ICNS 2015 : The Eleventh International Conference on Networking and Services

An Improved Control Algorithm for a Class of Photonics Timeslot Interchanger

Luai E. Hasnawi and Richard A. Thompson
Graduate Telecommunications and Networking Program,
School of Information Sciences, University of Pittsburgh,

Emails: {leh31,rthompso} @pitt.edu

Abstract—All-Optical Networks (AONs) are an active research
area for use in Optical Transport Networks (OTNs) and data
centers. Adding Optical Time Division Multiplexing (OTDM)
to AONs can more efficiently utilize the enormous amount of
bandwidth in the fibers. Photonic Timeslot Interchangers (PTSIs)
are used in OTDM networks to interchange/switch timeslots. This
paper proposes a control algorithm for a previously proposed
PTSI that uses multiple feed-forward fiber delay-lines. This
algorithm further reduces the required number of delay elements
needed for non-blocking operation from the reduction previously
reported under a less optimal algorithm. Any reduction in the
number of PTSI components should result in increased output
signal power, reduced footprint, and reduced manufacturing cost.

Keywords—Photonic Switching; Optical Time Switching; Pho-
tonic Timeslot Interchanger; Circuit Switched; Control Algorithm.

I. INTRODUCTION

Cloud computing services are solutions to minimize the
initial cost of building new businesses. The enormous amount
of data that is processed, stored and shared in the cloud is
beyond the capacity of common copper lines. Lately, optics
researchers have been proposing a high speed switching system
to connect server racks by fiber optics [1][2].

The inflation of file sizes, as well as the transmission
rates required by recent applications, has attracted researchers
attention to increasing network utilization. Cisco forecasts that
IP traffic will reach 1.6 zettabytes per year by 2018 [3]. A
common practice to help increase bandwidth is to add more
fibers to the network; however, that is an expensive solution.
Part of the research investment is focusing on switching the
data between data centers and clients in the optical domain
using circuit-switched networks [2].

By going back in time to the origin of optical switching
network research, we would notice that the majority of research
focuses on space switching. Switching in the space domain
refers to the operation of switching the signal from one physi-
cal fiber to another. Meanwhile, time and wavelength domains
have received a reasonable amount of attention. Switching in
wavelength domain is a common practice, nowadays. However,
switching Optical Time-Division Multiplexed (OTDM) signals
in the optical domain has not been commercialized.

05000000

Figure 1. A delay element for 4 timeslots per frame

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

100%

80.82%
s 80%
=]
£
[001d Algorithm
T 60%
E
<
B
& 40%
g (
8
&
19.10%
20%
0.09% 0.00%
0% -
DE-1 DE-2 DE-3 DE-4

Delay Element

Figure 2. Results from the old control algorithm for 4 timeslots per frame [4]

In OTDM, channels are divided based on time. For the
purpose of this paper, we assume that time channels (presented
by timeslots) have a fixed duration of time. In addition, this
paper presents a circuit switched network with call setup before
starting data transmission. For better network utilization, an
OTDM network does not require timeslot continuity, in which
there has to be at least one timeslot vacant in every link to
establish the connection.

If timeslot continuity is required, the exact timeslot index
has to be vacant in every hop to establish the connection.If
timeslot continuity is not required, a Photonic Timeslot In-
terchanger (PTSI) should be used at every node. Timeslot
interchanging is the operation of switching timeslots with each
other. Studies have proven that PTSIs improve system utiliza-
tion and reduce network probability blocking [5][6].However,
none of these studies have used the exact PTSI that was
proposed by Thompson [7]. Building a PTSI consists of a
number of Delay Elements (DE) connected together. The
structure of a DE is presented in Figure 1.

The rest of this paper is organized as follows: Section II
describe the motivation behind this work. The proposed control
algorithm is described in Section III. The results are presented
in Section IV. Finally, the conclusion and future works are
presented in Sections V and VI, respectively.

II. MOTIVATION

The result from the first control algorithm [4] that controls
such a PTSI shows that some of the DEs have been utilized
less than 1% of the time, as shown in Figure 2.

50

ICNS 2015 : The Eleventh International Conference on Networking and Services

Hence, we assume that if we make the algorithm more
sophisticated, we might obtain better results and eliminate
additional DEs. There are a number of benefits to reducing
the number of DEs in the PTSI including:

e Reducing the number of hardware components in the
fabric increases the overall availability [8].

e Adding more hardware to the fabric increases the cost,
footprint and control algorithm complexity. A simple
control algorithm reduces the fabric development and
manufacturing time [8].

e As the light beam passes through optical components,
it suffers from losses, mainly insertion loss. Hence,
reducing the number of components that the signal
passes through improves the signal strength.

