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Abstract—Folded Clos networks (FCNs) are important as 
topologies for data center networks. To achieve high 
performance with an FCN, it is necessary to establish a routing 
method that uniformly diffuses flows between links. To satisfy 
this requirement, a previous study proposed a method, called 
the “rebalancing algorithm,” which is a distributed algorithm 
based on locally obtainable information. An advantage of this 
method is that the number of flows on a link is upper bounded 
by a theoretically derived constant. Therefore, the link load does 
not grow heavier than this bound when using the rebalancing 
algorithm. This paper presents two techniques to improve the 
rebalancing algorithm. Applying these techniques, the 
algorithm can more uniformly diffuse flows. In addition, when 
these techniques are employed, the upper bound on the number 
of flows remains valid. The effectiveness of the two techniques is 
confirmed via computer simulations. 
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I.  INTRODUCTION 
The importance of data center networks is obvious 

because most popular information services are provided via 
data centers. Therefore, it is essential to establish topologies 
for high performance data center networks. To satisfy this 
requirement, studies on data center networks have been 
performed based on several topologies including the Clos 
network [1], fat-tree [2], DCell [3], and BCube [4]. Of these, 
the Clos network is a particularly interesting topology because 
it can achieve high throughput for arbitrary traffic patterns. 
Therefore, various data center networks based on the Clos 
network topology have been implemented and operated 
[1][5]–[7]. 

A Clos network is a three-stage non-blocking switching 
network originally investigated by Charles Clos in 1953 [8]. 
In data center network applications, the network appears in the 
form of a folded Clos network (FCN). An FCN is essentially 
equivalent to a three-stage network; however, it is constructed 
by folding the corresponding three-stage Clos network at its 
center. 

To apply an FCN to data center networks, the routing of a 
packet is important. Inadequate routing may cause load 
imbalances between the links. Such imbalances may cause 
traffic congestion and degrade the performance. Meanwhile, 
if the load is uniformly distributed between the links, an FCN 
can achieve high throughput by fully utilizing the bandwidth 
of every link. 

As a routing method, several past studies [6][7][9] have 
employed the idea of forwarding a packet to a randomly 
selected route. This method is rational to some extent because 
it uniformly distributes the average number of flows between 
the links. However, with this method, the load on a given link 
may grow excessively large with a substantial probability. 
Consequently, due to heavily loaded links, traffic congestion 
may occur. Such congestion degrades the network 
performance. As pointed out in [10], this problem may 
become critical for big data applications, which require high 
bandwidth transmission. Therefore, it is important to develop 
a routing algorithm that diffuses the traffic load more 
uniformly than random routing. 

Meanwhile, a routing algorithm for an FCN should be 
executable in a distributed manner to decrease the processing 
overhead and handle frequent route decisions. In addition, the 
algorithm should work without global information of the 
entire network to eliminate the communication overhead 
associated with gathering information. Routing can be 
performed on either a per-packet basis or a per-flow basis. 
This study examines a method based on per-flow routing 
because packet reordering is unavoidable for per-packet 
routing. 

Reference [11] presented two distributed algorithms that 
diffuse flows in FCNs. Using computer simulations, it was 
shown that these methods more uniformly diffuse flows than 
random routing. These methods are called the rebalancing 
algorithm and the load sum algorithm. Of the two, the 
rebalancing algorithm works with information that is locally 
obtainable at the source switch of a flow. Meanwhile, the load 
sum algorithm is less practical due to the communication 
overhead between switches, even though it performs better 
with respect to load equality. Therefore, if the rebalancing 
algorithm is improved to more uniformly diffuse flows, a 
more practical and efficient algorithm will be obtained. 

This paper presents techniques to improve the rebalancing 
algorithm with respect to load equality. These techniques are 
based on information that is locally obtainable at the source 
switch of a flow. The first technique modifies the algorithm to 
more evenly distribute the uplink loads. The second technique 
focuses on the fact that the algorithm has a process for 
scanning middle switch indices for routing and rerouting. 
Therefore, with the second method, the order of scanning the 
middle switch indices is determined so as to uniformly diffuse 
flows. 
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An advantage of the rebalancing algorithm is that an upper 
bound is theoretically derived for the number of flows on a 
link. When using the presented improvement techniques, this 
upper bound is not affected. Therefore, the worst-case link 
load is limited as in the case where these techniques are not 
applied. The effectiveness of the two techniques is confirmed 
via computer simulations. 

