
Techniques to Improve a Flow Diffusion Algorithm for Folded Clos Networks

Satoru Ohta
Department of Electrical and Computer Engineering, Faculty of Engineering

Toyama Prefectural University
Imizu, Japan

e-mail: ohta@pu-toyama.ac.jp

Abstract—Folded Clos networks (FCNs) are important as
topologies for data center networks. To achieve high
performance with an FCN, it is necessary to establish a routing
method that uniformly diffuses flows between links. To satisfy
this requirement, a previous study proposed a method, called
the “rebalancing algorithm,” which is a distributed algorithm
based on locally obtainable information. An advantage of this
method is that the number of flows on a link is upper bounded
by a theoretically derived constant. Therefore, the link load does
not grow heavier than this bound when using the rebalancing
algorithm. This paper presents two techniques to improve the
rebalancing algorithm. Applying these techniques, the
algorithm can more uniformly diffuse flows. In addition, when
these techniques are employed, the upper bound on the number
of flows remains valid. The effectiveness of the two techniques is
confirmed via computer simulations.

Keywords—network; algorithm; routing; data center; packet.

I. INTRODUCTION
The importance of data center networks is obvious

because most popular information services are provided via
data centers. Therefore, it is essential to establish topologies
for high performance data center networks. To satisfy this
requirement, studies on data center networks have been
performed based on several topologies including the Clos
network [1], fat-tree [2], DCell [3], and BCube [4]. Of these,
the Clos network is a particularly interesting topology because
it can achieve high throughput for arbitrary traffic patterns.
Therefore, various data center networks based on the Clos
network topology have been implemented and operated
[1][5]–[7].

A Clos network is a three-stage non-blocking switching
network originally investigated by Charles Clos in 1953 [8].
In data center network applications, the network appears in the
form of a folded Clos network (FCN). An FCN is essentially
equivalent to a three-stage network; however, it is constructed
by folding the corresponding three-stage Clos network at its
center.

To apply an FCN to data center networks, the routing of a
packet is important. Inadequate routing may cause load
imbalances between the links. Such imbalances may cause
traffic congestion and degrade the performance. Meanwhile,
if the load is uniformly distributed between the links, an FCN
can achieve high throughput by fully utilizing the bandwidth
of every link.

As a routing method, several past studies [6][7][9] have
employed the idea of forwarding a packet to a randomly
selected route. This method is rational to some extent because
it uniformly distributes the average number of flows between
the links. However, with this method, the load on a given link
may grow excessively large with a substantial probability.
Consequently, due to heavily loaded links, traffic congestion
may occur. Such congestion degrades the network
performance. As pointed out in [10], this problem may
become critical for big data applications, which require high
bandwidth transmission. Therefore, it is important to develop
a routing algorithm that diffuses the traffic load more
uniformly than random routing.

Meanwhile, a routing algorithm for an FCN should be
executable in a distributed manner to decrease the processing
overhead and handle frequent route decisions. In addition, the
algorithm should work without global information of the
entire network to eliminate the communication overhead
associated with gathering information. Routing can be
performed on either a per-packet basis or a per-flow basis.
This study examines a method based on per-flow routing
because packet reordering is unavoidable for per-packet
routing.

Reference [11] presented two distributed algorithms that
diffuse flows in FCNs. Using computer simulations, it was
shown that these methods more uniformly diffuse flows than
random routing. These methods are called the rebalancing
algorithm and the load sum algorithm. Of the two, the
rebalancing algorithm works with information that is locally
obtainable at the source switch of a flow. Meanwhile, the load
sum algorithm is less practical due to the communication
overhead between switches, even though it performs better
with respect to load equality. Therefore, if the rebalancing
algorithm is improved to more uniformly diffuse flows, a
more practical and efficient algorithm will be obtained.