III. PROPOSED MODEL

Building a PTSI has been discussed in great detail in
Thompson’s initial study [7] and in Hasnawi and Thompson
[4]. There has not been any change to the PTSI components.
In this paper, our focus is to improve the control algorithm to
eliminate as many additional DEs as possible. PTSI consists of
DEs similar to the one in Figure 1. DEs are connected to form
a binary tree on both sides, as in Figure 3. In this paper, we
will generalize the switching components (splitters, switches,
and combiners) using the term Switching Module (SWM). We
assumed that the links between SWMs are perfect connectors
with no loss or delay.

A. Switching Assignment Matrix

A Switching Assignment (SWA) is defined as permuting
input timeslots with output timeslots. Each input timeslot, S ,
may be switched into 7S possible output timeslots S¢“*. There
are T'S! possible SWAs. All possible SWAs form a [TS!][TS]
matrix. Each row is indexed from O to 7S/-1 . Every SWA
is presented in cyclic notation. For example: SWA (a)(bc) is
read as Timeslot (a) at frame F-/ is assigned to be switched
to Timeslot (a) in the next frame, F, while Timeslot (b) and
(c) at frame F-1 are assigned to be switched to Timeslots (c)
and (b) at frame F, respectively. The SWA index is assigned
to the simulation during the initialization of each run. Since
there are M = 2 frames processed for every run, this study has
two cases:

Figure 3. A complete PTSI for 4 timeslots per frame

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

e Case 1: Static Switching Assignment: both frames
have the same switching assignment. Thus, there are
(TS!) total number of possible permutations.

e Case 2: Dynamic Switching Assignments. Frames are
independent from each other. Hence, Timeslots in the
frame F-1 should have independent SWA from F. In
this case, there are (7'S/)M total number of Switching
Assignments.

In this study, we are going to apply every possible SWA for
TS = 2, 4 and 8 for static cases. In addition, for the dynamic
case, we are trying every SWA for TS = 2 and 4. We will omit
TS = 8 for the dynamic switching assignment because the total
number of runs required for every possible permutation would
be greater than 1.6 billion.

TABLE 1. SAMPLE OF THE SWITCHING ASSIGNMENT FOR TS=4.

Input Timeslot
SW Index So S, S5 Ss
0 0 1 2 3
1 0 1 3 2
2 0 2 1 3
2 32 10

B. Delay Matrix

Considering a synchronized system, every SWM must be
pre-set during guard time, prior to the timeslot. Any misbehav-
ior may affect the overall system and result in system failure.
Some such scenarios include:

e If a timeslot arrives at SWM that is pre-set to an
undesired switching state, the timeslot will exit at an
undesired port.

e If two timeslots arrive at a switch simultaneously, each
requiring a different switching state, at least one will
be switched to an undesired output.

e If two timeslots arrive at a combiner simultaneously,
at least one timeslot will be blocked.

Every SWM must be reserved (set to busy) and pre-set
depending on the delay required for the timeslot. Computing
the delay required to switch timeslots S to Sj(-’“t is given by
D = TS+j—1; where j is the timeslot output index and i is the
timeslot input index. For example, assuming TS = 4 and SW
index = 2 from Table I, we can extract that the cyclic notation
for this assignment is (S§")(Si" Si™)(Si"). Using the delay
equation, Si" and Si" each must be delayed by a duration
equivalent to 4 timeslots, while Si" must be delayed by 5
timeslots, and S&* must be delayed by only 3. The required
switching operation, as well as the required delay per timeslot,
is illustrated in Figure 4. This first stage of the PTSI is the
splitter stage, as in Figure 3, which forms a perfect binary tree
with a total number of leaves [= T'S (equal to the number of
DEs), and the depth of the tree given by d = logsl + 1. Thus,
each timeslot passes through d splitters before it enters a DE.
The combiner stage is identical to the splitter stage but on the
other side of the fabric. Splitters do not perform interchange
operations, thus, no delay at this stage, as seen in Table II.

