ICN 2024 : The Twenty-Third International Conference on Networks

Automating SDN-ACLs with User Groups and Authentication Events

Florian GrieBer*®, Atsushi Shinoda’®, Hirokazu Hasegawai , Hajime Shimada'
* School of Computation, Information and Technology, Technical University Munich, Munich, Germany
Y Graduate School of Informatics, Nagoya University, Nagoya, Japan
YCenter for Strategic Cyber Resilience R&D, National Institute of Informatics, Tokyo, Japan
§Information Technology Center, Nagoya University, Nagoya, Japan
florian.griesser @tum.de, shinoda@net.itc.nagoya-u.ac.jp, hasegawa@nii.ac.jp, shimada@itc.nagoya-u.ac.jp

Abstract—Due to emerging cybersecurity threats, traditional
networks struggle to adapt to new challenges because of their
static nature and need for manual adjustments. In contrast, the
inherent flexibility and rapid adaptability of Software-defined
Networks (SDN) present an opportunity to overcome these limi-
tations. Leveraging this potential, we propose a novel approach
for automatically generating Access Control Lists (ACLs) within
SDN environments. The system centralizes Access Control to
the User Database and automatically generates derived rules,
thus reducing administrators’ manual work. By implementing
Port Access Control, we can ensure that only authentic clients
can access network resources. As a second feature, the system
can change ACLs to block traffic or forward traffic to an
Intrusion Detection System (IDS) for deeper inspection in case
of suspicious activity like failed login attempts. To demonstrate
the effectiveness, we evaluated the system in two use cases, initial
client connection and dynamic adaption to authentication events,
to test and compare the implementation to other systems. The
evaluation proved that we can reduce manual processes and
enhance the security of a network by dynamically generating
ACL:s to isolate clients.

Index Terms—Software-defined Networking; Authentication; Ac-
cess Control Lists

I. INTRODUCTION

Digital transformation has exponentially increased the com-
plexity of network architectures, presenting unprecedented
challenges in maintaining robust security frameworks. In this
ever-evolving digital landscape, cybersecurity threats have
become more sophisticated, leveraging the linkage of modern
infrastructures to exploit vulnerabilities at an alarming rate.
Traditional network security mechanisms, which mainly rely
on static configurations and manual oversight, are increas-
ingly proving inadequate against this backdrop of dynamic
and evolving threats [1]. The inherent limitations of these
conventional approaches, characterized by their inflexibility
and slow response times, underline the urgent need for more
adaptable, responsive security measures.

Software-Defined Networking is a revolutionary paradigm
that promises to redefine network management and security
[2]. At its core, SDN separates the network’s control logic
from the underlying hardware, facilitating a centralized and
programmable framework that transcends traditional hardware
limitations [3]. This separation enhances network flexibility
and management and introduces dynamism and adaptability,
which were unachievable with conventional network archi-
tectures until now. According to a report by Global Market
Insights, the SDN Market, valued at USD 28.2 billion in

2023, is expected to experience significant growth, with a
projected expansion rate exceeding 17% annually from 2024
to 2032 [4]. Through SDN’s capabilities, networks gain the
flexibility to adapt swiftly to evolving security demands. This
flexibility enables the immediate implementation of tailored
security measures and configurations to effectively counter
new threats, as illustrated in the study by Ali et al. [3].

Furthermore, our contribution is complemented by the work
of Yakasai et al. in Flowldentity, which advances virtualized
network access control within SDN through a role-based
firewall [6]]. We also draw upon the architectural insights of
Casado et al. in Ethane, demonstrating the power of centralized
policy enforcement [7]], and the innovative approach of Mattos
et al. in AuthFlow, focusing on authentication and access
control mechanisms in SDN environments [8]].

Furthermore, this approach was refined by incorporating a
sophisticated analysis of authentication logs, drawing upon
the work of Xing et al. in SnortFlow, which explores an
OpenFlow-based intrusion prevention system in cloud envi-
ronments [9], and the study by Le et al. on a flexible network-
based intrusion detection and prevention system on Software-
Defined Networks [10]].

The paper progresses from reviewing related SDN security
work in Section [l to foundational concepts in Section
Section [[V] describes our system for automating ACLs, while
Section [V] covers its implementation. Section [V]] evaluates the
system’s performance against existing methods, and Section
VIl encapsulates concluding thoughts and future directions,
rounding off our discussion.

II. RELATED WORK

Network security and access control advancements are cru-
cial in the evolving landscape of SDN. The following studies
demonstrate that emerging technologies and frameworks are
pivotal in addressing these challenges.

