
IaaS Environment Creation Experiments with OpenStack

Silviu – Gabriel Topoloi, Eugen Borcoci
Department of Telecommunications

University POLITEHNICA of Bucharest
Bucharest, Romania

Emails: silviutopoloi@gmail.com, eugen.borcoci@elcom.pub.ro

Abstract—OpenStack is an open cloud computing software
platform that allows the users to create Infrastructure as a
Service (IaaS) cloud environments suited for all types of
deployments and environments (prod, pre-prod, test, dev, etc.).
The platform is backed-up by a large and active community
that continuously improves it, thus making it a serious
competitor in today’s cloud market. This paper presents a
complete experimental work for IaaS environment creation
with OpenStack as an alternative to others presented in the
public literature. It can provide the baseline for future
integration of different modules, e.g., between OpenStack and
OpenDaylight (Open Source Software Defined Networking
Platform), where OpenDaylight is used to create networking
services, together with the default module provided by
OpenStack (called Neutron). Developers, researchers,
academic members and user communities can use the
information in this paper as a practical guide to create their
own cloud environments, allowing integration of their own
work in many possible contexts: cloud, Software Defined
Networking (SDN), Network Function Virtualization (NFV),
Data Centers, and so on.

Keywords - OpenStack; cloud; Software Defined Networking;
Network Function Virtualization ; Infrastructure as a Service.

I. INTRODUCTION

OpenStack is a set of software tools for building and
managing cloud computing platforms for public and private
clouds. It is backed by some of the biggest companies in
software development and hosting (AT&T, Ericsson,
Huawei, Intel, Rackspace, Redhat, Suse, Tencent Cloud), as
well as thousands of individual community members.
OpenStack is managed by the OpenStack Foundation, a non-
profit organization that oversees both development and
community-building around the project [1].

OpenStack supports users to deploy Virtual Machines
(VM) and other instances that handle different tasks for
managing a cloud environment on the fly. It is horizontally
scalable, i.e., it can concurrently serve more or fewer users
on the fly by just spinning up more instances. For example, a
mobile application that needs to communicate with a remote
server can divide the communication work across many
different instances, all communicating with one another but
scaling quickly and easily as the application gains more users
[1].

OpenStack is an open source software giving open access
to the source code, to make any changes or modifications
needed, and freely sharing these changes back out with the

community at large. Consequently, it has the benefit of
thousands of developers all over the world cooperating to
make the product stronger, more robust and more secure [1] -
[3].

As mentioned in the abstract, this paper presents a
complete, pragmatic work for IaaS environment creation
with OpenStack. Note that, currently, it is hard for users to
find a complete view on how OpenStack should be deployed
without bottlenecks in a carefully defined environment.

Different OpenStack deployment scenarios [4][5][7][8]
are available on the Internet; however, after several attempts
to have OpenStack installed following those steps only, the
developer discovers that some additional steps and problem
solving solutions are missing. In this paper, we try to fill this
gap by presenting in one place a complete installation of
OpenStack using Devstack, as well as the configurations
problems, along with their solutions, thus guiding the
developer during the process.

The structure of the paper is as follows: Sections I and II
present a high level view on OpenStack and what can and
has been achieved with this platform until now. Section III
describes the architecture and services. Section IV elaborates
a step by step OpenStack IaaS deployment. Section V
presents some hints for the deployment to end users and
developers.

II. OPENSTACK AS A SOLUTION ENABLER AND RELATED

WORK

OpenStack is a key enabler in the adoption of cloud
technology, while following Public, Private, or Hybrid
models [2].

OpenStack, as is, can be adopted by any user who wants
to start exploring the cloud world or by any developer who
wants to have a free cloud environment, built up in minutes,
to test the applications that he/she develops. The platform
has a wide variety of usage scenarios.

Big industry players like Oracle and Huawei offer
OpenStack also for Enterprise usage. For example, Huawei
OpenStack-based platform is called Flexible Engine, while
Oracle’s is named Oracle OpenStack. Naturally, an
enterprise platform is more elaborated and reliable than a
free one, especially for the support it provides and the
available structure of the information needed for different
implementations. However, a significant price has to be paid
if wanting an enterprise solution.