The remainder of the paper is organized as follows. In 
Section II, FCN is explored. Section III reviews related work. 
Section IV explains the rebalancing algorithm, which is 
investigated for improvement. Two modification techniques 
are presented in Section V. The effectiveness of the techniques 
is evaluated in Section VI. Finally, Section VII concludes the 
paper. 

II. FOLDED CLOS NETWORK 
A Clos network is a three-stage switching network 

originally investigated by Charles Clos [8]. An FCN is 
essentially equivalent to a three-stage Clos network. However, 
an FCN is constructed by folding the three-stage network at 
its center. An example of an FCN is shown in Figure 1. 

 

 
Figure 1.  An example of a FCN. 

As shown in Figure 1, an FCN is constructed from r 
input/output switches S1, S2, …, Sr that are connected by m 
middle switches M1, M2, …, Mm via links. Each middle switch 
is connected to every input/output switch via an uplink and a 
downlink. An uplink is set from an input/output switch to a 
middle switch, while a downlink is set in the reverse direction. 

Because a middle switch is connected to every 
input/output switch, a packet can reach its destination switch 
from an arbitrary middle switch via a downlink. Therefore, the 
source switch can transmit a packet to the destination switch 
via any middle switch. However, the traffic load on an uplink 
or downlink depends on the routing at the source switch. If the 
routing is inadequate, traffic congestion occurs. This degrades 
the performance. Congestion is avoided if the traffic is evenly 
diffused between the uplinks and downlinks in an FCN. 
Therefore, it is important to establish a routing method that is 
executed at the source switch of a packet. 

This paper assumes that routing is performed on a flow 
basis. A flow is a packet stream identified by a set of fields in 

the packet header. A frequently used field set is {source 
address, destination address, protocol, source port, 
destination port}, which is associated with an IP socket. 
Needless to say, other field sets can also be used as flow 
identifiers. If a fixed route is assigned to a flow, packet 
reordering does not occur. This is advantageous because 
packet reordering leads to throughput degradation. This paper 
considers the case where the FCN connects many hosts and 
processes via its N = nr input/output ports. In this situation, 
many concurrent flows exist between ports. 

III. RELATED WORK 
A common idea for diffusing traffic in an FCN is to route 

a packet to a randomly selected middle switch. This idea, 
called Valiant load balancing, was employed in [6] and 
originally presented in [12]. Reference [9] explores the 
method of computing routing table entries from indices of 
switches and host identifiers. This is equivalent to randomly 
assigning route flows using the output of a hash function fed 
with switch indices and host identifiers. The architecture 
reported in [7] employs a per-packet adaptive routing 
mechanism as well as per-flow deterministic routing. For the 
deterministic routing, flows are diffused to random middle 
switches via a hash function fed with input ports and 
destinations. 

The idea of randomly routing flows is rational to some 
extent because the average number of flows is balanced 
between the links. However, the worst-case load on a certain 
link can grow excessively large with substantial probability. 
This may cause traffic congestion and degrade the 
performance, e.g., via the packet latency or network 
throughput. The adaptive routing proposed in [10] may reduce 
this disadvantage of random routing. Initially, this method 
semi-randomly selects routes for the flows at the source 
switches. Then, the destination switches identify bad links, 
which are excessively loaded by this initial routing. Then, the 
destination switches notify the source switches of the flows, 
passing the bad links as bad flows. With this notification, the 
source switches to reroute the bad flows. The rerouting is 
repeated until there are no bad links. In [10], the convergence 
of the rerouting was evaluated using an analysis based on 
Markov chain models and computer simulation. 
Unfortunately, it is not clear theoretically how many times the 
flows should be rerouted to eliminate all the bad links in the 
worst case. It is also unclear whether bad links are definitively 
removed by the method of [10]. Due to these difficulties, this 
method may not be practical. 