A. Intrusion Detection with Authentication Events

In the study by Chu et al. [11l], ’ALERT-ID,” an intrusion
detection system for large-scale network infrastructures, is pre-
sented. The system distinguishes between normal operations
and potential security threats through real-time analysis of
authentication, authorization, and accounting (AAA) system
logs. It employs behavioral models built on historical access
patterns and user profiles, efficiently identifying potential
intrusions and misuse. Notably, ALERT-ID balances the need

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-174-9

https://orcid.org/0009-0001-5225-9271
https://orcid.org/0009-0001-8594-0557
https://orcid.org/0000-0001-6841-5358
https://orcid.org/0009-0003-7116-8812

ICN 2024 : The Twenty-Third International Conference on Networks

for thorough security monitoring with a manageable false
alarm rate, demonstrating the importance of dynamic security
measures in complex network environments.

B. Dynamic Access Control in SDN

Transitioning to dynamic access control, the work by Nayak
et al. introduces “Resonance: Dynamic Access Control for
Enterprise Networks” [12]. Resonance implements dynamic
security policies with a registration phase, complemented by
real-time monitoring and inference mechanisms specified by
administrator rules.

Further extending the concept of network security, the study
by Martins et al. [13] introduces an innovative access control
architecture for SDN, leveraging the ITU X.812 standard. This
framework incorporates Role-Based Access Control (RBAC)
with traffic prioritization rules, significantly advancing towards
more granular and role-specific access control mechanisms in
network environments. A notable feature of this architecture is
its reliance on predefined rules, which are carefully established
and mapped to user roles by administrators. This approach
requires administrators to proactively define comprehensive
security and access parameters, ensuring a tailored access
control environment but also necessitating substantial initial
setup and configuration efforts.

These studies highlight a significant progression in network
security approaches, evolving from intrusion detection systems
to dynamic and sophisticated role-based access control models.
Our forthcoming work aims to advance the field by introducing
a new system that significantly enhances these foundational
methodologies and requires less administrative work.

III. PRELIMINARY CONCEPTS

This section introduces foundational concepts relevant
to network management and security, including OpenFlow
switches in SDN, 802.1X Port-Based Network Access Control,
access management with Active Directory and LDAP Authen-
tication, and the Extensible Authentication Protocol over LAN
(EAPOL).

A. The Role of OpenFlow Switches in SDN

SDN represents a paradigm shift in network management,
with OpenFlow switches being a cornerstone of this architec-
ture. These programmable switches enable dynamic network
control, efficient routing, and robust access control mecha-
nisms [[14].

Despite their advantages, OpenFlow switches introduce se-
curity challenges, such as controller security and flow table
vulnerabilities [15]].

B. Strengthening Network Defenses with 802.1X Port-Based
Network Access Control

IEEE 802.1X Port-Based Network Access Control signifi-
cantly strengthens network security by implementing stringent
access control measures. It restricts network entry to verified
devices and users, ensuring high network integrity and protec-
tion [16].

The interaction follows a precise sequence: initiation, iden-
tity presentation, and authentication verification, utilizing Ex-
tensible Authentication Protocol (EAP) over LAN [17]]. This
structured process confirms the identity of the devices and
users and mitigates potential replay and impersonation threats.

In summary, 802.1X Port-Based Network Access Control
is a foundational network security pillar, effectively managing
access through rigorous authentication and encryption prac-
tices [17].

C. Access Management with Active Directory and LDAP
Authentication

Active Directory (AD) [18] and Lightweight Directory
Access Protocol (LDAP) [19] Authentication play vital roles in
access management within network environments. AD stream-
lines user group and role management in Windows networks,
while LDAP provides a unified authentication framework
across multiple services.

A centralized user database with Access Rights and user
Groups and Roles is employed in a typical company network,
often based on Active Directory. This centralized management
offers scalability, ease of administration, and seamless integra-
tion, making it indispensable for effective access control and
user management.

IV. PROPOSED SYSTEM

This section presents a comprehensive overview of our
proposed system, designed to significantly enhance network
security and efficiency through advanced ACL management
and authentication mechanisms.

A. Previous works Problem and Approach

Building on our established framework for automating ACL
generation through statistical analysis of communication pat-
terns, this work seeks to leverage further and enhance the
existing infrastructure. Our initial efforts in [20] laid the foun-
dational groundwork for this approach, which saw significant
development and refinement in subsequent studies, such as
[21]. A primary challenge identified in our exploration was
addressing the need for authentication proof for IP addresses.

We have refined our approach to take advantage of a typical
user database, like Active Directory [18], a standard part
of a company network. This centralized database offers a
significant advantage because user and group management and
their corresponding resource access permissions are already
handled there. We aim to leverage this existing infrastructure
to streamline the process and eliminate redundant tasks for
administrators.

B. Architecture of the proposed system

In the proposed system, we enhance network security
through Port Access Control, which limits network port access
exclusively to authenticated users. This approach is grounded
in a security model where each port is individually secured
and requires authentication before granting access. As a result,
each user undergoes an authentication process, enhancing

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-174-9

ICN 2024 : The Twenty-Third International Conference on Networks

Client PC OpenFlow Switch

SDN Controller

Radius Active Directory

Connect '
M Access Request NE
*——> >

User Authenticated?