This paper presents techniques to improve the rebalancing
algorithm with respect to load equality. These techniques are
based on information that is locally obtainable at the source
switch of a flow. The first technique modifies the algorithm to
more evenly distribute the uplink loads. The second technique
focuses on the fact that the algorithm has a process for
scanning middle switch indices for routing and rerouting.
Therefore, with the second method, the order of scanning the
middle switch indices is determined so as to uniformly diffuse
flows.

68Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

An advantage of the rebalancing algorithm is that an upper
bound is theoretically derived for the number of flows on a
link. When using the presented improvement techniques, this
upper bound is not affected. Therefore, the worst-case link
load is limited as in the case where these techniques are not
applied. The effectiveness of the two techniques is confirmed
via computer simulations.

The remainder of the paper is organized as follows. In
Section II, FCN is explored. Section III reviews related work.
Section IV explains the rebalancing algorithm, which is
investigated for improvement. Two modification techniques
are presented in Section V. The effectiveness of the techniques
is evaluated in Section VI. Finally, Section VII concludes the
paper.

II. FOLDED CLOS NETWORK
A Clos network is a three-stage switching network

originally investigated by Charles Clos [8]. An FCN is
essentially equivalent to a three-stage Clos network. However,
an FCN is constructed by folding the three-stage network at
its center. An example of an FCN is shown in Figure 1.

Figure 1. An example of a FCN.

As shown in Figure 1, an FCN is constructed from r
input/output switches S1, S2, …, Sr that are connected by m
middle switches M1, M2, …, Mm via links. Each middle switch
is connected to every input/output switch via an uplink and a
downlink. An uplink is set from an input/output switch to a
middle switch, while a downlink is set in the reverse direction.

Because a middle switch is connected to every
input/output switch, a packet can reach its destination switch
from an arbitrary middle switch via a downlink. Therefore, the
source switch can transmit a packet to the destination switch
via any middle switch. However, the traffic load on an uplink
or downlink depends on the routing at the source switch. If the
routing is inadequate, traffic congestion occurs. This degrades
the performance. Congestion is avoided if the traffic is evenly
diffused between the uplinks and downlinks in an FCN.
Therefore, it is important to establish a routing method that is
executed at the source switch of a packet.

This paper assumes that routing is performed on a flow
basis. A flow is a packet stream identified by a set of fields in

the packet header. A frequently used field set is {source
address, destination address, protocol, source port,
destination port}, which is associated with an IP socket.
Needless to say, other field sets can also be used as flow
identifiers. If a fixed route is assigned to a flow, packet
reordering does not occur. This is advantageous because
packet reordering leads to throughput degradation. This paper
considers the case where the FCN connects many hosts and
processes via its N = nr input/output ports. In this situation,
many concurrent flows exist between ports.

III. RELATED WORK
A common idea for diffusing traffic in an FCN is to route

a packet to a randomly selected middle switch. This idea,
called Valiant load balancing, was employed in [6] and
originally presented in [12]. Reference [9] explores the
method of computing routing table entries from indices of
switches and host identifiers. This is equivalent to randomly
assigning route flows using the output of a hash function fed
with switch indices and host identifiers. The architecture
reported in [7] employs a per-packet adaptive routing
mechanism as well as per-flow deterministic routing. For the
deterministic routing, flows are diffused to random middle
switches via a hash function fed with input ports and
destinations.

The idea of randomly routing flows is rational to some
extent because the average number of flows is balanced
between the links. However, the worst-case load on a certain
link can grow excessively large with substantial probability.
This may cause traffic congestion and degrade the
performance, e.g., via the packet latency or network
throughput. The adaptive routing proposed in [10] may reduce
this disadvantage of random routing. Initially, this method
semi-randomly selects routes for the flows at the source
switches. Then, the destination switches identify bad links,
which are excessively loaded by this initial routing. Then, the
destination switches notify the source switches of the flows,
passing the bad links as bad flows. With this notification, the
source switches to reroute the bad flows. The rerouting is
repeated until there are no bad links. In [10], the convergence
of the rerouting was evaluated using an analysis based on
Markov chain models and computer simulation.
Unfortunately, it is not clear theoretically how many times the
flows should be rerouted to eliminate all the bad links in the
worst case. It is also unclear whether bad links are definitively
removed by the method of [10]. Due to these difficulties, this
method may not be practical.