Reference [11] presented two flow-based routing methods 
that more uniformly diffuse flows than random routing. With 
these methods, a flow is routed (or rerouted) at its source 
switch in a distributed manner. One of these methods is the 
rebalancing algorithm, which runs using locally obtainable 
information. The other method is the load sum algorithm, 
which requires communication between the source and 
destination switches. The simulation results show that these 
methods both outperform random routing. It is also shown that 
the load sum algorithm more uniformly diffuses flows than 
the rebalancing algorithm. The simulation result reported in 
[11] shows that every flow equality metric is smaller for the 
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load sum algorithm than for the rebalancing algorithm. 
However, the load sum algorithm may be inefficient with 
respect to the communication overhead between switches, 
particularly in the case of short-duration flows. Namely, the 
traffic amount exchanged by a short-duration flow may 
become comparable to or smaller than that by the 
communication between switches. This is very inefficient. 
From this viewpoint, the rebalancing algorithm is likely more 
practical. By improving this method with respect to the 
uniformity of the flow diffusion, it is thought that the 
rebalancing algorithm will become advantageous. 

IV. REBALANCING ALGORITHM 
This paper presents techniques to improve the rebalancing 

algorithm presented in [11]. This algorithm is actually a 
packet stream version of the method shown in [13]. The 
algorithm assumes that the route of a newly generated flow is 
determined when its first packet arrives at the input switch. It 
may not be easy to strictly implement such a mechanism with 
currently available technologies. However, it is important to 
investigate potentially implementable methods that perform 
better than conventional routing. 

This section explores some definitions, identifies local 
information, and details the algorithm. 

A. Definitions 
Throughout the paper, the following variables are 

employed. 

 F(i, j, k): the number of flows that go through a source 
switch Si, a middle switch Mj, and a destination switch 
Sk (1 , ,1 )i k r j m . 

 U(i, j): the number of flows on the uplink set from Si 
to Mj. 

 D( j, k): the number of flows on the downlink set from 
Mj to Sk. 

Obviously, U(i, j) and D( j, k) are related to F(i, j, k) as 
follows: 

1

( , ) ( , , )
r

k

U i j F i j k (1)

1

( , ) ( , , )
r

i

D j k F i j k (2)

The algorithm is described using these variables. 

B. Locally obtainable information 
For data center network applications, flows may be 

generated and completed very frequently in the FCN. For such 
a situation, the routing of a flow should be executed in a 
distributed manner because the load offered by frequent route 
decisions will become excessively heavy for concentrated 
computations. In addition, it is impractical to perform 
communication between switches. This is because there may 
be very short flows that consist of only a few packets. As 
described in Section III, it is clearly inefficient to exchange 

packets between switches for the routing of such short flows. 
Therefore, the route of a flow should be decided at its source 
switch using locally obtainable information. 

An input/output switch is able to obtain the headers of the 
packets, which arrive from its input port and are forwarded to 
middle switches. From these headers, the switch can identify 
the flows to which the packets belong. Because the switch 
decides the routes for the flows as the source, it can count how 
many flows go to each middle switch. Therefore, U(i, j) can 
be managed at the source switch Si. Moreover, the switch can 
also extract the destination switch of the flows from the packet 
headers. Using this information, the source switch Si will be 
able to count F(i, j, k) as well. However, D( j, k) is not known 
at Si because flows from switches other than Si may enter the 
downlink to Sk. 

Suppose that a new flow is generated and that its source 
switch is Si. Then, assume that Si can detect the arrival of a 
new flow. This is possible by comparing the flow identifiers 
to the routing table. It is also possible for Si to detect the 
completion of a flow by timeout. Therefore, Si can launch 
routing or rerouting processes at a flow arrival or completion. 

C. Basic algorithm 
The pseudocode for the rebalancing algorithm [11] is 

described in Figure 2. 
 

Algorithm rebalancing 
// : a positive integer 
1. if a new flow arrives at switch Si and its destination is Sk then 
2.  Find J such that ( , , ) ( , , )F i J k F i j k  for any j (1 );j m  
3.  Route the flow to MJ; 
4.  F(i, J, k):= F(i, J, k) + 1; 
5. end if 
6. if a flow passing through source Si and destination Sk is completed 

then 
7.  Mx:= the middle switch that the completed flow was routed 

through; 
8.  Find J such that ( , , ) ( , , )F i j k F i J k  for any j (1 )j m ; 
9.  if ( , , ) ( , , )F i J k F i x k  then 
10.   Find a flow that goes through MJ and Sk; 
11.   Reroute the flow to Mx; 
12.   F(i, J, k):= F(i, J, k) – 1; 
13.  else F(i, x, k):= F(i, x, k) – 1; 
14.  end if 
15. end . 

