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Abstract—This research presents a generic approach for
context-aware entity classification with emphasis on integration
and use of contextual information in Peer-to-Peer systems. The
designed peer classification engine isolates high-latency update
processes in order to minimize the latencies of the lookup queries.
By using a key-value data-store with support for sorted sets,
high complexity context-classifying functions can be executed
asynchronously without impacting the lookup queries. The per-
formance of the system is evaluated through experimental and
complexity analysis, identifying directions for improving and
scaling the peer classification engine. As ubiquitous computing
evolves and becomes part of everyday life, the designed context-
aware classification engine provides a basis for deploying the
next-generation network-based services.

Keywords-classification; context-awareness; peer-to-peer;
BitTorrent.

I. INTRODUCTION

Contextual information is becoming more important as
ubiquitous computing evolves and integrates into everyday life.
An increasing need for context-aware network services has
led the research community to investigate means of managing
contextual information within the scope of existing network
protocols. Whether it is data location, data availability or
some other characteristic of the data, the context can play an
important part in defining the interaction model and how data
is being accessed.

Rapid content distribution and various optimizations have
boosted the use of Peer-to-Peer (P2P) solutions. Scientific
research has focused on improving existing P2P protocols for
delivering better performance and providing higher availability
for various network topologies, overlays and swarms.

The Peer Classification Engine presented in this paper
provides a generic approach for context-aware classification
for any type of entity or data inside a network. Entities can
be peers in Peer-to-Peer networks, sensors in Wireless Sensor
Networks, computer nodes in a cluster, or any other networked
entities. The evaluation of this solution has been performed
considering the Peer-to-Peer paradigm, using BitTorrent inter-
actions for contextual evaluation. BitTorrent was chosen as it
is the most widespread Peer-to-Peer protocol implementation
currently in use, accounting for most of the Internet traffic [1].

The solution is designed to ensure fast responses for lookup
queries, while asynchronously processing the slow update
queries in the background.

A. Context-Awareness in P2P systems

In a world where providing differentiated services based on
various conditions is becoming important both from the techni-
cal and economical points of view, context awareness plays an
integral part of designing the next-generation network-based
services. Various models such as [2] have been developed
to accommodate the needs for contextualized data retrieval
in P2P networks. Even so, contextualized information is still
difficult to include into testing and deployment platforms such
as the ones described in [3] and [4], and has not been yet
considered for performance evaluation [5].

Monitoring platforms such as [6] and [7] are the best
suited for extracting contextual information but, even so, this
information must be used by the service-providing layers.

Existing P2P context-aware applications usually rely on
location data [8] as the most easy to determine context. Search
also benefits from contextual information [9]. P2P applications
running on mobile devices also take into account device
capabilities in order to facilitate an adapted service discovery
mechanism for the peers [10], or for processing mobile data
over large mobile network environments [11].

A system that simplifies context-aware classification is
needed for supporting the increased demand of contextualized
services. The system must scale to a large number of contexts
without affecting the performance of the consumer applica-
tions within the P2P network. These are the basic requirements
that led to the development of the proposed solution.

B. Storage and performance constraints

One of the problems in classifying peers in a large-scale
network with numerous contexts is the underlying data struc-
ture used for storing the classification information. Regular
databases have been considered as they are commonly used
for storing and retrieving information easily. Unfortunately, as
the entire system aims for high performance lookup queries
and the classification information has a fixed format, the com-
plexity of a relational-database was considered an impediment
and other solutions were evaluated.

Structured storage solutions with simple key-value map-
pings, modeled after the NoSQL paradigm [12], are considered
the best choices in terms of design complexity and provided
performance. Therefore, the storage does not have fixed table
schemas and most operations scale horizontally, making this
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suitable for describing large numbers of contexts. An in-
memory storage solution brings even a higher read/write
throughput. If needed, this solution can scale beyond a single
machine.

The structured storage is the core part of the Peer Classi-
fication Engine. The peers in the P2P network are the ones
providing updates for the Peer Classification Engine, and they
are also the ones benefiting from the classified results. De-
pending on the desired functionalities and supported contexts,
updates are being processed by the system, and peers, content
and other information are classified into several classes, as
described in Section II.

In order to provide a high-performance peer classification
solution, the major design goal of the system is to minimize la-
tencies for lookup queries while doing most peer classification
computations during the updates. Previous designs [13] have
shown that the computationally intensive processes should be
isolated, and common operations, in this scenario - lookup
queries, should be optimized.