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

Many companies have already adopted OpenStack.
According to iDatalabs [9] there are around 6,856 companies
that use OpenStack; the reason is the openness and wide
variety of usage scenarios.

The work that has been done until now can be marked in
several fields, like: security, monitoring, cloud Service
Orchestration, Networking (SDN, NFV), cloud IaaS and so
on. Several references can provide further details [10]-[13].

However, given the large spread of published work
related to OpenStack, it is difficult to find a thorough
nutshell document presenting the development steps. This
article tries to do it. In our knowledge, the practical hints and
ideas provided in Section V cannot be found all in one place.
Here, the practical hints are based on a real experience
gathered when the user/developer actually interacts and
works with OpenStack.

Therefore, this document can provide a good and helpful
guide to all people wanting to use OpenStack as a
development, test or production cloud Platform. It can be
considered as a good and practical contribution to what has
been done until now.

III. OPENSTACK ARCHITECTURE AND SERVICES

A. OpenStack Architecture

This section shortly presents the OpenStack architecture
and services (see Figure 1, [2]).

B. OpenStack Services

The above architecture presents the OpenStack Services
and how they communicate. Further, the paper will speak
shortly about each presented service.

OpenStack embraces a modular architecture (Figure 2) to
provide a set of core services that facilitate scalability and
elasticity as core design tenets [2].

Figure 1. Loosely coupled architecture of OpenStack [6]

Figure 2. OpenStack modular architecture [2]

The OpenStack services are:

a. Compute (Nova) provides services to support the
management of VM instances at scale, instances
that host multi-tiered applications, dev or test
environments, “Big Data” crunching Hadoop
clusters, or high-performance computing [2].

b. Object Storage (Swift) provides support for storing
and retrieving arbitrary data in the cloud [2].

c. Block Storage (Cinder) provides persistent block
storage for Compute instances [2].

d. Networking (neutron, previously called quantum)
provides various networking services to cloud users
(tenants), such as IP address management, Domain
Name Server (DNS), Dynamic Host Configuration
protocol (DHCP), load balancing, and security
groups (network access rules, like firewall policies)
[2].

e. Dashboard (Horizon) provides a web-based
interface for both cloud administrators and cloud
tenants [2].

f. Identity (Keystone) is a shared service that provides
authentication and authorization services
throughout the entire cloud infrastructure. The
Identity service has pluggable support for multiple
forms of authentication [2].

g. Image (Glance) provides disk-image management
services, including image discovery, registration,
and delivery services to the Compute service, as
needed [2].

Messaging is used for internal communication between
OpenStack services. By default, message queues are used,
based on the Advanced Messaging Queuing Protocol
(AMQP). Like most OpenStack services, AMQP supports
pluggable components. Today, the implementation back end
could be RabbitMQ, Qpid, or ZeroMQ [2].

C. Data Protection & Security

The OpenStack Identity Service (Keystone) takes care of
both the user’s and customer’s data, because the
authentication uses a combination of domains, projects
(tenants), users and roles. By creating tenants, logical
customer (and their respective data) segregation is possible.
This means that each customer has access to his/her own
data and no other data. Therefore, customer data is secured.

For example, in public clouds, logical segregation is very
important, because each customer is deployed in the same

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

public cloud; however, it is logically separated from the rest
of the customers with the help of tenants.

With OpenStack, private clouds can also be created for
customers that do not want a logical segregation, but a
physical one. Thus, if a customer opts for a private cloud, the
customer can have access to a dedicated OpenStack
environment that is deployed on a dedicated server, where no
other customer has access to. Of course, this implies higher
costs, but the data is physically separated. Either way,
OpenStack assures that the customer’s data is fully protected
and secure.

At a user level, all the access is controlled and logged.
Also, the access is segregated based on users and roles.
Therefore, a user cannot see or access the data and elements
for another user. Also, in this way, customer data is protected
and access to it is fully controlled.