Figure 2.  Rebalancing algorithm [11]. 

As shown in Figure 2, the algorithm decides the route for 
a new flow so as to decrease the difference between the 
F(i, j, k)s for a fixed pair of i and k. In addition, if the 
difference between the F(i, j, k)s exceeds a constant  by the 
flow completion, a flow is rerouted so as to decrease this 
difference. As a result, the rebalancing algorithm has the 
following property. 

Property: With the rebalancing algorithm, 

( , , ) ( , , )F i j k F i j k  (3) 
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for 1 , ,j j m 1 , .i k r  
Proof: This property is proved via induction on the flow 
arrival and completion events. Assume that (3) holds after the 
K-th event. Then, for a new flow arrival between Si and Sk, 
F(i, J, k) increases by 1 and the other F(i, j, k)s are unchanged. 
Meanwhile, F(i, J, k) is not larger than F(i, j, k) for an 
arbitrary value of j prior to the flow arrival. Therefore, 
F(i, J, k) is not larger than F(i, j, k) + 1 for any j after the flow 
arrival. This means that (3) holds after the flow arrival event. 
If a flow that goes through Si, Mx, Sk is completed, F(i, x, k) 
decreases by 1. Therefore, if F(i, J, k) is the maximum of the 
F(i, j, k)s, the difference between F(i, J, k) and F(i, x, k) may 
exceed . However, if this happens, the algorithm reroutes a 
flow from MJ to Mx. Then, F(i, x, k)  does not change due to 
the flow completion and the maximum of the F(i, j, k)s does 
not increase. Therefore, (3) holds after the flow completion. 
Consequently, (3) is valid after the (K + 1)-th event. Under the 
initial state, no flows exist in the network, and therefore the 
F(i, j, k)s are 0 for all i, j, and k. This satisfies (3). Therefore, 
the property is proved. 

 
An advantage of the rebalancing algorithm is that an upper 

bound exists for the number of flows on an uplink or downlink. 
Let f0 denote the maximum number of flows given to an input 
or output port. Then, as shown in [11], 

0 ( 1)( , ) ( 1)nf rU i j r
m

and (4)

 0 ( 1)( , ) ( 1)nf rD j k r
m

 (5)

The above equations are derived from (3). The proof of the 
bound is detailed in [11]. Due to this characteristic, it is 
assured that the load on a link does not grow extremely heavy. 

In the rebalancing algorithm, the parameter  determines 
the frequency of rerouting as well as the uniformity of flow 
diffusion. If  is smaller, flows will be more frequently 
rerouted and more uniformly diffused. If  is large, rerouting 
never occurs. In this case, flows are diffused via the route 
decision when they arrive at their source switches. 
Unfortunately, if rerouting is omitted by setting  to a large 
value, the number of flows on a link can become considerably 
large in the worst case. However, simulation results show that 
the algorithm works well even without rerouting. Following 
[11], a rebalancing algorithm that omits the rerouting process 
is referred to as a “balancing algorithm” hereafter. 

V. MODIFICATION TECHNIQUES 
This section presents two modification techniques to 

improve the load equality of the rebalancing algorithm. These 
techniques add criteria to select the middle switch index J in 
steps 2 and 8 of the algorithm. However, they do not change 
the conditions that F(i, J, k) and other F(i, j, k)s should satisfy. 
Therefore, (3) holds even if these techniques are applied. 
Consequently, the upper bound shown by (4) or (5) is 
unchanged by these techniques. 

A. Uplink flow diffusion 
The algorithm described in the previous section uses 

F(i, j, k) and the events of flow arrival and completion in the 
local information. Therefore, of the available local 
information, U(i, j) remains unused. Even though the 
rebalancing algorithm decreases the difference between the 
F(i, j, k)s for a particular pair of i and k, the uplink load U(i, j) 
is not necessarily uniformly distributed. In step 2 of the 
rebalancing algorithm, the middle switch MJ is selected such 
that F(i, J, k) will be the minimum of the F(i, j, k)s. In this 
process, there may be two or more candidates for J. Suppose 
that we select J from the candidates so that U(i, J) will be the 
minimum of the candidates. Then, flows will be more 
uniformly distributed between the uplinks. This does not 
necessarily improve the load equality between the downlinks. 
However, the performance will at least be improved for the 
uplinks. 