This paper is structured as follows: Section I presents an
overview of P2P, context-awareness in P2P and the storage and
performance requirements that needed to be solved, Section
II details the design decisions taken for deploying the Peer
Classification Engine, Section III presents a complexity analy-
sis of the underlying operations implemented in the proposed
solution. Section IV describes the experimental analysis of
the Peer Classification Engine, focusing on system latency,
resource consumption and presenting some scalability issues.
Section V makes an overview of the planned future work as
identified after the initial deployment of the Peer Classification
Engine, and Section VI presents the conclusions.

II. PEER CLASSIFICATION ENGINE DESIGN

This section presents the design decisions that led to the
development and analysis of the Peer Classification Engine.
Based on the requirements detailed in Section I, the design
covers the impact of the type of queries being handled, the
software components of the system and the classification and
ranking algorithms.

A. Queries
Depending on whether or not a query changes the peer

classification within the system, two types of queries have
been identified: update and lookup queries. The performance
requirements of the system have been elaborated based on
these two operations and their underlying effects.

In a BitTorrent-based P2P system as the one being con-
sidered in evaluating the Peer Classification Engine, update
queries would be similar to updates received from the peers by
the tracker entities in the BitTorrent network. Lookup queries
would be similar to the scrapes performed by the peers for
gathering information about the swarms. These scrapes are
used to retrieve the lists of active peers, but, in a more complex
system, a monitoring entity could use the lookup queries
to retrieve much more context-rich information, such as the
content availability information within a certain geographical
region.
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Fig. 1. Peer Classification Engine Design

1) Updates: An update coming from a peer pushes a new
state to the Peer Classification Engine. The new state may
contain various pieces of information about the peer such as its
availability (whether it has become online or offline) or content
availability (which content is provided by the peer, what parts
of the content are provided, etc.). In BitTorrent, announce
messages are being used by the peers to push updated state
information such as number of uploaded/downloaded/corrupt
bytes, whether a download has been completed or not, etc.

In the Peer Classification Engine, the new state is used to
update the classes the peer belongs to, a high-latency operation
by design, given the requirements of the system.

2) Lookups: Queries that retrieve information from the Peer
Classification Engine are considered lookups. The engine is
designed to provide low-latency lookup replies by having
the peer classification pre-computed during the updates. In
BitTorrent, the scrape messages that are used to retrieve the
list of peers providing a specific content only contain the hash
of the data (torrent) being downloaded.

In the proposed solution, lookup queries can also aggregate
information across multiple classes using different weights in
order to provide a multi-contextual response for a peer, as
detailed in Section III - Complexity Analysis.

B. Components

As detailed in Figure 1, the classification engine relies
on the existence of an in-memory key-value data-store for
managing the peer classes. As previously presented in Section
I, a relational database does not meet the performance needs
required for high-performance lookup operations. Cassandra
[14] has been initially considered as a structured data solution
but its complexity added too much overhead to the system. In
the end, Redis [15] was chosen as a storage solution.

Update queries are being received directly from the peers by
the P2P frontend, and pushed for later processing to an updates
queue. This allows asynchronous processing of the updates
by one or more update workers, which consume the updates
from the updates queue. This also implies that, once an update
arrives, its effect might not be initially visible in the lookup
results. Depending on the number of update workers and on the
complexity of the update operations, the time required for the
update to reach the key-value store may vary. Lookup queries
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are also received through the P2P frontend, but results are
retrieved directly from the key-value data-store.

Figure 1 also presents the separation between the low-
latency processes and the high-latency processes. This separa-
tion is given by the design requirements as detailed in Section
I. Most classifying processes are considered high-latency and
therefore require the use of a queue, while the lookup queries
are low-latency and should not suffer any performance penalty
from other computations except for the data-store reads.

C. Classes and Ranking

The entire functionality of the Peer Classification Engine
relies on identifying classes associated with various infor-
mation coming from the peers inside the P2P network. A
class is associated with a context (such as being in a certain
geographical region). This association between information
and a certain class is done using special functions, called class
association functions (CAFs). A class association function
(fcontext type(data packet)) characterizes only one type of
context (such as locality, or data availability) – for multiple
types of contexts, multiple functions are being used.