IV. CREATION OF AN IAAS ENVIRONMENT IN

OPENSTACK

A. Role of the Environment

The environment that is going to be created has the role
of providing a basic cloud platform for experiments in
different areas like: SDN, NFV, application development,
integration with other cloud platforms and more.

OpenStack services used for the platform implementation
are: Keystone, Horizon, Nova, Cinder, Neutron and Glance.
With the help of these services, the user will be able to
create the necessary IaaS environment, meaning, Compute
instances with Networking and Storage that are ready for the
user’s purposes.

B. The Implemented Architecture

The implemented architecture (Figure 3) shows the
OpenStack services, as components used to implement the
OpenStack cloud IaaS Environment and its capabilities. The
capabilities are presented in Figure 3, with dotted-lines
emphasizing future integration and work that can be done
based on the created environment:

Figure 3. The implemented architecture

- Integrations with different platforms, like
OpenDaylight;

- Integrations with different cloud providers;
- Providing cloud services to users and customers.

C. Implementation steps

The section will show the steps to be followed to install
OpenStack and use this framework to create the cloud IaaS
Environment that can be further used, as mentioned earlier,
for example, as a Production environment for Application
development and more.

After the creation of the IaaS Environment, the following
tests can be performed:

 Ping the Compute instances from the external
network (Internet Service Provider network in this
case). This will be done from the Ubuntu machine;

 Connect to the Compute instances, using SSH,
from the external network. This will be done from
the Ubuntu machine;

 Test the connection between the Compute
instances;

 Test if the Compute instances have access to the
Internet. This will be tested by issuing a ping
command to “google.com”, from the Compute
instances.

D. The System Resources

To support the implementation, a virtual machine image,
Ubuntu 16.04.4, has been used, installed on a local machine.
The hardware resources are:
Physical Host

Processor: Intel Core i5-8350U CPU @ 1.70 GHz
(8 Virtual CPUs)
RAM Memory: 16 GB, HDD: 256 SSD

Ubuntu Virtual Box Image
Processor: 1 Virtual CPU, Memory: 4 GB
HDD: Starting from 10 GB and Dynamic Growing

The installation has been done locally, for testing
purposes, on a powerful machine, but it can be scaled up
easily to a datacenter environment capable of providing
cloud services.

DevStack [14] has been used to automatically deploy
OpenStack.

Figure 4. OpenStack deployment components

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

E. Installation of OpenStack Framework

1) Download and install Oracle Virtual Box;

a) Download and deploy Ubuntu 16.04.4 (Xenial)
virtual box image;

b) Setup the Network to bridged mode;

c) Access the machine and install OpenStack
Framework:

 First, run the following commands to pre-configure
the Ubuntu environment: sudo apt-get update, sudo
apt-get upgrade, sudo apt-get install openssh-
server, sudo apt-get install git;

 Assign static ip to the network interface:
sudo nano /etc/network/interfaces
interfaces(5) file used by ifup(8) and ifdown(8)
auto lo
iface lo inet loopback

auto enp0s3
iface enp0s3 inet static

address 192.168.1.50
netmask 255.255.255.0
network 192.168.1.0
gateway 192.168.1.1
dns-nameservers 192.168.1.1

 Create “stack” user that will be used for OpenStack
installation:
sudo useradd -s /bin/bash -d /opt/stack -m stack

 Assign password to stack: sudo passwd stack;
 Add “stack” user to sudo group:

sudo usermod -aG sudo stack
 Make sure it has sudo privileges:

echo "stack ALL=(ALL) NOPASSWD: ALL" |
sudo tee /etc/sudoers.d/stack
Output should be:
stack ALL=(ALL) NOPASSWD: ALL

 Login as stack: sudo su – stack;
 Download Openstack DevStack:

git clone https://github.com/openstack-
dev/devstack.git -b stable/pike devstack/

 Create local.conf file. This file will be used in the
installation of OpenStack. The parameters that are
setup here will be used to pre-configure the
environment so that the user makes sure that the
environment is fully working and accessible.
cat > local.conf <<EOF
[[local|localrc]]
FLOATING_RANGE=192.168.1.224/27
FIXED_RANGE=10.11.12.0/24
FIXED_NETWORK_SIZE=256
FLAT_INTERFACE=enp0s3
ADMIN_PASSWORD=secret
DATABASE_PASSWORD=$ADMIN_PASSWO
RD
RABBIT_PASSWORD=$ADMIN_PASSWORD

SERVICE_PASSWORD=$ADMIN_PASSWORD
RECLONE=yes

Note: The Fixed Range Subnet represents the subnet that
will be used for the internal OpenStack Network.