Similarly, flow diffusion via rerouting can also be 
modified using U(i, j). In step 8 of the algorithm, MJ is 
selected such that F(i, J, k) will be the maximum of the 
F(i, j, k)s. Suppose that there are two or more such indices J. 
Then, it is possible to use the index that maximizes U(i, J). We 
refer to this modification using U(i, j) as “modification 1.” 

B. Start index for scanning the middle switches 
The order of searching for index J in steps 2 and 8 also 

affects the performance of the rebalancing algorithm. Assume 
that J is scanned in the order of 1, 2, …, m in step 2. Then, a 
smaller index is more likely to be selected as J. Therefore, 
F(i, j, k) will be larger for a smaller index j with a high 
probability even though the differences between the F(i, j, k)s 
are bounded by  for fixed i and k. According to (1) and (2), 
this implies that U(i, j) and D( j, k) will also tend to be larger 
for a smaller value of j. To avoid this unbalance between 
U(i, j) and D( j, k), the scanning of J should start from a 
different index depending on k for a fixed value of i. Similarly, 
the start index should differ depending on i for a fixed value 
of k. In addition, the start index should be evenly distributed 
between 1, 2, …, m for different values of i or k. To satisfy 
this requirement, let us examine the following start index js: 

( ) /sj i k m r  (6) 

In the above equation, the term /m r  is necessary to 
evenly distribute js between 1, 2, …, m for the case of 2m r . 
In step 2 of the algorithm, the index was scanned in the order 
of js, js + 1, js + 2,…, if the index reaches m + 1, it wraps to 1. 

For step 8 of the algorithm, it was found from simulation 
results that the index should be started from (js + m) mod m 
and then decreased. If the index reaches 0, it wraps to m. The 
reason for this scheme is explained as follows. This scheme 
aims to generate the situation where F(i, js, k) is not less than 
F(i, js + 1, k), F(i, js + 1, k) is not less than F(i, js + 2, k), and 
so on. To maintain this situation, it is favorable to select J from 
later elements of the sequence js, js + 1, js + 2,…, 
(js + m) mod m because F(i, J, k) decreases due to rerouting. 

The employment of the start index stated above is called 
“modification 2” hereafter. 
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VI. EVALUATION 
The effectiveness of the improvements was evaluated 

using computer simulations. The simulations examined the 
rebalancing and balancing algorithms to which modifications 
1 and 2 were applied. For comparison, the original rebalancing 
and balancing algorithms reported in [11] were also evaluated. 
In the rebalancing algorithm, the parameter  was set to 1. 

In the simulations, the following two network models were 
employed: 

 FCN1: r = 48, m = n = 24, and 
 FCN2: r = 24, m = n = 48. 

The parameters used for FCN1 are the same as those found 
in the model examined in [10]. Thus, it is considered that the 
parameters are adequate to simulate a realistic network. FCN2 
was also examined to assess the algorithm behavior for a 
different topology with the same scale.  

The degree of the load equality was estimated using the 
following metrics, which were also used in [11]: 

 Maximum: the maximum number of flows in the links 
at a certain measurement time, 

 Variance: the variance in the flow numbers in the 
links at a certain measurement time, and 

 Bad links: the number of links, in which the number 
of flows exceeds a threshold C. 

The threshold for bad links, C, was set to 105. This value 
was slightly larger than the average number of flows under the 
given traffic condition. The values of the above metrics will 
be smaller if the flows are more uniformly diffused. 

A flow was generated by opening a socket between the 
hosts a and z. These hosts are connected to two randomly 
selected input/output switches. By opening a socket, two 
flows are generated for the direction from a to z as well as for 
the reverse direction.  

Reference [6] reports that an average machine has ten 
concurrent flows in a real-world data center. By aggregating 
the traffic from 10 such machines, the average number of 
flows will be 100 for a port of each input/output switch. This 
situation was simulated by the following traffic model. The 
interval of opening sockets was randomly determined by an 
exponential distribution with an average of 0.001 s. The 
duration of a socket was also a random value according to an 
exponential distribution with an average of 57.6 s. For this 
traffic condition and the network models, the average number 
of flows in the network was estimated to be 100. 

The sockets were opened 2  106 times. The metrics were 
measured every 1 s in the period from 401 s to 1900 s. The 
system was considered to be in equilibrium during this period. 
The averages of the metrics were computed from the 
measured data. 

