
IPOL - A Domain Specific Language for Image
Processing Applications

Christian Hartmann, Marc Reichenbach, Dietmar Fey
Chair of Computer Architecture

Friedrich-Alexander University Erlangen-Nürnberg (FAU),
Martensstr. 3, 91058 Erlangen, Germany

{christian.hartmann,marc.reichenbach,dietmar.fey}@cs.fau.de

Abstract—In recent years, the use of image processing systems
has increased steadily. However, most of them are very complex
and contain several tasks with different complexities which result
in varying requirements for computing architectures. Neverthe-
less, a general processing scheme in every image processing appli-
cation has a similar structure, called image processing pipeline:
(1) capturing an image, (2) pre-processing using local operators,
(3) processing with global operators and (4) post-processing using
complex operations. Therefore, application-specialized hardware
solutions combined in a heterogeneous system are used for image
processing. To archive this, finding an optimal heterogeneous
hardware architecture to meet the image processing application
requirements is the central problem and still unsolved. Instead,
engineers use languages like VHDL, Verilog, C/C++ and Cuda
for designing such systems. But, these kind of languages are
not suitable for system analysis - they provide a hardware
specific solution for a specific algorithm. Therefore, a holistic
modeling of a complete image processing pipeline, with auto-
matic optimization and assignment to different heterogeneous
computing cores is not possible. To overcome this problem, we
propose in this paper a new domain specific language, called
Image Processing Operator Language (IPOL). This description
language contain all needed components hardware components
like Sensors, Displays, execution units and software parts like
image processing algorithms.

Keywords—DSL, design flow, image processing

I. INTRODUCTION

Setting up an embedded application, which uses high
performance image processing architectures is a very complex
task. In the traditional industrial image processing field, en-
gineers follow Moore’s Law and use standard CPUs for their
image processing applications. This solution is not resource
and energy aware and therefore, does not work for embedded
applications. Due to continuous rising requirements on the
one hand, and physical limitations of embedded applications
concerning area, time and energy, embedded image processing
systems become more heterogeneous for fulfilling their func-
tions. For example, in [1] [2] already heterogeneous systems
consisting of FPGA, CPU and GPU were used for fast image
processing. In general, the usage of an oversized general
purpose hardware architecture is not allowed for fast embedded
image processing. That leads to the approach of using more
application-specialized computing architectures like GPUs or
own specialized circuits in FPGAs (Field-Programmable-Gate-
Arrays) or ASICs (Application-Specific-Integrated-Circuit).

Although, heterogeneous hardware is available, choosing
the right parts (processors or computational units) and pro-

gramming it, is a hard challenge. Every architecture uses its
own language and follows its own programming paradigm.
Examples are simple processors (e.g., ARM) with C/C++, FP-
GAs with VHDL and Verilog, GPUs with CUDA. Moreover,
a written, hand crafted solution for one architecture, does not
allow the port to another architecture. Therefore, more abstract
(and parallel) languages have been developed in the past, which
allows an automatic compilation for different architectures.
One examples is OpenCL which supports GPUs as well as
CPUs. Also a backend for Altera and Xilinx FPGAs were
added. But these languages are used for general purpose and
they are not specialized for a specific domain, e.g. image
processing. Moreover, they support just one target at compile
time, which means the code is then executed either at a
GPU or FPGA or CPU - they do not work simultaneously
together on a problem. Other examples are existing high-level
synthesis tools such as Vivado HLS [3] and Intel CoFluent
[4]. These tools are often suboptimal and not fully developed.
The bad performance of this tools results from the non-specific
approach. The tools are too general and do not consider the
advantages of image processing architectures. In our design
flow we are focused on the image processing domain and
use image specialized hardware architectures such as the Full
Buffering [5].

Thus, the design flow of mapping complex image pro-
cessing applications on heterogeneous architectures is a tough
challenge and not sufficiently solved in the past. Complex
image processing algorithms with different tasks in different
granularity have different hardware requirements. These algo-
rithms have to utilize the advantages of specialized hardware
architectures for fulfilling the system constraints. Therefore,
not only software engineers, but especially hardware engineers,
application engineers and system designers are needed, in
order to cover all parts of such a system development. Regular
programming languages like C/C++ or hardware description
languages like VHDL are not applicable for that, because they
do not promote a holistic view of the system development.
These languages lead to a strict separation of software and
hardware and do not consider evaluation techniques for the
whole system. With the IPOL language, we want to introduce
a holistic domain specific system description language for
hardware-software co-design.