Actor

Apply ACL

Forward Auth Result

:I Check Internal Status

Forward Access Request | LDAP Authentication

Result Authentication

Result Authentication

Assign IP
to MAC

Request User Groups

User Groups

ACL Based on
User Groups
& State Network

Figure 1. Dynamic ACL Adaption based on Authentication Events

the network’s overall security posture. The process for user
connection is designed with precision to ensure a secure and
efficient authentication mechanism and can be found in Figure
m

Initially, the system is configured only to allow EAPOL
messages, which are then directed to an authenticator compo-
nent. This step ensures that there is no communication before
the client authenticates.

The SDN Controller checks its internal state for pre-
configured users based on MAC and IP addresses. This infor-
mation is crucial for comparing against new data received dur-
ing authentication. Authentication messages for EAPOL are
forwarded to a Radius server, which validates the credentials
against a common user database, typically an active directory.

Upon successful authentication, the system assigns an IP
address to the specific MAC address by inserting a record
in a DHCP server. This procedure ensures that the assigned
IP address corresponds to a specific MAC address and is
associated with a specific port. The system then generates
User-Specific Access Control Lists tied to a particular port
by requesting user groups for the specific username from the
Active Directory via LDAP. The fundamental idea is that users
in the same group as a specific server should also have access
to that server. For instance, if the user ’Ben’ is a member
of the "Mail’ group, to which our Mailserver also belongs,
we understand that we need to create ACLs that permit this
specific traffic. Consequently, we establish a whitelist to allow
this connection and block all other traffic.

The system can identify users labeled as servers, which
differ from standard clients, through a unique identifier group
assigned explicitly to servers. The same concept would also be
possible with a specific role depending on the existing usage
in a company network, but in our case, we focused on groups.

Thus, any user belonging to this shared group is required to
be able to establish a connection with the designated server.
A port scan is conducted for servers to identify open ports

and protocols. This information is linked to the user group of
the server. For clients, the system constructs ACLs based on
user groups and existing database information about servers,
ensuring only communication between the user’s MAC & IP
address and the server’s IP address and port. Since, for the
system, only the port is necessary, it is also possible to apply
this to multiple SDN switches since the ACL is only bound
to a port on a switch.

Administrators can create templates for specific scenarios,
such as restricting SSH access to only administrators. This
template can be created by adding a template for port 22
associated with, for example, the user group ”Administrator”.
These templates are scanned before actual ACL generation,
with a higher priority than user roles and ports discovered
during the generation process. Additionally, templates are
essential for managing Internet traffic, with administrators
defining traffic routing rules that cannot be determined using
available information.

Since the update of active users and the checking for new
ports on the servers occur periodically, once a day, and can
be adjusted by an administrator, the system maintains minimal
applied ACLs and removes unused ones if a host is no longer
connected, thereby leading to higher efficiency [22].

The system also accounts for dynamic authentication events,
using an LDAP proxy to monitor authentication activities.
This monitoring detects suspicious activities based on failed
login events for a specific service. The key idea is that if
there are a certain number of failed login attempts, we aim to
modify the network layout and ACLs for the particular user
being observed, as their actions may be considered suspicious.
Therefore, we can also redirect traffic to an Intrusion Detection
System to look further since this traffic is probably suspicious
or block all traffic or certain parts by adapting the ACLs
dynamically. Alert-ID inspires this approach [11] with the
extension that we do direct changes in the network when we
encounter malicious behavior.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-174-9

ICN 2024 : The Twenty-Third International Conference on Networks

This comprehensive approach to Port Access Control, sup-
ported by a robust authentication framework, ensures a secure
and efficient network access management system, safeguarding
the integrity and security of the network infrastructure. To
further enhance the effectiveness of our proposed system, we
incorporate a quantitative analysis of Access Control Lists
within the network when these settings are applied.

C. Quantitative Analysis of Access Control Lists

We rely on a quantitative understanding of ACLs within
the network to understand the system’s complexity. The ACL
count is determined based on user, group, and port configura-
tions, providing insights into the scale and complexity of the
access control mechanisms.

o Number of ACLs per User (/V,): This metric quantifies

the number of ACL entries associated with each user. It
is calculated by summing the ports across all groups a
user belongs to, given by

G;

Ny, :ZPm

g=1

(D

where P,, is the number of ports for group g for user ¢
and G; is the total number of groups for user 4.

« Global Number of ACLs (INg;opq1): The total number of
ACLs across the network reflects the overall complexity
of access control. It is computed as

U
Nglobal = Z N'uq (2)
i=1

where U represents the total number of users, and N,
is the number of ACLs for user 3.

o Number of ACLs per Switch (/V,): Understanding the
ACL count for each switch helps in optimizing access
control at the local level. This metric is determined by

N, =) N, 3)
i€s
where S is the set of users connected to the switch, and
N,, represents the number of ACLs for user 7 in the set
S.
The subsequent Sections will examine the implementation
details, demonstrating its capabilities and effectiveness.