The simulation was performed by a custom event-driven 
simulation program. Thus, any existing simulation platform 
was not employed. The program was built using C language, 
and compiled by gcc 4.8.5. The simulation was performed on 
a Core i3/16GB RAM PC, which runs on CentOS 7. 

The simulation result for the rebalancing algorithm and 
FCN1 is summarized in Table I. Table II shows the result for 
the balancing algorithm and FCN1. 

TABLE I.  RESULT FOR THE REBALANCING ALGORITHM AND FCN1. 

Algorithms Maximum Variance Bad Links 
Original Version 111.678 10.838 122.841 
Modification 1 111.085 7.348 66.934 
Modification 2 109.942 9.254 92.203 
Modifications 1 & 2 110.347 6.848 56.835 

 

TABLE II.  RESULT FOR THE BALANCING ALGORITHM AND FCN1. 

Algorithms Maximum Variance Bad Links 
Original Version 113.537 14.796 187.919 
Modification 1 112.617 9.666 102.452 
Modification 2 110.869 11.413 126.949 
Modifications 1 & 2 112.437 9.411 98.201 

 
Tables I and II show that the load equality is successfully 

improved by modifications 1 and 2. As shown in the tables, 
every metric decreased when applying the modifications. In 
particular, modification 1 effectively improved the variance 
and bad links metrics. Therefore, this modification is effective 
even though it does not affect the equality between the 
D( j, k)s. The improvement due to modification 2 is not large 
in comparison to that due to modification 1. However, every 
metric also gets smaller when using modification 2. By 
applying both modifications 1 and 2, the best result was 
obtained for the variance and bad links metrics. Particularly, 
the improvement in the bad links metric is obvious. This 
implies that the number of flows is concentrated into a narrow 
range for most links. 

Tables III and IV list the results for FCN2. Table III shows 
the case of the rebalancing algorithm, while Table IV shows 
the case of the balancing algorithm. 

TABLE III.  RESULT FOR THE REBALANCING ALGORITHM AND FCN2. 

Algorithms Maximum Variance Bad Links 
Original Version 106.827 4.223 10.817 
Modification 1 106.493 2.989 5.363 
Modification 2 105.829 3.650 5.768 
Modifications 1 & 2 106.014 2.767 3.319 

 

TABLE IV.  RESULT FOR THE BALANCING ALGORITHM AND FCN2. 

Algorithms Maximum Variance Bad Links 
Original Version 107.517 5.049 19.756 
Modification 1 107.138 3.544 9.947 
Modification 2 106.255 4.176 9.428 
Modifications 1 & 2 107.016 3.439 8.553 

 
Tables III and IV show that every metric decreases due to 

the modifications for the case of FCN2 as well. This implies 
that the modifications will be effective in general for various 
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networks with different parameters. It also confirms that the 
definition of js is adequate for modification 2 because other 
definitions do not necessarily yield such a result. 

In a comparison of the rebalancing and balancing 
algorithms, we find that the former is always superior to the 
latter for any case. However, the rerouting performed by the 
rebalancing algorithm may cause packet reordering, which 
may decrease the throughput. Meanwhile, the proposed 
modifications considerably improve the load equality of the 
balancing algorithm, which does not perform rerouting. 
Therefore, a practical solution is to use the balancing 
algorithm including the proposed modifications. 

VII. CONCLUSION AND FUTURE WORK 
This paper investigated techniques to improve the 

rebalancing algorithm [11], which diffuses flows in an FCN. 
The first technique decreases the difference between the 
uplink loads by adding a criterion to decide on the middle 
switch used in the routing or rerouting processes. In addition, 
it was inferred that the load equality depends the order of the 
scanning of the middle switch indices. Based on this, the 
second technique decides the start index for scanning so as to 
balance the loads. The two techniques were applied to the 
rebalancing algorithm as well as the balancing algorithm and 
evaluated using computer simulations. Here, the balancing 
algorithm is a version of the rebalancing algorithm that is 
modified to omit the rerouting process. The results show that 
the presented techniques successfully improve the load 
equality. 

Further study is necessary in the future to determine how 
the load equality provided by the presented techniques affects 
the packet-level performances such as the packet latency. The 
implementation of these techniques is also an important future 
work. Nevertheless, it is concluded that the rebalancing and 
balancing algorithms become more practical when employing 
the presented techniques. 
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