Reference [11] presented two flow-based routing methods
that more uniformly diffuse flows than random routing. With
these methods, a flow is routed (or rerouted) at its source
switch in a distributed manner. One of these methods is the
rebalancing algorithm, which runs using locally obtainable
information. The other method is the load sum algorithm,
which requires communication between the source and
destination switches. The simulation results show that these
methods both outperform random routing. It is also shown that
the load sum algorithm more uniformly diffuses flows than
the rebalancing algorithm. The simulation result reported in
[11] shows that every flow equality metric is smaller for the

. . .

. . .

.

. . .
. . .

. . .

m Middle Switches

. . .

r Input/Output
Switches

.

n Input/Output Ports

M1 M2 Mm

S1 S2 Sr

69Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

load sum algorithm than for the rebalancing algorithm.
However, the load sum algorithm may be inefficient with
respect to the communication overhead between switches,
particularly in the case of short-duration flows. Namely, the
traffic amount exchanged by a short-duration flow may
become comparable to or smaller than that by the
communication between switches. This is very inefficient.
From this viewpoint, the rebalancing algorithm is likely more
practical. By improving this method with respect to the
uniformity of the flow diffusion, it is thought that the
rebalancing algorithm will become advantageous.

IV. REBALANCING ALGORITHM
This paper presents techniques to improve the rebalancing

algorithm presented in [11]. This algorithm is actually a
packet stream version of the method shown in [13]. The
algorithm assumes that the route of a newly generated flow is
determined when its first packet arrives at the input switch. It
may not be easy to strictly implement such a mechanism with
currently available technologies. However, it is important to
investigate potentially implementable methods that perform
better than conventional routing.

This section explores some definitions, identifies local
information, and details the algorithm.

A. Definitions
Throughout the paper, the following variables are

employed.

 F(i, j, k): the number of flows that go through a source
switch Si, a middle switch Mj, and a destination switch
Sk (1 , ,1)i k r j m .

 U(i, j): the number of flows on the uplink set from Si
to Mj.

 D(j, k): the number of flows on the downlink set from
Mj to Sk.

Obviously, U(i, j) and D(j, k) are related to F(i, j, k) as
follows:

1

(,) (, ,)
r

k

U i j F i j k (1)

1

(,) (, ,)
r

i

D j k F i j k (2)

The algorithm is described using these variables.

B. Locally obtainable information
For data center network applications, flows may be

generated and completed very frequently in the FCN. For such
a situation, the routing of a flow should be executed in a
distributed manner because the load offered by frequent route
decisions will become excessively heavy for concentrated
computations. In addition, it is impractical to perform
communication between switches. This is because there may
be very short flows that consist of only a few packets. As
described in Section III, it is clearly inefficient to exchange

packets between switches for the routing of such short flows.
Therefore, the route of a flow should be decided at its source
switch using locally obtainable information.

An input/output switch is able to obtain the headers of the
packets, which arrive from its input port and are forwarded to
middle switches. From these headers, the switch can identify
the flows to which the packets belong. Because the switch
decides the routes for the flows as the source, it can count how
many flows go to each middle switch. Therefore, U(i, j) can
be managed at the source switch Si. Moreover, the switch can
also extract the destination switch of the flows from the packet
headers. Using this information, the source switch Si will be
able to count F(i, j, k) as well. However, D(j, k) is not known
at Si because flows from switches other than Si may enter the
downlink to Sk.

Suppose that a new flow is generated and that its source
switch is Si. Then, assume that Si can detect the arrival of a
new flow. This is possible by comparing the flow identifiers
to the routing table. It is also possible for Si to detect the
completion of a flow by timeout. Therefore, Si can launch
routing or rerouting processes at a flow arrival or completion.

C. Basic algorithm
The pseudocode for the rebalancing algorithm [11] is

described in Figure 2.