V. IMPLEMENTATION

Following the conceptual framework outlined in Section
the practical implementation of the Port Access Control system
integrated various components. The design in Figure [2] presents
how different parts work together.

We chose the Faucet SDN Controller [23] for our prototype,
which uses Ryu [24] in the backend and Gauge to view events
on the switch. It has the considerable advantage that the rules
are defined in YAML (YAML Ain’t Markup Language). One
significant advantage of this architecture is that these files
are human-readable and easy to understand. The initial setup
of the Openflow Switch contains just the port information

Client(s)

Active Directory

Ve
A User Dashboard
‘ Fodt ‘ Faucet Gauge 7*>D
Proxy
802.1X daemon —>» DHCP Server

—

Server
Group to Rule DPORT 7Scan
Converter ANALYSE
SDN Controller

Figure 2. Architecture SDN Controller

and requires authentication before connecting to the Network.
Furthermore, specific default rules, such as special treatment
for the SDN controller and the Active Directory, were specified
beforehand, as these settings are essential when configuring a
new network. We used the 802.1X daemon Chewie [23]] as a
starting point, and then it was heavily adapted to get the user
groups via a simple LDAP proxy. A second Service called
”Group to Rule” will apply the ACLs as discussed in Section
An example rule can be found in Figure [3] It shows the
resulting rule with a defined protocol, port, source MAC &
IP address, and destination IP address. Since this is directly
applied to the port, no other traffic can pass the OpenFlow
switch port.

acls:
mac_whitelist_user_ben:
- rule:
dl_type: 0x800 #
nw_proto: 6 #
tcp_dst: 80 # port
eth_src: 32:90:43:57:£2:01
ipv4_src: 192.168.0.1
ipv4_dst: 192.168.0.9
actions:
allow: 1
- rule:
actions:
allow: False

Figure 3. FAUCET ACL CONFIGURATION

A Python script that searches for UDP and TCP ports
on the Server provides the open ports needed to craft the
ACLs. It then saves this information into a database with the
corresponding MAC address and IP address. One problem is
that the Server does not directly have an IP address when we
try to scan it. We must wait until the IP address is handed

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-174-9

ICN 2024 : The Twenty-Third International Conference on Networks

over via the DHCP server to start scanning. Therefore, for a
server, the ACLs can only be applied later on and not directly,
which is not a problem since the default rules still block all
access to the Network, and only DHCP is then allowed to
obtain an IP address. A simple folder structure was defined for
the templates where an administrator can place templates for
Groups and specific Ports and the initial Network operations
like DHCP and DNS.

The dynamic adaption of the ACLs depending on authen-
tication data is done via the LDAP Proxy. All servers in
the Network try to authenticate their users via LDAP Bind
requests to the LDAP Proxy, which then forwards this to
the Active Directory. This approach allows us to determine
whether authentication was successful. We implemented a
counter for each user with a threshold of six, which will reset
after some time, as determined in Alert-ID [11]. To identify
the client who tries to connect, a small script monitors the log
file with authentication events and then sends the event from
the Server to the controller via a small script. This procedure
serves only for demonstration purposes, and, in the future, an
SSO Server can perform this task since every client needs to
authenticate there when they access a server. For example,
blocking users who attempt to authenticate with a username
different from the one they initially used for network access
would also be possible. Additionally, we could restrict access
by blocking only the specific port or server access for such
users. Another option would be to reroute all their traffic
through an IDS. This approach could alleviate the load on
IDS systems by selectively forwarding traffic from suspicious
hosts.

The implementation phase reaffirmed the proposed system’s
potential to enhance network security through fine-grained
access controls. However, it highlighted the complexities of
managing an extensive rule set, especially in larger networks.

VI. EVALUATION

In this evaluation chapter, we begin with a detailed exam-
ination of the technical aspects of our experimental setup,
laying the groundwork for a thorough assessment. We then
delve into the feasibility of the proposed system, followed by
a comparative analysis of its efficiency and complexity against
existing systems. This analysis sets the stage for a nuanced
discussion synthesizing our findings and their implications.

A. Experimental Conditions

Our experimental setup was designed to mirror a realistic
laboratory environment consisting of multiple physical PCs
and servers to simulate a conventional corporate network in-
frastructure. The network configuration included five Windows
clients alongside a singular Linux client. We assigned the
clients to different user groups in the active directory. The
configuration of each Client and its connected port can be
found in Table[I] In setting up our experiment, we went with
a mix that one would typically find in an office: a mail server
for emails and a GitLab instance for the devs to collaborate
on code. This way, we could see how different roles, like

developers needing GitLab and managers relying on emails,
would interact with the system. It is a practical approach that
helps us understand how our setup performs in a real-world
scenario.