 Open and edit the file stack.sh as follows:

Comment the below lines:
Start Services # ============== # Dstat # ----
- # A better kind of sysstat, with the top process per
time slice #start_dstat # Etcd # ----- # etcd is a
distributed key value store that provides a reliable
way to store data across a cluster of machines #if
is_service_enabled etcd3; then # start_etcd3 #fi

Save the above file.

 Run ./stack.sh and wait for the script to finish.
Note that it will take some time!
Final output should contain following elements:

This is your host IP address: 192.168.1.50
This is your host IPv6 address: ::1
Horizon is now available at
http://192.168.1.50/dashboard
Keystone is serving at http://192.168.1.50/identity/
The default users are: admin and demo
The password: secret

A fully working OpenStack environment is now available
for deploying cloud environments.

F. Creating an IaaS environment in OpenStack

a) Login to the OpenStack Dashboard
(192.168.1.50/dashboard) using the following credentials:
user: admin & pass: secret. The User will be logged as
admin, using the Project (workspace) admin.

b) First, create an internal network using the subnet
specified in the local.conf file: 10.11.12.0/24.

Access Project -> Network -> Create Network and
name the Network “internal”.

c) Assign a subnet to the internal network using the
following specifications:

Subnet name: subnet

Network address: 10.11.12.0/24

Gateway IP: 10.11.12.1

Enable DHCP

Allocation Pools: 10.11.12.2,10.11.12.10

DNS: 192.168.1.1

d) The external network, called public, is automatically
created by the OpenStack stack.sh script, with the subnet
specified in the local.conf file. The subnet is:
192.168.1.224/27.

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

e) Create a Router that will route the traffic in the
internal network and will make the connection with the
public network, thus the Compute instances will be able to
communicate with the outside world.

Note: For the device to be able to route the traffic as
mentioned before, the Router will have a Gateway interface
with an IP automatically setup from the public network and
an interface connected in the internal network, with an IP
corresponding to the Gateway IP of the internal network
(10.11.12.1).

Access Project -> Network -> Router -> Create Router

Router name: router_public

Enable Admin State: Thicked

External Network: public

Note: The Gateway is automatically created and has an IP
assigned from the public network. In this case, the IP is
192.168.1.227. Still, remains to be created the Interface to
the internal network, to route the internal traffic.

Access Project -> Network -> Routers -> router_public ->
Add Interface
Note: Here you can see the Gateway that has been created
automatically at the creation of the Router.

Parameters for the Interface to the internal network:
Subnet: Select the internal network.
IP Address: 10.11.12.1 (If the Gateway IP of the internal
network is already in use, please assign another IP address).

f) Create the Floating IPs that will be assigned to the
Compute instances. The Floating IPs will be used to connect
the instances to the Outside world.

Access Project -> Network -> Floating IPs -> Allocate IP
To Project. The IP will be allocated from the pool
mentioned in the local.conf file: 192.168.1.224/27.

After clicking the Allocate IP button, a Floating IP will be
automatically allocated.

g) Create the Compute instance.

Access Project -> Compute -> Images -> Launch

In the Details section:

 Instance Name: compute_2

 Availability zone: nova

 Count: 1

Note: To make sure that on Create New Volume Tab, the
button No is selected. So, the volume assigned from the
selected Flavor can be used. Otherwise, the image might not
be created.

In the Flavor Section, select m1.tiny (any type of image can
be selected based on the power provided by the host
machine).

In the Network Section, select the internal network.