However, switches and combiners do require delays before
they change their status. Going back to the example in the

51

ICNS 2015 : The Eleventh International Conference on Networking and Services

TABLE II. DELAY MATRIX FOR TS=4

Splitters Stage ~ Switches Stage ~ Combiners Stage

0 1 2 3 4 5 6 7
Delay0 | 0 0 0 0 0 0 0
Delayl | 0 0 0 1 1 1 1 1
Delay2 | 0 0 0 0 2 2 2 2
Delay3 | 0 0 0 1 3 3 3 3
Delay4 | 0 0 0 0 0 4 4 4
Delay5 | 0 0 0 1 1 5 5 5
Delay6 | 0 0 0 0 2 6 6 6
Delay7 | 0 0 0 1 3 7 7 7

previous paragraph, switching S to S§“! requires a delay

with a duration of 4 timeslots. Thus, every splitter and switch
stage in Figure 3 must change its stage during the guard
time prior to the timeslot. The combiner stage can be set to
busy and change its switching state during the guard time,
prior to the timeslot transmission, until the timeslot arrives.
However, doing so will prevent other timeslots from using
these combiners from time t=0 to t=4. Therefore, to better
utilize the fabric, the combiner stage will change its state after
a delay of 4 timeslots.

The delay required for each SWM to change its
state while efficiently utilizing the fabric is presented
by a [Dmaz|[total NumberO f SW MinThe Path] matrix, as
shown in Table II. D,,,, is defined as the maximum delay
required to interchange the first timeslot, Sé” , with the last
timeslot, Si% , and is given by Dyq, = 275 — 1.

The start holding time (startHoldingTime) is a param-
eter used in the simulation. It is a timeStamp at which
the SWM should start holding its current state before re-
leasing to the idle state and being set to free. Using Ta-
ble I, startHoldingTime = [currentSimulationTime] +
[T'Sgur * Delay]. Once a timeslot exits the SWM, then SWM
is set to free. For M=2 and TS=4, the initial module [7] utilizes
each DE one fourth of the time.

C. Select Path Algorithm

Select Path algorithm is what distinguishes this work from
others. This algorithm is responsible for switching timeslots to
the optimum DE in the PTSI. The first proposed PTSI model
did not implement a path selection (or routing) algorithm.

Input Frame | s;» || S;» || S/ || Sy~

Output Frame

1
I
E Sjout Szout SIaut Soaut " S3in S2in SIin Soin
1

"~ tb=4

Output Frame Input Frame

Figure 4. A graphical representation of PTSI operation for SWA index 2
with the required delay per timeslot.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

selectPath (delay, startHlolding Time)

Input: delay, starilalding Time
Output: pack, SWCIndex
path «— 0
SWCIndex +— T8 * {delay-1)
pathFound «— false
do
for all switches j in path p where {i: number of switches in path p }
Con. 1: in path p, at least one queue corresponding to switch § is not empty.
Con. 2: in path p, at least one switch j is set to busy at startHalding Time.
Con. 3: in path p, at least one queue corresponding to switch f is in conflict.
If (condition 1 == false)
pathFound = true
return path, SWCIndex
else If (condition 1 == true &d& condition 2 == false)
pathFound = true
return path, SWCIndex
else If (condition | == true && condition 2 == prue && condition 3 == false)
pathFound = true
return path, SWCIndex
else
path++
SWCIndex ++
while {|pathFaund)
* Conflict occurs when 2 TS require different SWC at the same startHoeldingTime

Figure 5. Select path algorithm

It assumed that blocking was avoided by switching S
to DE;. Hence, every row should be utilized M/(M * TS)
of the time. This result led us to build a new path selection
algorithm that would reduce the number of DEs in the PTSI,
and increase the utilization to the maximum while maintaining
zero probability of blocking.

The first select path algorithm was published by Hasnawi
[4]. The algorithm did not allow 2 timeslots to travel through a
switch simultaneously even if both required the same switching
state.

The improved algorithm differs from the previously pub-
lished algorithm by allowing 2 timeslots to pass through a
switch simultaneously, if, and only if, both required the same
switching state. The algorithm is presented in Figure 5.

D. Switching Control

Switching Control (SWC) is a control signal that travels
from the controller to the SWM. The purpose of this signal
is to change the switching state of SWM. Switching control
contains three fields:

e Switching State (Bool): changes the state of an SWM
to BAR (0) or CROSS (1).

e Busy (Bool): if the SWM is reserved, then it is set to
busy (1); otherwise, it is set to free (0).

e startHoldingTime (double): is the time at which the
SWM should be switched to the new state and set to
busy.

e releaseTime (double): is the time at which the SWM
releases its current state and is set to free.