At the core of our Network was an Active Directory on
a Windows Server 2019, connected to a dedicated port at
the OpenFlow switch. This switch was a Linux PC running
Ubuntu 22.10, with an Intel(R) Core(TM) i7-8700 CPU sup-
porting OpenFlow protocol version 1.3.

This detailed setup provides a solid foundation for evaluat-
ing the system’s feasibility, performance, and complexity.

TABLE I. CLIENTS IN THE NETWORK

Client Name | Port Source MAC Groups
Clientl 3 1C:69:7A:6D:C6:27 mail, gitlab
Client2 4 1C:69:7A:43:7C:12 mail
Client3 5 1C:69:7A:6D:C8:B0 | mail, gitLab
Client4 6 1C:69:7A:6D:C7:EE mail
Client5 7 1C:69:7A:6D:C8:16 mail

B. Feasibility

The project aimed to demonstrate the feasibility of such a
system and highlight its advantages. Therefore, we conducted
multiple experiments to verify the system’s operability to
achieve this.

1) Experiment 1: Connection to the Network: In our ini-
tial experiment, we aimed to verify the functionality of the
system’s initial configuration and the practical application of
Access Control Lists. We began by attempting to connect a
server to the Network. Initially, all packets except EAP packets
were blocked, preventing any network connection without
proper authentication.

To facilitate authentication, we configured the server’s
wpa_supplicant with EAP after setting up a dedicated user
account in the Active Directory for the server, marked by the
”server” group identifier, to distinguish it as such. Additionally,
the server was assigned to the “mail” group to define its access
rights. The authentication process utilized standard Username
and Password credentials defined within the Active Directory.

Upon initiating these configurations, we observed successful
authentication, followed by the server obtaining an IP address
via DHCP. The IP address assignment was managed by
the SDN Controller, ensuring the server’s connectivity post-
authentication. We then proceeded with a port scan, which
was feasible only after the OpenFlow switch recognized the
server’s IP, confirming that the server was operational. The
procedure was repeated for the second GitLab server.

Subsequently, we connected a client machine to the Net-
work. Like the server setup, this Client was denied network
access until authentication credentials were provided. After
authentication, the SDN Controller dynamically generated
ACLs based on the Client’s group memberships.

For example, the first Client, identified as a developer, was
granted access to both the mail server and GitLab, as reflected
in the applied ACLs (refer to Table [II} lines 1 and 2). This
access control was strictly enforced, with all unauthorized traf-
fic being blocked at the port level based on the authenticated

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-174-9

ICN 2024 : The Twenty-Third International Conference on Networks

TABLE II. ACL CONFIGURATION FOR FIVE CONNECTED CLIENTS

OpenFlow Port | Source MAC Source IP Group | Destination IP | Destination Port | Description
3 1C:69:7A:6D:C6:27 192.168.11.11 | mail 192.168.11.101 | 25, 993, 995 Mailserver
3 1C:69:7A:6D:C6:27 192.168.11.11 | gitlab 192.168.11.102 | 22, 80, 443 GitLab

4 1C:69:7A:43:7C:12 192.168.11.12 | mail 192.168.11.101 | 25, 993, 995 Mailserver
5 1C:69:7A:6D:C8:BO | 192.168.11.13 | mail 192.168.11.101 | 25, 993, 995 Mailserver
5 1C:69:7A:6D:C8:B0O | 192.168.11.13 | gitlab 192.168.11.102 | 22, 80, 443 GitLab

6 1C:69:7A:6D:C7:EE 192.168.11.14 | mail 192.168.11.101 25, 993, 995 Mailserver
7 1C:69:7A:6D:C8:16 192.168.11.15 | mail 192.168.11.101 25, 993, 995 Mailserver

source MAC address and specified port. In contrast, a client
identified as a manager, and thus only requiring access to the
mail server, demonstrated restricted network access in line
with their role (refer to Table [II} line 3). Attempts to access
GitLab by this Client were blocked, illustrating the ACLs’
role-based access control. After connecting all clients, each
Client and port results can be found in Table

Upon issuing a logoff command to the RADIUS server,
all associated ACLs were cleared, reverting the system to
its default state of blocking all traffic from the disconnected
Client. Logging in with a different username on the same PC
triggered a reallocation of ACLs, aligning with the new user’s
access rights. This experiment demonstrated the feasibility of
initially creating and effectively applying ACLs within our
network environment.

2) Experiment 2: Failed Logins: In the second experiment,
we tested failed login attempts to evaluate the systems’ re-
sponse mechanisms. This test simulated incorrect authentica-
tion attempts on the GitLab server to observe the system’s
reaction.

The experiment began with a series of failed login attempts,
with each unsuccessful attempt logged by the SDN Controller.
After the sixth failed attempt, the SDN Controller adjusted
the ACLs, cutting off the Client’s access to the server and
other network components. An alert was automatically sent
to the network administrator, who could either restore the
Client’s access after a successful re-authentication or suspend
the Client for further investigation.

