𝑚𝑖𝑛 (
𝑚𝑎𝑥

𝑖
(

𝑐𝑤𝑛𝑑𝑖

𝑟𝑡𝑡𝑖
2)

(∑
𝑐𝑤𝑛𝑑𝑖

𝑟𝑡𝑡𝑖
𝑖)

2 ,
1

𝑐𝑤𝑛𝑑𝑖
) (3)

C. Derivation of LIA Equation

In this subsection, we give one possible derivation of (2),
which is not specified in RFC 6356 explicitly. We suppose a
single TCP flow corresponding an individual subflow over an
MPTCP connection. Let 𝑝 the packet loss rate over the

bottleneck link and let 𝑐𝑤𝑛𝑑𝑖
𝑇𝐶𝑃

 be the congestion window
size of the supposed single TCP flow i.

We assume the balanced situation indicating that the
increase and decrease of congestion window sizes are the
same. That is, for subflow i on the MPTCP connection,

 (1 − 𝑝) ∙ 𝑚𝑖𝑛 (
𝛼

𝑐𝑤𝑛𝑑_𝑡𝑜𝑡𝑎𝑙
,

1

𝑐𝑤𝑛𝑑𝑖
) = 𝑝 ∙

1

2
𝑐𝑤𝑛𝑑𝑖 . (4)

We suppose that the first argument is selected, and then

 (1 − 𝑝) ∙
𝛼

𝑐𝑤𝑛𝑑_𝑡𝑜𝑡𝑎𝑙
= 𝑝 ∙

1

2
𝑐𝑤𝑛𝑑𝑖. (4’)

For supposed TCP flow i,

 (1 − 𝑝) ∙
1

𝑐𝑤𝑛𝑑𝑖
𝑇𝐶𝑃 = 𝑝 ∙

1

2
𝑐𝑤𝑛𝑑𝑖

𝑇𝐶𝑃
. (5)

For satisfying Goals 1 and 2, we can specify

 ∑
𝑐𝑤𝑛𝑑𝑖

𝑟𝑡𝑡𝑖
𝑖 = 𝑚𝑎𝑥

𝑖
(

𝑐𝑤𝑛𝑑𝑖
𝑇𝐶𝑃

𝑟𝑡𝑡𝑖
). (6)

By eliminating 𝑝 using (4’) and (5), we obtain

 𝛼 ∙ (𝑐𝑤𝑛𝑑𝑖
𝑇𝐶𝑃)

2
= 𝑐𝑤𝑛𝑑_𝑡𝑜𝑡𝑎𝑙 ∙ 𝑐𝑤𝑛𝑑𝑖 . (7)

By squaring both sides of (6) and substituting (7), we obtain

 𝛼 ∙ (∑
𝑐𝑤𝑛𝑑𝑖

𝑟𝑡𝑡𝑖
𝑖)

2

= 𝑚𝑎𝑥
𝑖

(
𝑐𝑤𝑛𝑑_𝑡𝑜𝑡𝑎𝑙∙𝑐𝑤𝑛𝑑𝑖

𝑟𝑡𝑡𝑖
2). (8)

This is leading to (2).

Application

MPTCP

Subflow (TCP) Subflow (TCP)

IP IP

Figure 1. Layer structure of MPTCP.

Figure 2. Data Sequence Signal (DSS) option.

Kind (= 30) Length
Subtype

(= 2)
Flags

Data ACK (4 or 8 bytes, depending on flags)

Data sequence number (4 or 8 bytes, depending on flags)

Subflow sequence number (4 bytes)

Data-level length (2 bytes) Checksum (2 bytes)

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

It should be noted that we assume the additive increase and
multiplicative decrease (AIMD) scheme in (4) and (5). More
specifically, we assume that the increase is 1/(congestion
window size) for each ACK segment and the decrease
parameter is 1/2, which is the specification of TCP Reno. That
is, LIA supposes that MPTCP subflows and coexisting single
TCP flows follow TCP Reno. In the case that the high speed
congestion control is adopted, the increase per ACK segment
will become larger and the decrease parameter will be small.
In such a case, we need to formalize (4) and (5) in a different
way.

