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Abstract—This paper tackles a Virtual Machine (VM) migra-
tion control problem to maximize the progress (accuracy) of
information processing tasks in multi-stage information process-
ing systems. The conventional methods for this problem (e.g.,
VM sweeping method and VM number averaging method) are
effective only for specific situations, such as when the system
load is high. In this paper, in order to achieve high accuracy
in various situations, we propose a VM migration method using
a Deep Reinforcement Learning (DRL) algorithm. It is difficult
to directly apply a DRL algorithm to the VM migration control
problem because the size of the solution space of the problem
dynamically changes according to the number of VMs staying
in the system while the size of the agent’s action space is fixed
in DRL algorithms. Therefore, the proposed method divides the
VM migration control problem into two problems: the problem of
determining only the VM distribution (i.e., the proportion of the
number of VMs deployed on each edge server) and the problem
of determining the locations of all the VMs so that it follows the
determined VM distribution. The former problem is solved by a
DRL algorithm, and the latter problem is solved by a heuristic
method. The simulation results confirm that our proposed method
can select quasi-optimal VM locations in various situations with
different link delays.

Keywords-Multi-stage information processing system, VM mi-
gration control, Deep reinforcement learning, Deep Deterministic
Policy Gradient (DDPG)

I. INTRODUCTION

In recent years, ultra-real-time services, such as Cross
Reality (XR) and automated driving, are expected to appear.
In these services, information processing tasks requested by
clients need to be executed immediately (e.g., on the order of
milliseconds) and the processing results should be as accurate
as possible.

A multi-stage information processing system [1] [2] is one
of the promising candidates for the edge computing infrastruc-
tures for ultra-real-time services. In the system, information
processing tasks requested by clients are executed in parallel
by an edge server and a data center. The edge server prioritizes
responsiveness over accuracy; it returns the highly responsive
but low accurate processing results to the clients while the
data center prioritizes accuracy over responsiveness; it return
the highly accurate but low responsive processing results
to the clients. When operating ultra-real-time services in a

multi-stage information processing system, it is important
to maximize the accuracy of information processing tasks
executed by the edge servers that satisfy the responsiveness
requested by clients.

Previous researches on multi-stage information processing
systems focused on improving the accuracy of information
processing tasks executed by edge servers through Virtual Ma-
chine (VM) migration control [1] [2]. VM migration control
dynamically migrates VMs, which execute the information
processing tasks requested by clients on edge servers, among
multiple edge servers, which leads to effective use of CPU
resources on edge servers and reducing the communication
delay between clients and VMs, thereby improving the ac-
curacy of the information processing tasks. In the previous
researches, as heuristic methods for VM migration control,
VM sweeping method [2], VM number averaging method [2],
early-blooming type priority processing method [1], and late-
blooming type priority processing method [1] were proposed
and their effectiveness were confirmed. These methods are,
however, effective only in specific situations, such as when
the system load is high and the type of information processing
tasks is late-blooming type. Since the system load and the
type of information processing tasks change dynamically, VM
migration control that can achieve high accuracy in a wide
variety of situations is needed.

In this paper, in order to achieve high accuracy in a variety
of situations, we propose a VM migration method using a
Deep Reinforcement Learning (DRL) algorithm. DRL algo-
rithms are expected to achieve a quasi-optimal performance in
a variety of situations through interactions between a learning
agent and a dynamically changing environment. On the other
hand, it is difficult to directly apply a DRL algorithm to the
VM migration control problem because, in the problem, the
size of the solution space dynamically changes according to
the dynamic changes in the number of VMs staying in the
system while the size of the agent’s action space is fixed in
DRL algorithms. Therefore, in this paper, we divide the VM
migration control problem into two problems: the problem of
determining only the VM distribution (i.e., the proportion of
the number of VMs deployed on each edge server) and the
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Figure 1. Multi-stage information processing systems.

problem of determining the locations of all the VMs so that it
follows the determined VM distribution. The former problem
is solved by a DRL algorithm, and the latter problem is solved
by a heuristic method. This approach makes it possible to
apply a DRL algorithm with a fixed action space size to the
VM migration control problem.

The rest of this paper is organized as follows. Section 2
introduces related work on VM migration control. Section 3
describes the multi-stage information processing system and
the VM migration control problem. In Section 4, we propose
a VM migration method using a DRL algorithm. In Section
5, we evaluate the effectiveness of our proposed method with
computer simulations. In Section 6, we summarize the paper
and describe our future works.

II. RELATED WORK

The work in [3]–[10] tackle VM migration control problems
in server migration services and propose heuristic methods [3]
[5], mathematical programming methods [4], [6]–[8], [10],
and Q-learning methods [9]. These methods, however, aim
at improving the communication quality between clients and
VMs and reducing network power consumption, and do not
consider the accuracy of information processing tasks.