After the above steps, Launch Instance button is clicked to
create the Instance.

In order to see the created Compute instance, access Project
-> Compute -> Instances.

h) Assign Floating IP to be able to connect the created
instance to the outside world (public network).

Access Project -> Compute -> Instances. And from the
Create Snapshot dropdown list, select Associate Floating IP.

IP Address: Select the Floating IP Address that was
allocated at Step 11.

The Port to be associated is represented by the internal
network IP address, which is assigned to the compute_2
instance that was created at Step 12.

After these steps, click the button called Associate.

Note: Now, the Floating IP is associated to the Compute
instance and the link with the public network is done.
The process is complete. A working and public network
connected Compute instance has been created.

In order for the environment to be complete, create another
Compute Instance following the same steps.

Figure 5. Compute instances

i) Allow Internet Control Message Protocol (ICMP)
and Secure Shell (SSH) Ingress traffic to be able to do
PING and SSH from the Ubuntu machine towards the
OpenStack Compute instances.

Access Project -> Network -> Security Groups -> Manage
Rules -> Add Rule.

In the Add Rule Window, for the Rule section, select All
ICMP and leave the rest of the sections default. Then, click
Add.

Note: To proceed in the same manner for SSH.

G. Testing the IaaS environment

Compute Instance One:
Name: compute

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

Internal IP: 10.11.12.3
Floating IP: 192.168.1.244

Compute Instance Two:
Name: compute_2
Internal IP: 10.11.12.6
Floating IP: 192.168.1.228

a) Ping the Compute instances from the external
network (ISP network in this case). This will be done from
the Ubuntu Machine;

Figure 6. Test Result – 0% Packet loss

b) Connect to the Compute instances, using SSH, from
the external network (this will be done from the Ubuntu
Machine).
Use the following commands:
ssh cirros@192.168.1.244 (password is “cubswin:)”)
ssh cirros@192.168.1.228 (password is “cubswin:)”)

Figure 7. SSH Connection to Compute instance One

Figure 8. SSH Connection to Compute instance Two

c) Test the connection between the Compute instances
and the connection to the Internet.

Remain connected (using the last SSH Connection) on
Compute instance One and ping Compute instance Two on
the internal IP and then google.com.
Repeat the process being connected on Compute instance
Two and ping Compute instance One.

Figure 9. Internal connection and Internet connection from the first
Compute instance

Figure 10. Internal Connection and Internet Connection from the second
Compute instance

All the tests have been successful. The Infrastructure as a
Service environment can be used without hesitations for any
type of deployment and application development.

V. PRACTICAL HINTS FOR DEVELOPMENT

This section suggests some practical hints that the user
needs to take into consideration when deploying OpenStack.

The following hints should be considered in the
development process:

a. When DevStack is used to install and configure
OpenStack, one should assure that Ubuntu 16.04.4
is used as Operating System (OS). Even though
DevStack supports a wide range of OSs, it is
recommended to use the aforementioned OS,
because it will run the smoothest and it is the most
tested one. This does not mean that it cannot be
installed on other OSs, but it might take a little bit
more time, due to possible bottlenecks that were not
tested before and need a little bit of troubleshooting
from the user’s part. Like any other software,

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

OpenStack needs to be tested on each OS and its
versions.

b. When installing OpenStack, one should setup a
static IP to the host. This IP is going to be
embedded throughout the installation, in various
locations. This means, that if the user changes the
host’s IP address, the user will not be able to access
anymore the OpenStack Dashboard and its services
and it will be very difficult to change the IP due to
its wide spreading in the OpenStack environment.
Most likely OpenStack will not work anymore and
the installation needs to be done from the start.

c. When creating a Compute instance, in the Source
section, one should select “No” as answer for the
option “Create New Volume”. This needs to be
done to avoid an error when creating the Volume
for the instance. For example, if the user selects
YES and also adds a value of 2 GB to the new
Volume, but the selected Flavor offers the
possibility for only a 1GB Volume, then an error is
issued and the Volume cannot be created, due to the
fact that it is a contradiction between what the
Flavor can offer and the user’s selection from the
Source section. Better said, OpenStack tries to
create something bigger than it can be offered by
the selected Flavor.