III. LIA IMPLEMENTATION OVER LINUX

We can obtain the source program of the Linux operating
system including MPTCP from the GitHub web site [13]. We
examined how MPTCP are implemented in Linux.

LIA is implemented within the source file mptcp

_coupled.c. In this file, mptcp_ccc_recalc

_alpha()and mptcp_ccc_cong_avoid() are major
functions. The former calculates the first argument in (1) and

stores the result in variable alpha. The latter records the

larger of 1/alpha and the congestion window size of the
current subflow, and, when this function is called as many
times as the recorded value, it increases the congestion
window size by one. This procedure is considered to
correspond to the specification of (3).

On the other hand, the congestion control mechanisms,
strictly speaking the congestion avoidance mechanisms, are
implemented as kernel modules in Linux. They can be
compiled independently of the kernel itself, and can be loaded
or removed while the operating system is running. More
specifically, the pointer to the function performing congestion
avoidance mechanism is stored in a kernel data structure

struct tcp_congestion_ops within struct

inet_connection_sock [14]. The kernel function

tcp_cong_control() calls the function specified in this
kernel data structure when it performs congestion avoidance.
The pointer to the congestion avoidance function can be

settled manually by using sysctl command setting control

variable net.ipv4.tcp_congestion_control. The

value will be set to reno or cubic.

When MPTCP LIA is used, the data structure struct

tcp_congestion_ops points to the address of function

mptcp_ccc_cong_avoid() described above. This
means LIA is realized as one of TCP congestion avoidance
mechanisms. That is, LIA is no automatically selected in
MPTCP implementation, but we need to set

net.ipv4.tcp_congestion_control to lia

manually. (Or build the kernel to select LIA as a default
congestion control algorithm.) In other word, we can use TCP
Reno or CUBIC TCP in MPTCP subflows by setting the
corresponding control variable.

IV. PERFORMANCE EVALUATION USING PACKET LOSSES

A. Experiment Configuration

As the first experiment, we tried to evaluate the
performance of the MPTCP congestion control itself, by

generating packet losses artificially. Figure 3 shows the
network configuration of the experiment with packet losses
inserted. A data sender is connected to 100 Mbps Ethernet
and IEEE 802.11g WLAN (2.4 GHz). An 11g access point
works as an access point and as an Ethernet hub. A data
receiver is connected with the hub through 100 Mbps Ethernet.
Both sender and receiver execute MPTCP software with
stable version 0.94, which is the newest version [13]. The IP
addresses assigned network interfaces of the sender and
receiver are shown in Figure 3. The Ethernet interfaces
belong to subnet 192.168.0.0/24, and the WLAN interface
belongs to another subset 192.168.1.0/24, all of which are
connected through a bridge. In the sender side, the routing
table need to be specified for individual interfaces by using

ip command. In the receiver side, a route entry to subnet

192.168.1.0/24 needs to be specified explicitly. One MPTCP
connection with two subflows is established. One subflow
goes through the Ethernet interface at the sender, and another
goes through the WLAN interface.

The congestion control algorithm used in the sender is set
to either of LIA, TCP Reno, or CUBIC TCP. We inserted
packet losses with the rate of 0.1% at the Ethernet interface in

the sender, and delay of 100 msec at the receiver, both by tc

(traffic control) command with the netem filter. The packets
sent through two interfaces at the sender are captured by using
Wireshark [15], and the congestion window size is recorded
for two subflows by using tcpprobe [16], both in the sender
side. Data transfer is done for 10 sec by iperf2 [17].

B. Experiment Results

Table I shows the throughput of MPTCP connection
measured in two experimental runs for the cases when the
congestion control algorithm of MPTCP subflows is set to
each of LIA, TCP Reno, and CUBIC TCP. The throughput of
LIA, the original setting in MPTCP, is lower than the other
settings.