Additionally, we tested the Network’s traffic mirroring fea-
ture. In this part of the experiment, despite multiple failed
login attempts, the Client was not disconnected from the
Network. Instead, the Client’s traffic was mirrored to a specific
port on an OpenFlow switch. This procedure was verified
using tcpdump to confirm that the traffic mirroring was func-
tioning as intended, without the integration of an IDS, since
this was not in the scope of the experiment.

C. Complexity and Efficiency

To evaluate our system’s complexity and OpenFlow rule
management capability, we compared it against other SDN
security methods by examining the number of OpenFlow
rules in different scenarios. Our analysis included a baseline
scenario without ACLs, a basic ACL setup, and scenarios
involving VLANSs. The scenario with Basic ACLs has only
rules for direct IP access. That means we only specify that
user X can access server Y without further defining which
ports or protocols. The VLAN example does not have any

specific ACLs. It splits the users into two groups, usually some
kind of department in a corporate network. This option has the
disadvantage of allowing clients from the same department to
communicate, which does not prevent malware from spread-
ing.

Table [III] summarizes the OpenFlow rule count for each
scenario. As observed, the number of OpenFlow rules directly
reflects the count of Faucet ACLs. As discussed in Formula 2]
the number of ACLs will increase linearly to the number of
users. The dynamic ACL configuration, while more complex,
demonstrates the system’s flexibility and responsiveness to
network changes without significantly impacting performance.

TABLE III. RULE COUNT COMPARISON

Scenario Faucet ACLs | OpenFlow Rules
No ACLs 0 27
Basic ACLs 8 67
VLANs N/A 67
Dynamic ACLs 32 91

D. Discussion

In discussing the outcomes and implications of our ex-
periments, it is essential to consider both the implemented
system’s strengths and potential challenges. To offer a com-
prehensive understanding of our system’s enhanced perfor-
mance and its innovative approach to network security and
management, we performed an extensive comparison across
several key metrics, including security level, scalability, and
manageability. This comparison, detailed in Table [[V] is based
on empirical data from ACL number analytics, a comparative
analysis of system architectures, and their maintenance needs,
highlighting our proposed system’s superiority in terms of
security, scalability, and ease of management.

The introduction of automated, fine-grained whitelist ACLs
represents a significant step forward in network security man-
agement. The configuration process substantially decreases
administrative overhead and mitigates the risk of human er-
ror, which is prevalent in manual configurations. A crucial
advantage of this approach is the centralization of security de-
cisions, such as access rights, in a singular user database. This
consolidation ensures that modifications to access rights are
uniformly applied across the Network and all services utilizing
this common user database, thereby enhancing consistency and
security within the system. As demonstrated in Experiment 1,
the automation of ACL configuration significantly reduced ad-
ministrative overhead since all needed restrictions are applied
individually for each Client without the need for additional

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-174-9

10

ICN 2024 : The Twenty-Third International Conference on Networks

TABLE IV. COMPARISON OF NETWORK SECURITY AND MANAGEMENT APPROACHES

Metric No ACLs | Basic ACLs VLANSs Resonance[12] ACL Based on X812[13] | Proposed System
Security Level Low Medium Medium High Very High Very High
Port Security None None None None Full Full
Performance Impact Low Medium Medium Moderate Moderate Moderate
Scalability High Moderate Good Moderate Moderate Excellent
Manageability Easy Moderate Moderate Moderate Moderate Easy
Centralization None Low Low Medium Medium High
Flexibility Low Moderate Low Very High Very High High

Cost Efficiency High Moderate Moderate Low Moderate High
Integration Capability Seamless Moderate Challenging High High Low
Resilience Low Medium Medium High High High
Automation & Dynamic Response None None None Semi-Automated Semi-Automated Fully Automated
ACLs based on Authentication Events None None None None None Supported

adaption by the administrator. Contrarily, this centralized,
automated approach ensures that only authenticated users and
their associated MAC addresses are actively maintained in the
system, limiting access to authorized entities and inherently
reducing the risk of unauthorized access. Another significant
benefit of our approach is its scalability and ease of integration
across multiple switches without additional overhead. Since
ACLs and clients are bound to specific ports and not to
the physical switches themselves, our system can seamlessly
scale to accommodate an extensive network infrastructure with
multiple SDN switches. ACLs are applied uniquely to each
switch, as delineated in Formula E], ensuring efficient and
tailored security measures are in place, irrespective of the size
or complexity of the Network.

However, this automation and simplification come at the
cost of increased complexity due to the more significant
number of ACLs required to maintain fine-grained control
over network access. The number of ACLs does not directly
impact the system’s performance since it only inspects the
TCP header to minimize performance impact, compared to,
for example, complex rules that inspect the TCP payload.
According to Cabrera et al. [25], the time required to check
the payload is, on average, 4.5 times longer than that required
for header checks. Therefore, even with many ACL rules,
the focus on header information ensures minimal impact on
network throughput, as even a single ACL with a TCP header
rule necessitates the inspection of every packet. One drawback
is that we need to prepare the clients and the server to perform
an 802.1X authentication.