The research in [1] [2] tackle VM migration control prob-
lems in multi-stage information processing systems, and pro-
pose the heuristic methods; VM sweeping method [2], VM
number averaging method [2], early-blooming type priority
processing method [1], and late-blooming type priority pro-
cessing method [1]. These methods are, however, effective
only in specific situations. For example, the VM sweeping
method is shown to be effective only in situations where the
system load is high and the type of information processing
tasks is late-blooming type. Since the system load and the
type of information processing tasks change dynamically, VM
migration control that can achieve high accuracy in a wide
variety of situations is needed.

The work in [11] [12] tackle VM migration control prob-
lems in mobile edge computing, and propose VM migration
methods using Deep Q-Network (DQN) [13], which is a kind
of DRL algorithms. These methods, however, can only be
applied to VM migration control problems with a single VM
because the size of an agent’s action space is fixed in DQN,
and cannot be applied to VM migration control problems with
multiple VMs.
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Figure 2. Flow of information processing in a multi-stage information
processing system.
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Figure 3. Relationship between CPU time allocated to a task and accuracy
of the task.

III. MULTI-STAGE INFORMATION PROCESSING SYSTEMS

As shown in Figure 1, a multi-stage information processing
system consists of edge servers located proximate (e.g., base
stations) to clients and data centers located distant from them.
The system provides clients with both highly responsive and
highly accurate processing results by executing information
processing tasks in parallel at the edge servers and the data
centers.

Figure 2 shows the flow of information processing in a
multi-stage information processing system. A client requests
both an edge server and a data center to process its task
in parallel. When the response time permitted by the client
approaches, the edge server terminates its processing to meet
the permitted response time and returns the highly responsive
processing result to the client. The data center, on the other
hand, accomplishes its processing and returns the highly
accurate processing result to the client.

In this paper, we assume the accuracy model (i.e., the
relationship between the CPU time (tCPU ) allocated to a task
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Figure 4. VM migration control in a multi-stage information processing
system.

and the accuracy (f(tCPU )) of the task) that is adopted in [2].
Figure 3 shows the accuracy model. In the accuracy model,
the accuracy of the task is calculated as follows.

f(tCPU ) = (
tCPU
Tcomp

)

log(0.5)

log(HALFtime
Tcomp

) (1)

where Tcomp represents the time for the task to be completed
(i.e., accuracy reaches 1.0) and HALF time represents the time
for the task to reach accuracy of 0.5. Tasks are classified based
on their HALF time. The tasks with HALF time shorter than
0.5 Tcomp are classified into early-blooming type while those
with HALF time longer than 0.5 Tcomp are classified into late-
blooming type.

In this paper, we tackle a VM migration control problem
among multiple edge servers for maximizing the accuracy of
information processing tasks returned by edge servers within
the permitted response times (Figure 4). VM migration control
enables effective use of CPU resources on edge servers and
reducing the communication delay between clients and VMs,
thereby improving the accuracy of information processing
tasks.

IV. PROPOSED METHOD

In this paper, in order to achieve high accuracy in a variety
of situations, we propose a VM migration method using a DRL
algorithm. With regard to applying a DRL algorithm to a VM
migration control problem, it should be noted that the size
of the solution space (i.e., the total number of all possible
solutions) of the problem dynamically changes according to
the dynamic changes in the number of VMs staying in the
system. As shown in Figure 5, the size of the solution space
is EK where E is the number of edge servers and K is
the number of VMs, and the size of the solution space EK

dynamically changes according to the number of VMs K.
On the other hand, the size of the agent’s action space in
DRL algorithms is fixed. For example, an agent in Deep
Deterministic Policy Gradient (DDPG) [14] outputs a vector
with a fixed number of dimensions. Therefore, It is difficult to
directly apply a DRL algorithm to the VM migration control
problem.

To cope with the dynamic change in the size of solution
space, we divide the VM migration control problem into two
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Figure 5. Size of solution space in VM migration control problem.

problems (Figure 6): the problem of determining only the
VM distribution (i.e., the proportion of the number of VMs
deployed on each edge server) and the problem of determining
the locations of all the VMs so that it follows the determined
VM distribution. The former problem is solved by a DRL
algorithm, and the latter problem is solved by a heuristic
method. This approach makes it possible to apply a DRL
algorithm with a fixed action space size to the VM migration
control problem because the VM distribution can be expressed
by a vector with a fixed number of dimensions.

We adopt DDPG [14] as a DRL algorithm. DDPG approx-
imates both a policy function µ(s|θ) (Actor), which maps
a given state to an action to be taken, and an action-value
function Q(s, a|ϕ) (Critic) with deep neural networks. In
DDPG, the Actor can output the VM distribution (i.e., the
proportion of the number of VMs deployed on each edge
server) as an action because it can operate over continuous
action space. As well as DQN [13], DDPG adopts experience
replay and target network techniques in order to learn Actor
and Critic in a stable and robust way.