In order to investigate the detail behaviors of individual
congestion control algorithms, we examined the time
variation of sequence number and congestion window size of
MPTCP subflows. Figures 4 through 6 show the results of the
experiment runs underlined in Table I. In each algorithm, the
congestion window size of a subflow via WLAN interface
(WLAN subflow) increases rapidly to its maximum value. It

Figure 3. Network configuration by packet loss insertion.

TABLE I. THROUGHPUT WITH PACKET LOSS INSERTED (Mbps).

Sender Receiver

100 Mbps
Ethernet

inserting
100msec delay

11g Access
Point/Hub

100 Mbps
Ethernet

192.168.0.2

192.168.1.1
192.168.0.1

inserting
packet error

(0.1%)

Algorithm

Throughput

LIA

12.5, 12.1

Reno

14.4, 18.8

CUBIC

23.0, 16.1

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

should be noted that different maximum values are set to LIA
and TCP Reno/CUBIC TCP, by the operating system. It
should be also noted that there are some flat parts, before
reaching the maximum value, in WLAN congestion window
size in the case of CUBIC TCP. The reason for this is
supposed that the data corresponding the congestion window
size was not sent during one RTT, and that the rule of
congestion window validation [18] was applied.

As for a subflow via Ethernet interface (Ethernet subflow),
the increase of congestion window size is the smallest in LIA
and the largest in CUBIC TCP. So, in the case of LIA, the
increase of sequence number, that is, the bytes transmitted, is
also limited. In the case that TCP Reno is used as the
congestion control algorithm in MPTCP, the congestion
window size over Ethernet subflow increases linearly with the
elapsed time, which characterizes TCP Reno. The increase is
larger than the case of LIA. In the case of CUBIC TCP, the
congestion window size over Ethernet subflow increases
rapidly by 0.5 sec, and after that it decreases due to several
packet losses. During no packet loss period, e.g., from 3 sec
to 6.5 sec, we confirmed that the congestion window size
changes following a cubic function. Due to the rapid increase
during the beginning, the increase of sequence number is large
in this case.

For this scenario, it can be said that LIA, the original
congestion control algorithm in MPTCP, may be too
conservative in increasing congestion window size, compared

(a) sequence number vs. time

(b) congestion window size vs. time

Figure 4. Time variation of sequence number and congestion window size

with packet losses inserted (LIA).

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

se
q

 n
u

m
 (

M
B

)

time (sec)

Ether

WLAN

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12

cw
n

d
 (

p
ac

ke
ts

)

time (sec)

Ether

WLAN

(a) sequence number vs. time

(b) congestion window size vs. time

Figure 5. Time variation of sequence number and congestion window size
with packet losses inserted (TCP Reno).

(a) sequence number vs. time

(b) congestion window size vs. time

Figure 6. Time variation of sequence number and congestion window size

with packet losses inserted (CUBIC TCP).

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

se
q

 n
u

m
 (

M
B

)

time (sec)

Ether

WLAN

0

50

100

150

200

250

300

0 2 4 6 8 10 12
cw

n
d

 (
p

ac
ke

ts
)

time (sec)

Ether

WLAN

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

se
q

 n
u

m
 (

M
B

)

time (sec)

Ether

WLAN

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12

cw
n

d
 (

p
ac

ke
ts

)

time (sec)

Ether

WLAN

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

with TCP Reno and CUBIC TCP, which are commonly used
in conventional TCP communications.

V. PERFORMANCE EVALUATION THROUGH ACTUAL

CONGESTION

A. Experiment Configuration

As the second experiment, we tried to evaluate the
performance of the MPTCP congestion control when there are
actual congestion. Figure 7 shows the network configuration
used in this experiment. We added a single path TCP data
sender and a bridge introducing a bottleneck link in the
configuration used in the first experiment. At the interface of
the bridge to the data receiver, we set the limit of data link rate

to 10 Mbps, by using tc command with the tbf filter. The
reason for limiting the bandwidth to 10 Mbps is that the results
in the previous experiment show that the MPTCP throughput
is larger than 10 Mbps even if it uses LIA, and so a 10 Mbps
link will become a bottleneck actually. The congestion
control algorithm at the MPTCP data sender is set to LIA and
that at the single path TCP data sender is set to TCP Reno or
CUBIC TCP.