In order to provide the best-suited replies for specific
contexts, a class association function can also return a rank of a
specific piece of information within a class. A class association
function will therefore return:

• a class, which characterizes the information (for example:
the geographical region of a peer);

• an ID to identify the information being classified (for
example: the peer ID);

• a rank of the information in the class (for example: the
uplink bandwidth of the peer).

The returned ID and rank are optional, as there are situations
where ranking is not necessary, such as for lookup queries.
Classification can be used both for the update and for the
lookup queries, but with different purposes:

• update queries contain information on various changes
in a peer’s state. These changes affect the peer’s classi-
fication within several classes, and several CAFs can be
used. Classification within a class may require ranking,
depending on the context described by the class;

• lookup queries may be classified in order to identify
which context is addressed within the query (for example:
which region a query is related to or which data is being
looked for).

As the design of the proposed solution requires providing a
low-latency lookup response, the class association functions
used on lookup queries must be fast and take preferably
constant time, extracting the class information directly from
the lookup query without using external data sources.

Table I presents an overview of the class association func-
tions and their return values depending on the type of a query
being processed.

Typical applications for using classes include:
1) selecting which peers are the most suited for serving a

requesting peer based on the context of the requesting

TABLE I
CLASS ASSOCIATION FUNCTIONS FORMS

Query type Class Association Function form

update fcontext(update message) = (class, ID, rank)

lookup fcontext(lookup message) = (class)

peer and the ranking of the other peers for that specific
context;

2) selecting which peers are the most suited for providing
data to other peers;

3) determining if peer queries should be directed to other
storage shards, as described in Section IV, Subsection
Scalability Analysis.

Several class association functions as seen in Table II have
been defined in order to evaluate the proposed solution for
BitTorrent P2P systems. They have been listed based on the
types of queries being processed.

TABLE II
CLASS ASSOCIATION FUNCTIONS FOR BITTORRENT P2P QUERIES

Update Queries
locality update(update) = (locality class, peer ID, rank)

availability(update) = (t availability class, peer ID, rank)

Lookup Queries
locality lookup(lookup) = (locality class)

A locality class can be specific to a certain geographic
region (one class per region), and multiple locality functions
can be used, each one considering a different region size for
example - the more functions are used, the longer updating
the classes will take. Dynamically choosing the number of
classes and size of the classes is a future goal, as described in
Section V. The two locality functions differ by their output:
the locality lookup function does not have to compute a rank;
it only has to return the class of the peer issuing the query, so
that peers could be examined within that certain class.

The t availability class (torrent availability class) is tor-
rent specific and contains all the peers that share the specific
content identified by the torrent. The rank is given by the
completion status (how much of the torrent has been down-
loaded by peer ID, in percent).

In order to minimize the latency for lookup replies, the
results of the locality lookup function applied on the lookup
queries can be cached, thus reducing even more the overhead
of the functions and relying only on the deterministic behavior
of the data-store operations.

III. COMPLEXITY ANALYSIS

The maximum performance of the provided solution is
lower bounded by the theoretical limit of the underlying com-
ponents, mainly the key-value store and the update workers.

The Peer Classification Engine relies on the use of sorted
sets in Redis for storing information in classes together with
the ranking. One sorted set is used for each class. Using normal
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sets is also an option, providing a better complexity but no
ranking: adding an item to a normal set is O(1), retrieving
the members of a set is O(n), intersecting sets is O(n ·m).

The theoretical complexity boundaries achievable using the
proposed underlying storage solution are presented below.
They are grouped by the type of operations being performed,
and they take into account the operations needed for accessing
the data structures in the key-value store.

A. Update operations

As mentioned in Section I, most computations should be
done on updates in order to minimize the lookup times. Classes
are meant to be populated after computing the ranking of peers
and the class for each peer. Adding an entry to a sorted set is
being done with the ZADD Redis command.

In a BitTorrent P2P network, given the class association
functions above, processing an update would require the
following operations:

1) identifying the locality class of a peer - very costly
in terms of complexity and time consumed, it requires
querying a MySQL database with GeoIP information

2) ranking the peer for the identified locality class; if the
rank is considered to be upload bandwidth and the peer
reports it, this can be ignored as complexity

3) adding the peer to the locality class with the given
rank in the key-value store (in the sorted set associated
with the locality class): O(log(n)) complexity, where
n is the size of the set.