Figure 7 depicts an interaction between a DDPG agent
and an environment, which corresponds to the VM migration
control problem. When applying a DRL algorithm to the VM
migration control problem, we need to define action, state,
and reward in accordance with the problem. Action at of the
agent is defined as the VM distribution (i.e., the proportion
of the number of VMs deployed on each edge server), and is
expressed with the following equation.

at = (p1, p2, . . . , pE) (2)

where pi is the proportion of the number of VMs deployed
on edge server i. State st of the environment is defined as the
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Figure 6. Outline of our proposed method.
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Figure 7. Interaction between the DDPG agent and the environment.

numbers of VMs deployed on edge servers, and is expressed
with the following equation.

st = (d1, d2, . . . , dE) (3)

where di is the number of VMs deployed on edge server i.
Reward rt is defined as the total increase in accuracy of all the
tasks during the period from the last VM migration control to
the current one. Algorithm 1 in Figure 8 shows the procedure
of our proposed method.

After determining the VM distribution, we determine the
locations of all the VMs by a heuristic method so that it
follows the determined VM distribution. In this paper, we
adopt a minimum client-VM delay method as the heuristic
method. The minimum client-VM delay method selects the
VM location with the minimum sum of the delays between
clients and VMs in a brute force manner among the VM
locations that follow the VM distribution determined by the
DDPG agent.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed method with
computer simulations. Section V.A explains the simulation
model. Section V.B shows the evaluation results.

A. Simulation Model

We developed the VM migration control simulator and
the DDPG agent with OpenAI Gym [15] and Keras-rl [16],
respectively. Table I summarizes the parameter settings as to
the DDPG agent. We adopt the same parameter values as
those used by the DDPG agent in Keras-rl [16] because the

Algorithm 1 Procedure of our proposed method

1: Randomly initialize weights θ of Actor µ(s|θ) and weights
ϕ of Critic Q(s, a|ϕ)

2: Initialize weights of Actor’s target network µ′(s|θ′) and
Critic’s target network Q′(s, a|ϕ′): θ′ ← θ，ϕ′ ← ϕ

3: Initialize replay buffer R
4: for episode = 1, M do
5: Initialize a random noise N for action exploration
6: Observe initial state s1 from the environment
7: for t = 1, T do
8: Select VM distribution at = µ(st|θ) +Nt as action
9: Determine locations of all the VMs by the heuristic

method among the VM locations that follow the
determined VM distribution at, and migrates the
VMs

10: Observe reward rt and the next state st+1

11: Store experience (st, at, rt, st+1) in R
12: Sample a random minibatch of N experiences

(si, ai, ri, si+1) from R
13: Learning of Critic:

Calculate target value yi:
yi = ri + γQ′(si+1, µ

′(si+1|θ′)|ϕ′)
Update weights ϕ with a gradient descent method so
that loss L = 1

N

∑
i(yi−Q(si, ai|ϕ))2 is minimized

14: Learning of Actor:
Calculate policy gradient ∇θJ :
∇θJ ∝ 1

N

∑
i∇aQ(si, µ(si)|ϕ)∇θµ(si|θ)

Update weights θ with a gradient ascent method so
that performance of Actor J is maximized

15: Update weights of target networks:
θ′ ← τθ + (1− τ)θ′

ϕ′ ← τϕ+ (1− τ)ϕ′

16: end for
17: end for

Figure 8. Procedure of our proposed method.

work [14] reports that a DDPG agent with the same parameter
setting successfully solved various physics tasks.

The left side of Figure 9 shows the network model. This
paper tackles the early stage of the performance evaluation of
our proposed method; we focus on the case where four clients
join and leave the multi-stage information processing system
in a specific pattern on the small-scale network. The network
consist of four edge servers, which are connected in a full
mesh manner. We assume that the delays of all the links are
identical. In order to evaluate whether our proposed method
can cope with various situations with different link delay, we
set the delay of each link to one of the following values: 1, 10,
20, 30, 40, 50, 60, 70, 80, 90, 100 [ms]. An edge server equally
allocates its CPU time to all the VMs located on it. A VM
is individually generated for each client. We set the response
time permitted by a client to 110 [ms], the completion time
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TABLE I
PARAMETER SETTINGS

Parameter Value
Number of training episodes (M ) 10,000

Discount rate (γ) 0.99
Number of hidden layers Actor：2，Critic：5

Number of neurons in a hidden layer Actor：256, 256，
Critic：16, 32, 32, 256, 256

Activation function of hidden layers Actor：relu，Critic：relu
Learning rate (α) Actor：0.001，Critic：0.002

Noise process for action exploration (N ) Ornstein-Uhlenbeck process
Size of replay buffer 10,000
Minibatch size (N ) 64

Weights of updated parameters
when updating the weights of

target networks (τ )
0.005

of an information processing task (Tcomp) to 110 [ms], and
HALF time to 11 [ms] (= 0.1 ×Tcomp) assuming the task
type is the early-blooming type.