VI. CONCLUSION

Based on the work done during installation and
configuration of the OpenStack IaaS environment, several
conclusions can be drawn.

Taking advantage of OpenStack, the deployment
developed in this paper can be easily replicated to another
machine/server or it can be scaled to an entire Data Center,
with clustering, load balancing and enhanced Disaster
Recovery (DR) features, capable of providing cloud services
to customers. The enhanced DR capabilities are provided
with the help of SDN and NFV functions that offer the
possibility to create Availability Zones and Regions, to
extend Data Protection in case of a Disaster.

The implementation presented here proved that the users
can actually access OpenStack resources and code to
improve it or change it according to their needs and then
share the results with the entire community for verification
and further utilization.

The OpenStack-based system developed here can be a
useful choice for users that want to start experiencing the
cloud world. It can also be used for academia labs and small
enterprises that want to get a competitive and at the same
time affordable cloud platform.

Further developments are possible, based on this
platform, in SDN and NFV combined environment, e.g. in
5G slicing management control and data planes, etc.

REFERENCES

[1] What is OpenStack?. [Online]. Available from:
https://opensource.com/resources/what-is-openstack
2019.02.15

[2] Introduction to OpenStack. [Online]. Available from:
https://docs.openstack.org/ 2019.02.15

[3] Introduction to OpenStack. [Online]. Available from:
https://docs.oracle.com/cd/E64747_01/E64749/html/osusg-
openstack-what.html# 2019.02.15

[4] How to install OpenStack on your local machine using
Devstack. [Online]. Available from:
https://www.mirantis.com/blog/how-to-install-openstack-on-
your-local-machine-using-devstack/ 2019.02.15

[5] All-In-One Single Machine. [Online]. Available
from:https://docs.openstack.org/devstack/latest/guides/single-
machine.html 2019.02.15

[6] Loosely coupled architecture of OpenStack. [Online].
Available from: https://www.researchgate.net/figure/Loosely-
coupled-architecture-of-OpenStack_fig1_305297793
2019.02.15

[7] How to Install Single Node OpenStack on CentOS 7.
[Online]. Available from:
https://www.alibabacloud.com/blog/how-to-install-single-
node-openstack-on-centos-7_594048 2019.02.18

[8] How to install OpenStack on Ubuntu Server with DevStack.
[Online]. Available from:
https://www.techrepublic.com/article/how-to-install-
openstack-on-ubuntu-server-with-devstack/ 2019.02.18

[9] Companies using OpenStack. [Online]. Available from:
https://idatalabs.com/tech/products/openstack 2019.02.18

[10] N. Saranya and S. Nivedha, “Implementing authentication in
an Openstack environment-survey” 2016 International
Conference on Computer Communication and Informatics
(ICCCI) Jan. 2016, pp 1-7, DOI:
10.1109/ICCCI.2016.7479966

[11] E. Luchian, P. Docolin and V. Dobrota, “Advanced
monitoring of the OpenStack NFV infrastructure: A Nagios
approach using SNMP” 2016 12th IEEE International
Symposium on Electronics and Telecommunications (ISETC)
Oct. 2016, pp 51-54, DOI: 10.1109/ISETC.2016.7781055

[12] P. Jain, A. Datt, A. Goel and S.C. Gupta, “cloud service
orchestration based architecture of OpenStack Nova and
Swift” 2016 International Conference on Advances in
Computing, Communications and Informatics (ICACCI) Sept.
2016, pp 21-24, DOI: 10.1109/ICACCI.2016.7732425

[13] R. Cohen, K. Barabash and L. Schour, “Distributed Overlay
Virtual Ethernet (DOVE) integration with Openstack” 2013
IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013) May 2013, pp 1088 – 1089, INSPEC
Accession Number: 13684410

[14]DevStack. [Online]. Available from:
https://docs.openstack.org/devstack/latest/ 2019.02.20

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