4) calculating the rank for the peer in the torrent availabil-
ity class can be ignored as complexity, if it is calculated
from the values received from the peer

5) adding the peer to the t availability class with the
previously calculated rank in the key-value store (in
the sorted set associated with the t availability class):
O(log(n)), where n is the size of the set.

B. Lookup operations

Lookup queries can be classified as presented in Table II.
This means that, for a given lookup query, the location of the
peer must be identified. This can be a costly operation, and,
in order to provide a low-latency lookup reply as intended in
the design, a default class can be assigned on the first query,
and the resulting value of the class association function can
be cached to be used on subsequent lookup queries.

Lookup replies can be formed by taking into account one
context or multiple contexts. This is equivalent to verifying
one or more classes in the Peer Classification Engine, which
results in retrieving data from one sorted set, or by intersecting
multiple sets. The computation becomes more complex as
the number of sets being used increases. This might look
expensive on the first lookup, but sequential lookups in the
same classes can be fed from a cache with O(1) lookup
complexity, if nothing changes in those classes.

Lookup into one single class using the ZREVRANGE Redis
command for retrieving the best m items (in a sorted set with
n items) is O(log(n)) +O(m) complexity.

Intersecting multiple classes using the ZINTERSTORE Re-
dis command is O(n · k)+O(m · log(m)) complexity, with n
being size of the smallest input sorted set, k being the number
of input sorted sets, and m being the number of elements in
the resulting sorted set.

IV. EXPERIMENTAL ANALYSIS

A. Peer Classification Engine Deployment

The implementation of the context classes with ranks using
sorted sets is partially inspired by the data-structures supported
by Redis. Redis is not a simple key-value store but also
has support for storing/updating/deleting lists, sets, sorted
sets, hashes with atomic operations providing low complexity.
Atomic operations and support for transactions also allow
keeping data consistent between updates and lookups.

Redis version 2.2.0-rc3 has been compiled and installed on
Core(TM)2 Quad Q9550 @ 2.83GHz system with 1GB of
reserved RAM in order to perform an experimental evaluation
of the Peer Classification Engine. The Redis store was filled
with torrent information as received from a tracker and passed
through the Peer Classification Engine. Measurements were
taken for determining the slow and fast paths within the
system, ensuring that the design requirements are being met.

B. Experimental Results

The experiments concentrated on evaluating the following
performance metrics in order to determine the impact of
the solution on both the system and on the context-aware
applications being deployed using the system:

• update query times, considering the impact of the location
classifying functions;

• lookup query times, for single and multi class lookups;
• memory usage, as it can bring performance limitations

with the extensive use of contexts or in systems with
many participating peers.

The measurements were realized considering systems with
256, 512, 768 and 1024 active torrents, and 25 locality
contexts. As there is one torrent availability class for each
torrent and one locality class for each locality context, the
experiments tested the use of the system for x + 25 classes,
where x is the number of torrents in the system.

As determined from the complexity analysis, most opera-
tions are impacted by the number of peers inside a class at a
certain time. Therefore, the experiments tested the system with
128, 256, 512, 1024 and 2048 peers for each torrent. Figure
2 shows that a peak memory use of about 500 MB of RAM
is reached for the 1024 torrents with 2048 peers each.

Figure 3 shows the time required for an update to be
performed in the system, taking into account the time spent
determining the location (identifying the locality context)
using a GeoIP database. The average time spent for retrieving
the geolocation information is 13.75 msec, making the time
spent writing the update to the key-value store insignificant.
Under these conditions, the times of an update query do not
vary much depending on the number of torrents or peers for
a torrent, being 13.88 msec on average.
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Fig. 2. Memory usage of the key-value data-store
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Fig. 4. Lookup query time for one single class

The complexity analysis shows that lookup times are di-
rectly impacted by the size of the classes where information
is being looked for. As lookup operations are more frequent
and results are most likely to be cached, the experimental
analysis concentrated on measuring the lookup times only for
fetching updated information from the key-value store. Figure
4 shows the lookup times using one single class (checking one
single context). As expected from the complexity analysis, this
shows that the lookup time increases as the number of peers
inside a class grows. Multiple experiment runs have shown
that lookup times for the 1024 and 2048 peers are similar.
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Redis has internal data-size thresholds used for triggering data
reorganization, and the elevated lookup times in the 1024-peers
experiments might appear after reaching these thresholds.