During an episode of the simulation, the following events
occur (right side of Figure 9). When an episode starts, four
clients join the system in turn every 0.1 [ms] from time 0.1
[ms] to time 0.4 [ms]. The locations of all the clients are fixed
at edge server 1 during the episode. The initial locations of all
the VMs are set to edge server 1. At time 3 [ms], we perform
the first VM migration control. Then, at time 103 [ms], we
perform the second VM migration control. Lastly, the four
clients leave the system in turn every 0.1 [ms] from time 110.1
[ms] to time 110.4 [ms]. The first VM migration control aims
at determining the locations of the VMs during the episode
and the second VM migration control aims at obtaining the
reward and the experience for learning the DDPG agent.

We compare our proposed method with the following meth-
ods.

• VM sweeping method [2]
It migrates a VM with higher accuracy increase rate to an
idle edge server so that the VM occupies the CPU time
on it.

• VM number averaging method [2]
It equally distributes all the VMs to all the edge servers
for load balancing.

• Non-migration method
It fixes all the VMs at their initial locations.

• Minimum client-VM delay method
It locates each of the VMs to the location most proximate
to its client.

B. Evaluation Results

Figure 10 shows the average accuracy among the informa-
tion processing tasks executed by the four VMs for all the
VM migration methods. The accuracy of our proposed method
(DDPG + Minimum client-VM delay method) is plotted with
95% confidence interval because it varies depending on the
initial weights of Actor and Critic, and the noises for action
exploration.

Both non-migration method and minimum client-VM delay
method show the constant accuracy of about 0.65 regardless
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Figure 9. Network model and events in an episode.
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Figure 10. Average accuracy as a function of link delay.

of the link delay. This is because these methods always fix all
the VMs at their initial locations (edge server 1) regardless of
the link delay.

Both VM sweeping method and VM number averaging
method achieve the maximum accuracy of about 0.98 when
the link delay is 1 [ms], and the accuracy decreases as the link
delay increases. This is explained as follows. These methods
always distribute the VMs to all edge servers so that a VM
is located at an edge server regardless of the link delay.
As the link delay increases, the VM migration time and the
communication delay between the client and the VM increases,
and consequently the CPU time allocated to the task at the VM
decreases after VM migration.

We compare the performances of non-migration method,
minimum client-VM delay method, VM sweeping method,
and VM number averaging method. When the link delay is
lower than or equal to 40 [ms], VM sweeping method and VM
number averaging method achieve 12 to 50% higher accuracy
than non-migration method and minimum client-VM delay
method. Therefore, in this case, it is desirable to distribute
all the VMs to different edge servers. When the link delay
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is higher than or equal to 50 [ms], non-migration method
and minimum client-VM delay method achieve 17 to 70 %
higher accuracy than VM sweeping method and VM number
averaging method. Therefore, in this case, it is desirable to fix
all the VMs at their initial locations.

Lastly, we focus on the performance of our proposed
method. When the link delay is lower than or equal to 40
[ms], our proposed method 1) achieves 9 to 47% higher
accuracy than non-migration method and minimum client-
VM delay method, and 2) achieves almost as high accuracy
(at most 2% lower accuracy) as VM sweeping method and
VM number averaging method. When the link delay is higher
than or equal to 50 [ms], our proposed method 1) achieves
12 to 65% higher accuracy than VM sweeping method and
VM number averaging method, and 2) achieves almost as
high accuracy (at most 5% lower accuracy) as non-migration
method and minimum client-VM delay method. Therefore, our
proposed method can select quasi-optimal VM locations in
various situations with different link delays.

VI. CONCLUSIONS

In this paper, we proposed a VM migration method us-
ing a DRL algorithm in order to achieve high accuracy of
information processing tasks in various situations for multi-
stage information processing systems. Our proposed method
divides the VM migration control problem into two problems:
the problem of determining only the VM distribution and
the problem of determining the locations of all the VMs so
that it follows the determined VM distribution. Our proposed
method solves the former problem by a DRL algorithm and
the latter problem by the minimum client-VM delay method.
The simulation results confirm that our proposed method can
select quasi-optimal VM locations in various situations with
different link delays.

In our future work, we plan to evaluate the performance of
our proposed method 1) when the number of clients and VMs,
and the type of information processing tasks dynamically
change and 2) when different heuristic methods are adopted
for the VM location decision problem in our proposed method.
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