Algorithm rebalancing
// : a positive integer
1. if a new flow arrives at switch Si and its destination is Sk then
2. Find J such that (, ,) (, ,)F i J k F i j k for any j (1);j m
3. Route the flow to MJ;
4. F(i, J, k):= F(i, J, k) + 1;
5. end if
6. if a flow passing through source Si and destination Sk is completed

then
7. Mx:= the middle switch that the completed flow was routed

through;
8. Find J such that (, ,) (, ,)F i j k F i J k for any j (1)j m ;
9. if (, ,) (, ,)F i J k F i x k then
10. Find a flow that goes through MJ and Sk;
11. Reroute the flow to Mx;
12. F(i, J, k):= F(i, J, k) – 1;
13. else F(i, x, k):= F(i, x, k) – 1;
14. end if
15. end .

Figure 2. Rebalancing algorithm [11].

As shown in Figure 2, the algorithm decides the route for
a new flow so as to decrease the difference between the
F(i, j, k)s for a fixed pair of i and k. In addition, if the
difference between the F(i, j, k)s exceeds a constant by the
flow completion, a flow is rerouted so as to decrease this
difference. As a result, the rebalancing algorithm has the
following property.

Property: With the rebalancing algorithm,

(, ,) (, ,)F i j k F i j k (3)

70Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

for 1 , ,j j m 1 , .i k r
Proof: This property is proved via induction on the flow
arrival and completion events. Assume that (3) holds after the
K-th event. Then, for a new flow arrival between Si and Sk,
F(i, J, k) increases by 1 and the other F(i, j, k)s are unchanged.
Meanwhile, F(i, J, k) is not larger than F(i, j, k) for an
arbitrary value of j prior to the flow arrival. Therefore,
F(i, J, k) is not larger than F(i, j, k) + 1 for any j after the flow
arrival. This means that (3) holds after the flow arrival event.
If a flow that goes through Si, Mx, Sk is completed, F(i, x, k)
decreases by 1. Therefore, if F(i, J, k) is the maximum of the
F(i, j, k)s, the difference between F(i, J, k) and F(i, x, k) may
exceed . However, if this happens, the algorithm reroutes a
flow from MJ to Mx. Then, F(i, x, k) does not change due to
the flow completion and the maximum of the F(i, j, k)s does
not increase. Therefore, (3) holds after the flow completion.
Consequently, (3) is valid after the (K + 1)-th event. Under the
initial state, no flows exist in the network, and therefore the
F(i, j, k)s are 0 for all i, j, and k. This satisfies (3). Therefore,
the property is proved.

An advantage of the rebalancing algorithm is that an upper

bound exists for the number of flows on an uplink or downlink.
Let f0 denote the maximum number of flows given to an input
or output port. Then, as shown in [11],

0 (1)(,) (1)nf rU i j r
m

and (4)

 0 (1)(,) (1)nf rD j k r
m

 (5)

The above equations are derived from (3). The proof of the
bound is detailed in [11]. Due to this characteristic, it is
assured that the load on a link does not grow extremely heavy.

In the rebalancing algorithm, the parameter determines
the frequency of rerouting as well as the uniformity of flow
diffusion. If is smaller, flows will be more frequently
rerouted and more uniformly diffused. If is large, rerouting
never occurs. In this case, flows are diffused via the route
decision when they arrive at their source switches.
Unfortunately, if rerouting is omitted by setting to a large
value, the number of flows on a link can become considerably
large in the worst case. However, simulation results show that
the algorithm works well even without rerouting. Following
[11], a rebalancing algorithm that omits the rerouting process
is referred to as a “balancing algorithm” hereafter.

V. MODIFICATION TECHNIQUES
This section presents two modification techniques to

improve the load equality of the rebalancing algorithm. These
techniques add criteria to select the middle switch index J in
steps 2 and 8 of the algorithm. However, they do not change
the conditions that F(i, J, k) and other F(i, j, k)s should satisfy.
Therefore, (3) holds even if these techniques are applied.
Consequently, the upper bound shown by (4) or (5) is
unchanged by these techniques.