We assume that every SWM is a Lithium Niobate
(LiNbOs3) directional coupler, which only requires a simple
SWC, presented as a voltage. Hence, only the switching state
is passed from the controller to SWM and the rest of the fields
are used inside the controller.

Once a path is selected, the controller calls another al-
gorithm to reserve the path for the incoming timeslot. The
algorithm is presented in Figure 6.

52

ICNS 2015 : The Eleventh International Conference on Networking and Services

E. Insert Switching Control

Every SWM has a SWC queue at the -controller.
Switching Controls are inserted in order, based on the
startHoldingTime. If two or more SWC for a given SWM
have the same switching state at startHoldingTime, then
only one SWC will be stored in the queue and the rest will be
discarded.

F. Send Switching Control

At every guard time prior to any timeslot, each head of the
queue is examined. If the current simulation time, stmTvme
equals startHoldingTime, then the SWC is popped and
sent to its corresponding SWM; otherwise, the queue will be
ignored and examined at the next guard time.

G. Simulation Tool and Assumption

We used an Omnet++ [9] simulation tool to build every
component in our PTSI. For each simulation run, we assumed
the following:

e There were M=2 frames per run.

e Each frame had TS = 2, 4 or 8 timeslots.

e The size of each timeslot was fixed and equal to 10°
bits.

e The data rate equaled R = 10° bps

e A Timeslot Duration (7'Sg,,) equals the timeslot size
divided by the data rate.

e There was a guard time between consecutive timeslots.
This guard time equaled the SWM switching speed.

e Timeslots SWAs’ follow the permutation table, dis-
cussed in subsection A.

e There is frame integrity, in which timeslots are
switched within the boundary of the frame.

e Each run starts with an empty fabric; then, timeslots
are generated at the deterministic rate of 7Sz,

e Every channel is a point-to-point connection.

e Each simulation run is independent. For each run, we
verified that each timeslot generated by the source was
received at the destination.

reservePath (path, delay)
Input: path, delay

for all switches j in path p where {j: number of switches in path p }
setBusy ();
SwitchingControl SFC;;
SWC;—+ setHoldingTime (simTime() + getDelay[/][delay] *
getTimeslotDuration())
SWC; — setReleaseTime (simTime() + getDelay[j][delay] *
getTimeslotDuration() + getGuardTime())
SWC, — setSwitchingState (path,)
if { duplicate® exist)
delete SHC,
else
insertToOrderedQueue (SHC)

* Duplicate happens when a SH#C has previously inserted with the same
switchingState for the same startHolding Time discussed in subsection G.

Figure 6. Reserve path algorithm

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ooy 28:44%

80.82%
B 80% 1
.g BNew Algorithm
% 0% D0O0ld Algorithm
£
i=l
% 40%
g
8
&
19.10%
20%
1.56% 0.00% 0.09% 0.00% 0.00%
0% —
DE-1 DE-2 DE-3 DE-4

Delay Element

Figure 7. Comparing the old and new Select Path algorithm for TS=4. Each
bar represents the utilization of the DE

IV. RESULTS

The new algorithm provides a significant improvement. We
were able to further reduce the number of DEs for every
case. The results show that for 2, 4, and 8, the number of
DEs required to provide non-blocking PTSI is 1, 2, and 2,
respectively. Note that, in this study, we only simulated the
static case for TS=8 and we were able to interchange every
timeslot with only two DEs.

The number of DEs required to interchange TS = 4 times-
lots per frame using the improved algorithm is illustrated in
Figure 7. Similarly, the number of DEs required to interchange
TS = 8 timeslots per frame for the static case using the
improved algorithm is illustrated in Figure 8.

From a software perspective, reducing the size of a PTSI
results in easier and faster control. Searching for a path from
three available paths is faster than searching from eight.

Lastly, eliminating half the DEs from a PTSI for TS =
4, not only reduced the footprint size, but also improved the
received signal power at the destination node. Each timeslot
passed through 6 SWMs instead of 8, and passed through
9 timeslots instead of 11 for TS = 8. The average insertion
loss for SWM was between 4 and 5dB for wavelength =1550
[10][11][12]. Hence, reducing the PTSI size improved the
received power signal by an average of 10dB for TS = 4 and
TS = 8.