Multi-contextual lookups require looking for data into mul-
tiple classes, performing intersections between the sorted sets
at the level of the key-value store. The time spent looking for
data into multiple classes presented a similar trend, although
with an added overhead. Figure 5 shows the difference be-
tween lookup queries performed into one class versus lookup
queries performed into multiple classes (for the 1024 torrent
tests). In the experiment, the locality and the torrent availabil-
ity class were considered. As noticed, intersecting multiple
classes adds a significant overhead to the lookup queries, but
the impact grows slower as the overhead is limited by the
number of results retrieved from the intersection and the size
of the smallest input sorted set (which, in this situation, was
the locality class set with 25 entries).

The lookup query times ranged from 113 µsec to 1138 µsec,
while the update query times averaged at 13883 µsec.

C. Scalability analysis

1) Data sharding: Depending on the content being moni-
tored, number of peers, number of contexts (classes) and other
information that can be stored in the in-memory key-value
data-store, the Peer Classification Engine might run out of
physical memory, and using swap is not an option for a low-
latency service. Data sharding can overcome this problem, at
the expense of using more machines.

A Redis-based key-value data-storage requires extra middle-
ware logic to implement sharding. Depending on the functions
describing the contexts, various data-clustering algorithms [16]
can be applied to identify which data needs to be placed inside
the same shard. Once the clusters have been identified, data
sharding can be used as a solution for dividing data across
different machines or even different locations.

In a BitTorrent-based P2P network, peers would make the
most use of having data sharded by:

• torrent hash - this is the easiest and the most practical
method, as content is identified using a hash, and most
lookups for information are performed on specific torrent
hashes;
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• locality information - this might bring lower latencies
for the lookup replies for local-peers, but brings higher
complexity for creating replies for the queries coming
from peers which are non-local.

2) Data replication: Most queries on the Peer Classification
Engine are expected to be lookups. An increased number of
lookup requests or updates in the P2P swarm might increase
load on the system, and therefore the latency on the lookup-
reply path might become unacceptable. In order to reduce this
latency, as reads are very easy to scale, multiple read-only
replica storages and/or P2P front-ends can be deployed.

V. FUTURE WORK

The designed system takes into account that class associ-
ation functions return a predefined set of classes. Therefore,
the number of contexts available in the system can be easily
predicted. In continuously evolving systems with a variable
number of peers, the use of a fixed number of contexts might
lead to uneven resource allocation. A system with 20 peers can
benefit more by using a locality association function returning
2 contexts (in this case geographical regions), compared to a
2000-peers system where using 2 locality contexts might lead
to an inefficient use of the locality information.

With the given system architecture, on-the-fly peer-
reclassification can be implemented as an asynchronous high-
latency process. The lookup queries will not be affected by
an on-going peer reclassification, and, on completion, the new
classification might be put in effect. The same behavior can
be implemented for sharding. When the load on the system
goes over a predefined threshold, an on-the-fly class-resharing
process can be executed in the background to (1) determine
which are the classes (contexts) that can be moved to other
data shards, and (2) perform the changes in the data-store.

The key-value store also has support for expiring entries,
making it easy to have contexts that automatically expire if not
updated. This allows outdated information to be automatically
removed. Other cleanup operations can be implemented as
high-latency processes, without impacting the lookup queries.

VI. CONCLUSIONS

The research presented in this paper focuses on designing,
implementing and evaluating a Peer Classification Engine that
allows contextual information to be used by the peers in a
P2P network. The solution provides a flexible approach for
defining contexts through class association functions that also
support ranking the entities within classes.

The design takes into account that the update and lookup
queries impact differently the performance of the entire sys-
tem. The solution minimizes lookup latencies by offloading
the high-latency computations to the update-processing phase.
This isolation ensures a predictable behavior of the classifica-
tion engine as it is being used by the entities in the network.

The solution is not only designed for high-performance
lookup queries, but can also provide high-availability contex-
tual services through data replication and data sharding. These
developments have been explored during the experiments, and,

in order to provide an adaptive contextual scaling of the
system, dynamic context-based content resharding and on-the-
fly peer reclassification are being considered as future work.

Moreover, even though the contexts chosen for evaluating
the Peer Classification Engine are Peer-to-Peer specific, the
solution can be easily deployed in multiple other environments
such as Wireless Sensor Networks, computer nodes in a
cluster, or any other networked entities. The proposed solution
simplifies the integration and use of contextual information and
provides a basis for deploying the next-generation network-
based services.
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