A. Uplink flow diffusion
The algorithm described in the previous section uses

F(i, j, k) and the events of flow arrival and completion in the
local information. Therefore, of the available local
information, U(i, j) remains unused. Even though the
rebalancing algorithm decreases the difference between the
F(i, j, k)s for a particular pair of i and k, the uplink load U(i, j)
is not necessarily uniformly distributed. In step 2 of the
rebalancing algorithm, the middle switch MJ is selected such
that F(i, J, k) will be the minimum of the F(i, j, k)s. In this
process, there may be two or more candidates for J. Suppose
that we select J from the candidates so that U(i, J) will be the
minimum of the candidates. Then, flows will be more
uniformly distributed between the uplinks. This does not
necessarily improve the load equality between the downlinks.
However, the performance will at least be improved for the
uplinks.

Similarly, flow diffusion via rerouting can also be
modified using U(i, j). In step 8 of the algorithm, MJ is
selected such that F(i, J, k) will be the maximum of the
F(i, j, k)s. Suppose that there are two or more such indices J.
Then, it is possible to use the index that maximizes U(i, J). We
refer to this modification using U(i, j) as “modification 1.”

B. Start index for scanning the middle switches
The order of searching for index J in steps 2 and 8 also

affects the performance of the rebalancing algorithm. Assume
that J is scanned in the order of 1, 2, …, m in step 2. Then, a
smaller index is more likely to be selected as J. Therefore,
F(i, j, k) will be larger for a smaller index j with a high
probability even though the differences between the F(i, j, k)s
are bounded by for fixed i and k. According to (1) and (2),
this implies that U(i, j) and D(j, k) will also tend to be larger
for a smaller value of j. To avoid this unbalance between
U(i, j) and D(j, k), the scanning of J should start from a
different index depending on k for a fixed value of i. Similarly,
the start index should differ depending on i for a fixed value
of k. In addition, the start index should be evenly distributed
between 1, 2, …, m for different values of i or k. To satisfy
this requirement, let us examine the following start index js:

() /sj i k m r (6)

In the above equation, the term /m r is necessary to
evenly distribute js between 1, 2, …, m for the case of 2m r .
In step 2 of the algorithm, the index was scanned in the order
of js, js + 1, js + 2,…, if the index reaches m + 1, it wraps to 1.

For step 8 of the algorithm, it was found from simulation
results that the index should be started from (js + m) mod m
and then decreased. If the index reaches 0, it wraps to m. The
reason for this scheme is explained as follows. This scheme
aims to generate the situation where F(i, js, k) is not less than
F(i, js + 1, k), F(i, js + 1, k) is not less than F(i, js + 2, k), and
so on. To maintain this situation, it is favorable to select J from
later elements of the sequence js, js + 1, js + 2,…,
(js + m) mod m because F(i, J, k) decreases due to rerouting.

The employment of the start index stated above is called
“modification 2” hereafter.

71Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

VI. EVALUATION
The effectiveness of the improvements was evaluated

using computer simulations. The simulations examined the
rebalancing and balancing algorithms to which modifications
1 and 2 were applied. For comparison, the original rebalancing
and balancing algorithms reported in [11] were also evaluated.
In the rebalancing algorithm, the parameter was set to 1.

In the simulations, the following two network models were
employed:

 FCN1: r = 48, m = n = 24, and
 FCN2: r = 24, m = n = 48.

The parameters used for FCN1 are the same as those found
in the model examined in [10]. Thus, it is considered that the
parameters are adequate to simulate a realistic network. FCN2
was also examined to assess the algorithm behavior for a
different topology with the same scale.

The degree of the load equality was estimated using the
following metrics, which were also used in [11]:

 Maximum: the maximum number of flows in the links
at a certain measurement time,

 Variance: the variance in the flow numbers in the
links at a certain measurement time, and

 Bad links: the number of links, in which the number
of flows exceeds a threshold C.