B. Experiment Results

Table II shows the average throughput of MPTCP flow
and single TCP flow, for 10 sec data transfer by iperf. For
each combination of LIA and TCP Reno, or LIA and CUBIC
TCP, we conducted four experiment runs. When the single
TCP flow uses TCP Reno, the average of four runs is 2.82
Mbps for MPTCP flow and 7.03 Mbps for single TCP flow.
When CUBIC TCP is used, that is 1.58 Mbps for MPTCP flow
and 8.37 Mbps for single TCP flow. In both cases, the average
throughput is lower for MPTCP flow. When the single TCP
flow uses CUBIC TCP, the throughput of MPTCP flow is
decreased further.

In order to investigate more detailed behaviors, we
examined the time variation of sequence number and
congestion window size for MPTCP subflows and single TCP
flow. We picked up the results indicated by gray shadow in
Table II. Figure 8 shows the results when the single TCP
subflow uses TCP Reno. The sequence number (transmitted

Figure 7. Network configuration by actual congestion.

TABLE II. AVERAGE THROUGHPUT WITH ACTUAL

CONGESTION (Mbps).

MPTCP
Sender Receiver

100 Mbps
Ethernet

inserting
100msec delay

11g Access
Point/Hub

192.168.0.2

192.168.1.1
192.168.

0.1

limiting rate to
10MbpsTCP Sender

192.168.0.3

Bridge

Algorithm

MPTCP

LIA & Reno LIA & CUBIC

2.85 2.66 2.86 2.91

7.05 7.10 6.97 6.99

2.03 1.72 1.52 1.04

7.79 8.33 8.47 8.87Single TCP

(a) sequence number vs. time

(b) congestion window size vs. time

Figure 8. Time variation of sequence number and congestion window size

with actual congestion (LIA & TCP Reno).

(a) sequence number vs. time

(b) congestion window size vs. time

Figure 9. Time variation of sequence number and congestion window size

with actual congestion (LIA & CUBIC TCP).

0

2

4

6

8

10

12

0 2 4 6 8 10 12

se
q

 n
u

m
 (

M
B

)

time (sec)

Ether

WLAN

Reno

0

100

200

300

400

500

600

0 2 4 6 8 10 12
cw

n
d

 (
p

ac
ke

ts
)

time (sec)

Ether

WLAN

Reno

0

2

4

6

8

10

12

0 2 4 6 8 10 12

se
q

 n
u

m
 (

M
B

)

time (sec)

Ether

WLAN

Cubic

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12

cw
n

d
 (

p
ac

ke
ts

)

time (sec)

Ether

WLAN

Cubic

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

bytes) increases fastest in the single TCP flow, next in the
Ethernet subflow and most slowly in the WLAN subflow. As
for the time variation of congestion window size, the graph of
the single TCP flow and that of the Ethernet subflow are in a
similar shape, but the value itself is larger for the single TCP
flow. The increase of congestion window size of WLAN
subflow is suppressed largely.

Figure 9 shows the results when the single TCP subflow
uses CUBIC TCP. In this case, the increase of sequence
number is much larger for the single TCP flow. The time
variation of congestion window size is also much larger for
the single TCP flow. The congestion window size of the
MPTCP subflows does not increase but is almost flat along
the time. This is similar with the results shown in Figure 4,
and this decreases the throughput of MPTCP flow.

From those two results, it can be said that the increase of
congestion window in MPTCP subflows using LIA is
restricted when they share a congested link with other single
TCP flows. The congestion window in LIA is suppressed
even when MPTCP subflow shares a bottleneck link with TCP
Reno. If LIA coexists with CUBIC TCP, the congestion
window is suppressed largely.