One of the more critical considerations is the system’s
approach to handling failed login attempts, as demonstrated
in Experiment 2. Completely blocking access after a series of
incorrect credentials can safeguard against brute-force attacks
but also pose a risk to business continuity. For instance,
automated tools using outdated credentials could inadvertently
trigger these security measures, leading to unnecessary dis-
ruptions. This aspect of the system necessitates a careful
balance between maintaining robust security and ensuring
uninterrupted business operations.

Integrating traffic mirroring for suspicious hosts presents a
nuanced approach to enhancing security monitoring without
overloading the Network or the IDS. By selectively mirroring
traffic from potentially compromised hosts, the system can

focus on analyzing and responding to genuine threats, improv-
ing overall security efficiency. This concept aligns with the
approach discussed in [26]], which proposes a clustering-based
flow grouping scheme that assigns Network flows to various
IDSs based on routing information and flow data rates, aiming
to optimize the load distribution among IDSs and enhance
attack detection capabilities.

VII. CONCLUSION

In conclusion, the proposed system for Port Access Control
presents a straightforward implementation framework that
significantly enhances network security by enforcing fine-
grained access control rules. By leveraging a common user
database, such as Active Directory, and binding access controls
to specific MAC addresses, the system ensures that only au-
thenticated users can access network ports, providing a robust
security posture. Moreover, the approach of mirroring traffic
from suspicious hosts, particularly those with repeated failed
login attempts, suggests a promising avenue for optimizing
IDS performance. Optimizing algorithms for handling multiple
concurrent access requests, managing extensive rule sets with-
out compromising performance, and assessing the impact of
selective traffic mirroring on IDS efficiency are critical future
research areas to enhance scalability and maintain security in
complex network architectures.

ACKNOWLEDGMENT

The authors would like to thank Prof. Hiroki Takakura for
useful advice. This work was partially supported by JSPS
KAKENHI Grant Number JP19K20268 and JP23H03396.

REFERENCES

[1] H. Zhou, C. Wu, M. Jiang, B. Zhou, W. Gao, T. Pan,
and M. Huang, “Evolving defense mechanism for fu-
ture network security,” IEEE Communications Magazine,
vol. 53, no. 4, pp. 45-51, 2015.

[2] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A
survey of securing networks using software defined net-
working,” IEEE transactions on reliability, vol. 64, no. 3,
pp- 1086-1097, 2015.

[3] E. Bannour, S. Souihi, and A. Mellouk, “Distributed
SDN control: Survey, taxonomy, and challenges,” IEEE

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-174-9

11

ICN 2024 : The Twenty-Third International Conference on Networks

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Communications Surveys & Tutorials, vol. 20, no. 1, pp.
333-354, 2017.

Global Market Insights, “Software Defined Net-
working (SDN) Market,” 2024, report ID:
GMI2395, Accessed: 2024-04-09. [Online]. Avail-

able: https://www.gminsights.com/industry-analysis/
software-defined-networking-sdn-market

E. S. Ali, R. Amin, M. Majeed, and M. M. Igbal, “Dy-
namic ACL Policy Implementation in Software Defined
Networks,” in 2022 International Conference on IT and
Industrial Technologies (ICIT), Oct 2022, pp. 01-07.

S. T. Yakasai and C. G. Guy, “Flowldentity: Software-
defined network access control,” in 2015 IEEE Confer-
ence on Network Function Virtualization and Software
Defined Network (NFV-SDN). 1EEE, 2015, pp. 115-
120.

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McK-
eown, and S. Shenker, “Ethane: taking control of the
enterprise,” in Proceedings of the 2007 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’07.
New York, NY, USA: Association for Computing Ma-
chinery, 2007, p. 1-12.

D. M. Ferrazani Mattos and O. C. M. B. Duarte, “Auth-
Flow: authentication and access control mechanism for
software defined networking,” annals of telecommunica-
tions, vol. 71, pp. 607-615, 2016.

T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar,
“SnortFlow: A OpenFlow-Based Intrusion Prevention
System in Cloud Environment,” in 2013 Second GENI
Research and Educational Experiment Workshop, March
2013, pp. 89-92.

A. Le, P. Dinh, H. Le, and N. C. Tran, “Flexible
Network-Based Intrusion Detection and Prevention Sys-
tem on Software-Defined Networks,” in 2015 Interna-
tional Conference on Advanced Computing and Applica-
tions (ACOMP), Nov 2015, pp. 106-111.