V. CONCLUSION

In this work, we were able to further reduce the number
of DEs in a PTSI. The algorithm improvement focused on
additional reductions on the number of DEs while maintain-
ing the same code complexity.The impact of this additional
improvement is a scalable system. The number of channels
(presented in timeslots) does not increase proportionally with
the size of the PTSI. We were able to reduce an additional 25%
of the number of DEs for TS = 4, compared with the previous
work [4].In addition, for TS = 8, we reduced the number of
DEs by an additional 12.5%, compared with the previous work.
Both works show that the dynamic case requires one additional
DE than the static case to provide non-blocking interchanging.
If this statement is generally true, then for TS = 8§, the

53

ICNS 2015 : The Eleventh International Conference on Networking and Services

to thank Rakan and Anh for help in debugging and improving

0.0% the code.
DE-8
0.0%
DES 383 B New Algorithm REFERENCES
Oion/: B0ld Algorithm [11 C. Develder, M. De Leenheer, B. Dhoedt, M. Pickavet, D. Colle,
DE6 0 0% F. De Turck, and P. Demeester, “Optical networks for grid and cloud
E 0.0% computing applications,” Proceedings of the IEEE, vol. 100, no. 5, 2012,
EPES 0w pp. 1149-1167.
= 0,
Epea O'On/" [2] C. Kachris and I. Tomkos, “A survey on optical interconnects for data
S g’g;" centers,” Communications Surveys & Tutorials, IEEE, vol. 14, no. 4,
DE3 | e 2012, pp. 1021-1036.
N 6.7% [3] C. V. N. Index, “The zettabyte era—trends and analysis,” Cisco white

DE-2
27.5%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Arrived Timeslots

Figure 8. Comparing the old and new Select Path algorithm for TS=8 (static
case). Each bar represents the utilization of the DE

required number of DEs to provide non-blocking switching
is 3. These six scenarios (TS = 2, 4, and 8 for both static
and dynamic cases), result in reducing the number of DEs
required for non-blocking timeslot interchanging to logs(T'S);
however, it needs to be proven for T'S = 2V, The improvement
on the number of DEs from the initial work [7], on the
first (old) control algorithm [4], to the second (improved)
control algorithm is presented in Figure 9. Additional benefits
from this improvement include reducing the footprint, circuit
temperature, power loss and monetary cost.

—Initial algorithm = =Old algorithm **** New algorithm

DEs required

N W R LN 0 O

(=

Timeslots/frame

Figure 9. PTSI improvement over time based on the number of DEs

VI. FUTURE WORK

This simulation starts with an empty network and then the
source starts generating timeslots until the network reaches
100% utilization. The work will be tested on a testbed network,
such as NSFNet under different loads. In addition, this work
could extend to larger number of timeslots per frame such as
64, 128, . 2™,

ACKNOWLEDGMENT

The authors would like to thank Taibah University for
supporting and partially sponsoring this work. We would like

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

(4]

(31

(6]

(7]

(8]

(9]

[10]

[11]

[12]

paper, 2013.

L. E. Hasnawi and R. A. Thompson, “Photonic timeslot interchangers
with a reduced number of feed-forward fiber delay lines,” Procedia
Computer Science, vol. 34, 2014, pp. 47-54.

J. Yates, J. Lacey, and D. Everitt, “Blocking in multiwavelength tdm
networks,” Telecommunication Systems, vol. 12, no. 1, 1999, pp. 1-19.

Y. C. Huei, P. H. Keng, and N. Krivulin, “Average network blocking
probabilities for tdm wdm optical networks with otsis and without wc,”
in Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, 2007. MASCOTS’07. 15th International Symposium
on. IEEE, 2007, pp. 424-431.

R. A. Thompson, “Optimizing photonic variable-integer-delay circuits,”
in Photonic Switching. Springer, 1988, pp. 158-166.

M. Zdeblick, “Design variables prevent a single industry standard,”
Laser Focus World, vol. 37, no. 3, 2001.

“Omnet++ discrete event simulator,” http://www.omnetpp.org/, ac-
cessed: 2015-03-01.

X. Ma and G.-S. Kuo, “Optical switching technology comparison: op-
tical mems vs. other technologies,” Communications Magazine, IEEE,
vol. 41, no. 11, 2003, pp. S16-S23.

“Coralign low loss moving fiber optical switches,” http://luminos.com/

products/switches/downloads/switch_datasheet_detail.pdf, accessed:
2015-03-01.
“Jdsu 2x2 interferometric switch,” http://www.jdsu.com/

en-us/Optical-Communications/Products/a-z-product-list/Pages/
switch-2x2-interferometric-lithium-niobate.aspx#. VP0albPF840,
accessed: 2015-03-01.

54