VI. CONCLUSIONS

This paper described the experimental analysis of the
standard congestion control algorithm for MPTCP, Linked
Increase Adaptation. As the first experiment, we used a
network configuration with Ethernet subflow and WLAN
subflow, among which packet losses are inserted in Ethernet
subflow. We set the congestion control algorithm for
subflows to LIA, TCP Reno, and CUBIC TCP. As a result,
the throughput of LIA was smallest. As the second
experiment, we used a network configuration using a bridge
node introducing a bottleneck link. We also used a node for a
single TCP flow. In this configuration, we executed one
MPTCP flow using LIA and one single TCP flow with TCP
Reno or CUBIC TCP. In this experiment, we obtained a result
that MPTCP with LIA is suppressed largely by the single TCP
flow with Reno or CUBIC. These results come from the fact
that the LIA, the standard congestion control algorithm for
MPTCP, is conservative in order to maintain the “Do no harm”
principle that requires an MPTCP flow not to use too much
network resource compared with single TCP flows. It may be
expected to introduce more aggressive congestion control
algorithms comparative with high speed congestion control
algorithms like CUBIC TPC.

ACKNOWLEDGMENT

This research was performed under the research contract
of “Research and Development on control schemes for

utilizations of multiple mobile communication networks,” for
the Ministry of Internal Affairs and Communications, Japan.

REFERENCES

[1] NGNM Alliance, “NGMN 5G White Paper,”
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/
2015/NGMN_5G_White_Paper_V1_0.pdf, Feb. 2015, [retrieved: Jan.
2019].

[2] C. Paasch and O. Bonaventure, “Multipath TCP,” Communications of
the ACM, vol. 57, no. 4, pp. 51-57, Apr. 2014.

[3] AppleInsider Staff, “Apple found to be using advanced Multipath TCP
networking in iOS 7,” http://appleinsider.com/articles/13/09/20/apple-
found-to-be-using-advanced-multipath-tcp-networking-in-ios-7,
[retrieved: Jan. 2019].

[4] icteam, “MultiPath TCP – Linux Kernel implementation, Users::
Android,” https://multipath-tcp.org/pmwiki.php/Users/Android,
[retrieved: Jan. 2019].

[5] A. Ford, C.Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” IETF RFC 6182, Mar.
2011.

[6] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” IETF RFC 6824,
Jan. 2013.

[7] C. Raiciu, M. Handley, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” IETF RFC 6356, Oct. 2011.

[8] R. Khalili, N. Gast, M. Popovic, and J. Boudec, “MPTCP Is Not
Pareto-Optimal: Performance Issues and a Possible Solution,”
IEEE/ACM Trans. Networking, vol. 21, no. 5, pp. 1651-1665, Oct.
2013.

[9] Q. Peng, A. Valid, J. Hwang, and S. Low, “Multipath TCP: Analysis,
Design and Implementation,” IEEE/ACM Trans. Networking, vol. 24,
no. 1, pp. 596-609, Feb. 2016.

[10] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification
to TCP’s Fast Recovery Algorithm,” IETF RFC 3728, Apr. 2004.

[11] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no.
5, pp. 64-74, Jul. 2008.

[12] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Compound TCP
Approach for High-speed and Long Distance Networks,” Proc. IEEE
INFOCOM 2006, pp. 1-12. Apr. 2006.

[13] GitHub, “Linux Kernel implementation of MultiPath TCP,”
https://multipath-tcp.org, [retrieved: Jan. 2019].

[14] A. Jaakkola, “Implementation of Transmission Control Protocol in
Linux,” https://wiki.aalto.fi /download/attachments/70789052/linux-
tcp-review.pdf, [retrieved: Jan. 2019].

[15] “Wireshark,” https://www.wireshark.org/, [retrieved: Dec. 2018].

[16] Linux Foundation Wiki, “Trace: tcpprobe,” The Linux Foundation,
https://wiki.linuxfoundation.org/networking/tcpprobe, [retrieved: Jan.
2019].

[17] ESnet, “iperf2/iperf3,” https://fasterdata.es.net/performance-
testing/network-troubleshooting-tools/iperf/, [retrieved: Jan.
2019].

[18] M. Handley, J. Padhye, and S. Floyd, “TCP Congestion Window
Validation,” IETF, RFC 2861, Jun. 2000.

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