The threshold for bad links, C, was set to 105. This value
was slightly larger than the average number of flows under the
given traffic condition. The values of the above metrics will
be smaller if the flows are more uniformly diffused.

A flow was generated by opening a socket between the
hosts a and z. These hosts are connected to two randomly
selected input/output switches. By opening a socket, two
flows are generated for the direction from a to z as well as for
the reverse direction.

Reference [6] reports that an average machine has ten
concurrent flows in a real-world data center. By aggregating
the traffic from 10 such machines, the average number of
flows will be 100 for a port of each input/output switch. This
situation was simulated by the following traffic model. The
interval of opening sockets was randomly determined by an
exponential distribution with an average of 0.001 s. The
duration of a socket was also a random value according to an
exponential distribution with an average of 57.6 s. For this
traffic condition and the network models, the average number
of flows in the network was estimated to be 100.

The sockets were opened 2 106 times. The metrics were
measured every 1 s in the period from 401 s to 1900 s. The
system was considered to be in equilibrium during this period.
The averages of the metrics were computed from the
measured data.

The simulation was performed by a custom event-driven
simulation program. Thus, any existing simulation platform
was not employed. The program was built using C language,
and compiled by gcc 4.8.5. The simulation was performed on
a Core i3/16GB RAM PC, which runs on CentOS 7.

The simulation result for the rebalancing algorithm and
FCN1 is summarized in Table I. Table II shows the result for
the balancing algorithm and FCN1.

TABLE I. RESULT FOR THE REBALANCING ALGORITHM AND FCN1.

Algorithms Maximum Variance Bad Links
Original Version 111.678 10.838 122.841
Modification 1 111.085 7.348 66.934
Modification 2 109.942 9.254 92.203
Modifications 1 & 2 110.347 6.848 56.835

TABLE II. RESULT FOR THE BALANCING ALGORITHM AND FCN1.

Algorithms Maximum Variance Bad Links
Original Version 113.537 14.796 187.919
Modification 1 112.617 9.666 102.452
Modification 2 110.869 11.413 126.949
Modifications 1 & 2 112.437 9.411 98.201

Tables I and II show that the load equality is successfully

improved by modifications 1 and 2. As shown in the tables,
every metric decreased when applying the modifications. In
particular, modification 1 effectively improved the variance
and bad links metrics. Therefore, this modification is effective
even though it does not affect the equality between the
D(j, k)s. The improvement due to modification 2 is not large
in comparison to that due to modification 1. However, every
metric also gets smaller when using modification 2. By
applying both modifications 1 and 2, the best result was
obtained for the variance and bad links metrics. Particularly,
the improvement in the bad links metric is obvious. This
implies that the number of flows is concentrated into a narrow
range for most links.

Tables III and IV list the results for FCN2. Table III shows
the case of the rebalancing algorithm, while Table IV shows
the case of the balancing algorithm.

TABLE III. RESULT FOR THE REBALANCING ALGORITHM AND FCN2.

Algorithms Maximum Variance Bad Links
Original Version 106.827 4.223 10.817
Modification 1 106.493 2.989 5.363
Modification 2 105.829 3.650 5.768
Modifications 1 & 2 106.014 2.767 3.319

TABLE IV. RESULT FOR THE BALANCING ALGORITHM AND FCN2.

Algorithms Maximum Variance Bad Links
Original Version 107.517 5.049 19.756
Modification 1 107.138 3.544 9.947
Modification 2 106.255 4.176 9.428
Modifications 1 & 2 107.016 3.439 8.553

Tables III and IV show that every metric decreases due to

the modifications for the case of FCN2 as well. This implies
that the modifications will be effective in general for various

72Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

networks with different parameters. It also confirms that the
definition of js is adequate for modification 2 because other
definitions do not necessarily yield such a result.