J. Chu, Z. Ge, R. Huber, P. Ji, J. Yates, and Y.-C. Yu,
“ALERT-ID: analyze logs of the network element in real
time for intrusion detection,” in Research in Attacks,
Intrusions, and Defenses: 15th International Symposium,
RAID 2012, Amsterdam, The Netherlands, September 12-
14, 2012. Proceedings 15. Springer, 2012, pp. 294-313.
A. K. Nayak, A. Reimers, N. Feamster, and R. Clark,
“Resonance: dynamic access control for enterprise net-
works,” in Proceedings of the 1st ACM Workshop on Re-
search on Enterprise Networking, ser. WREN ’09. New
York, NY, USA: Association for Computing Machinery,
2009, p. 11-18.

B. J. C. de A. Martins, D. M. Mattos, N. C. Fernandes,
D. Muchaluat-Saade, A. B. Vieira, and E. F. Silva,
“An Extensible Access Control Architecture for Software
Defined Networks based on X.812,” in 2019 IEEE Latin-
American Conference on Communications (LATINCOM),
2019, pp. 1-6.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

[23]

[24]

[26]

L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
Flow: enabling innovation in campus networks,” ACM
SIGCOMM computer communication review, vol. 38,
no. 2, pp. 69-74, 2008.

M. S. Farooq, S. Riaz, and A. Alvi, “Security and
Privacy Issues in Software-Defined Networking (SDN):
A Systematic Literature Review,” Electronics, vol. 12,
no. 14, 2023.

“IEEE Standard for Local and Metropolitan Area
Networks—Port-Based Network Access Control,” [EEE
Std 802.1X-2020 (Revision of IEEE Std 802.1X-2010
Incorporating IEEE Std 802.1Xbx-2014 and IEEE Std
802.1Xck-2018), pp. 1-289, 2020.

J. Vollbrecht, J. D. Carlson, L. Blunk, D. B. D. Aboba,
and H. Levkowetz, “Extensible Authentication Protocol
(EAP),” RFC 3748, Jun. 2004.

B. Desmond, J. Richards, R. Allen, and A. G. Lowe-
Norris, Active Directory: Designing, Deploying, and
Running Active Directory. ” O’Reilly Media, Inc.”,
2008.

J. Sermersheim, “Lightweight Directory Access Protocol
(LDAP): The Protocol,” RFC 4511, Jun. 2006.

H. Hasegawa, Y. Sato, and H. Takakura, “Construction
of Secure Internal Network with Communication Clas-
sifying System Using Multiple Judgment Methods,” In-
ternational Journal on Advances in Telecommunications,
vol. 13, no. 3 & 4, 2020.

Y. Sato, H. Hasegawa, and H. Takakura, “Construction
of Secure Internal Networks with Communication Clas-
sifying System,” in ICISSP, 2019, pp. 552-557.

M. Ali, N. Shah, and M. A. Khan Khattak, “DAI: Dy-
namic ACL Policy Implementation for Software-Defined
Networking,” in 2020 IEEE 17th International Confer-
ence on Smart Communities: Improving Quality of Life
Using ICT, IoT and Al (HONET), Dec 2020, pp. 138
142.

FaucetSDN, “Faucet,” 2024, accessed: 2024-04-09.
[Online]. Available: https://github.com/faucetsdn/faucet
Ryu SDN Framework Community, “Ryu sdn
framework,” 2024, accessed: 2024-04-09. [Online].
Available: https://ryu-sdn.org

J. B. Cabrera, J. Gosar, W. Lee, and R. K. Mehra,
“On the statistical distribution of processing times in
network intrusion detection,” in 2004 43rd IEEE Con-
ference on Decision and Control (CDC)(IEEE Cat. No.
04CH37601), vol. 1. IEEE, 2004, pp. 75-80.

T. Ha, S. Yoon, A. C. Risdianto, J. Kim, and H. Lim,
“Suspicious flow forwarding for multiple intrusion de-
tection systems on software-defined networks,” IEEE
Network, vol. 30, no. 6, pp. 22-27, 2016.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024.

ISBN: 978-1-68558-174-9

12

https://www.gminsights.com/industry-analysis/software-defined-networking-sdn-market
https://www.gminsights.com/industry-analysis/software-defined-networking-sdn-market
https://github.com/faucetsdn/faucet
https://ryu-sdn.org

	Introduction
	Related Work
	Intrusion Detection with Authentication Events
	Dynamic Access Control in SDN

	Preliminary Concepts
	The Role of OpenFlow Switches in SDN
	Strengthening Network Defenses with 802.1X Port-Based Network Access Control
	Access Management with Active Directory and LDAP Authentication

	Proposed System
	Previous works Problem and Approach
	Architecture of the proposed system
	Quantitative Analysis of Access Control Lists

	Implementation
	Evaluation
	Experimental Conditions
	Feasibility
	Experiment 1: Connection to the Network
	Experiment 2: Failed Logins

	Complexity and Efficiency
	Discussion

	Conclusion