In a comparison of the rebalancing and balancing
algorithms, we find that the former is always superior to the
latter for any case. However, the rerouting performed by the
rebalancing algorithm may cause packet reordering, which
may decrease the throughput. Meanwhile, the proposed
modifications considerably improve the load equality of the
balancing algorithm, which does not perform rerouting.
Therefore, a practical solution is to use the balancing
algorithm including the proposed modifications.

VII. CONCLUSION AND FUTURE WORK
This paper investigated techniques to improve the

rebalancing algorithm [11], which diffuses flows in an FCN.
The first technique decreases the difference between the
uplink loads by adding a criterion to decide on the middle
switch used in the routing or rerouting processes. In addition,
it was inferred that the load equality depends the order of the
scanning of the middle switch indices. Based on this, the
second technique decides the start index for scanning so as to
balance the loads. The two techniques were applied to the
rebalancing algorithm as well as the balancing algorithm and
evaluated using computer simulations. Here, the balancing
algorithm is a version of the rebalancing algorithm that is
modified to omit the rerouting process. The results show that
the presented techniques successfully improve the load
equality.

Further study is necessary in the future to determine how
the load equality provided by the presented techniques affects
the packet-level performances such as the packet latency. The
implementation of these techniques is also an important future
work. Nevertheless, it is concluded that the rebalancing and
balancing algorithms become more practical when employing
the presented techniques.

REFERENCES
[1] F. Hassen and L. Mhamdi, “High-capacity Clos-network switch for

data center networks,” in proc. ICC 2017, paper NGNI07-1, pp. 1–7,
Paris, France, May 2017.

[2] Z. Guo and Y. Yang, “On Nonblocking Multicast Fat-Tree Data Center
Networks with Server Redundancy,” IEEE Trans. on Computers, 64, 4,
pp. 1058–1073, Apr. 2014.

[3] C. Guo et al., “DCell: a scalable and fault-tolerant network structure
for data centers,” in proc. ACM SIGCOMM ’08, pp. 75–86, Seattle,
WA, USA, Aug. 2008.

[4] C. Guo et al., “BCube: a high performance, server-centric network
architecture for modular data centers,” in proc. ACM SIGCOMM ’09,
pp. 63–74, Barcelona, Spain, Aug. 2009.

[5] N. Farrington and A. Andreyev, “Facebook’s data center network
architecture,” in proc. 2013 Optical Interconnects Conference, pp. 49–
50, Santa Fe, NM, USA, May 2013.

[6] A. Greenberg et al., “VL2: a scalable and flexible data center network,”
Communications of the ACM, 54, 3, pp. 95–104, Mar. 2011.

[7] S. Scott, D. Abts, J. Kim, and W.J. Dally, “The BlackWidow high-
radix Clos network,” in proc. ISCA ’06, pp. 16–28, Boston, MA, USA,
June 2006.

[8] C. Clos, “A study of nonblocking switching networks,” Bell System
Technical Journal, 32, 2, pp. 406–424, Mar. 1953.

[9] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in proc. SIGCOMM ’08, pp. 63–74,
Seattle, WA, USA, Aug. 2008.

[10] E. Zahavi, I. Keslassy, and A. Kolodny, “Distributed adaptive routing
for big-data applications running on data center networks,” in proc.
ANCS ’12, pp. 99–110, Austin, Tx, USA, Oct. 2012.

[11] S. Ohta, “Flow diffusion algorithms based on local and semi-local
information for folded Clos networks,” in proc. ICESS 2018, pp. 46–
54, Takamatsu, Japan, Nov. 2018.

[12] L. G. Valiant, “A scheme for fast parallel communication,” SIAM J.
Computing, 11, 2, pp. 350–361, May 1982.

[13] S. Ohta, "A simple control algorithm for rearrangeable switching
networks with time division multiplexed links,” IEEE J. on Selected
Areas in Communications, SAC-5, 8, pp.1302–1308, Oct. 1987.

73Copyright (c) IARIA, 2019. ISBN: 978-1-61208-695-8

ICN 2019 : The Eighteenth International Conference on Networks