This paper is organized as follows. The next section
presents the IPOL itself. After that, we present a workflow,
how this language can help to find a suitable hardware archi-
tecture for a given image processing algorithm. In Section III,

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

an example based on a simulation environment is presented.
At the end, we give a conclusion and outlook for future work.

II. IMAGE PROCESSING OPERATOR LANGUAGE (IPOL)

As described above, with IPOL a whole image processing
pipeline could be modeled. Therefore, a detailed description of
such a pipeline has to be shown which can then transfered to
the language. Normally, an image is acquired using a camera
consisting an image sensor. Due to different types of sensors,
the data stream from the sensors can vary. Some parameters
consist of resolution, bit per pixel, count of pixels per clock
cycle, etc. After that, the image has to be processed. This is
done via a concatenation of different operators. For example,
Gauss, Median and Sobel, can also be parametrized e.g., with
the size of the filter mask. Moreover, complex operators like
Hough [6] or Fast-Fourier-Transformation have to be executed.
After all operators processed the image, an output device has
to be specified. That could be for example an display with a
parameterizable resolution.

With IPOL it is possible to model such an image processing
pipeline in a formal way. Therefore, IPOL is a XML based lan-
guage. In that language components of an image processing, as
described above, exist as a XML-component. In general there
are existing 3 types: Sources (e.g. Sensor), Processing (e.g.
Operators) and Sinks (e.g. Display). All these components can
be extended with content-related parameters (e.g. filter-mask
for gauss). In Figure 1 the structure of IPOL is demonstrated.

The example shows the whole image processing application
named ”operatorchain”, with a sensor, display and two image
processing operators (sobel filter and hough transformation). In
this example, both image processing operators work on each
pixel in the image. Other possibilities could be for example
partitioning, where a defined area of pixels is reduced to a
feature. The properties ”input area” and ”output area” specify
the memory access pattern of every operator. An operator
with a discrete access window has an other access pattern
as an operator with a random access of the whole image.
The ”base calc” block includes a formal description of the
algorithm. In this paper ”base calc” remain omitted. In the
example of Figure 1 the image processing operator named
Sobel needs a 3× 3 neighborhood of picture elements for the
calculation of an 1×1 output region. The input and output area
of each operator could vary. As shown in Figure 1 an other
image processing algorithm, e.g. the Hough Transformation
[7], has a different input and output behavior as the Sobel
operator. In that example the Hough operator needs only
one pixel for a processing step. The ”input area” of the
Sobel is larger, but with a smaller ”output area” than the
Hough operator. For unknown image processing algorithms,
our approach provides a library of common image processing
operations, like matrix operations. These library could be used
for creating new custom image processing algorithms. The
known behavior of the common image processing operations
makes it possible to analyze these kind of algorithm without
knowing the algorithm itself. If an image processing system
is specified in such a language, an automatic optimization and
derivation to hard- and software components becomes possible.
This approach was often discussed in hardware-software co-
design publications [8] [9], but investigated only small
grained architectures with static solutions and not specialized

<operatorchain>
<globalconstraints>

<accuracy>20</accuracy>
<powerconsumption>20</powerconsumption>
<fps>20</fps>
...

</globalconstraints>

<component id="0">
<type>Sensor</type>
<res><x>1920</x><y>1080</y></res>
<pixres>12</pixres>
<fps>30</fps>

</component>

<component id="1">
<type>Operator</type>
<access>each_pixel</access>
<name>Sobel</name>
<input_area><x>3</x><y>3</y></input_area>
<output_area><x>1</x><y>1</y></output_area>
<base_calc><src>...</src></base_calc>

</component>

<component id="2">
<type>Operator</type>
<access>each_pixel</access>
<name>Hough</name>
<input_area><x>1</x><y>1</y></input_area>
<output_area><x>3000</x><y>3000</y></output_area>
<base_calc><src>...</src></base_calc>

</component>

<component id="3">
<type>Display</type>
<res><x>800</x><y>600</y></res>
<pixres>12</pixres>
<fps>60</fps>

</component>

<connections>
<con><out>0</out><in>1</in></con>
<con><out>1</out><in>2</in></con>
<con><out>2</out><in>3</in></con>

</connections>
</operatorchain>

Fig. 1. Example of an operator chain in the image processing language

for image processing applications. In this paper, we propose an
additional approach for whole image processing systems, with
heterogeneous architectures consisting of complete processing
units like CPU cores, GPUs or special architectures on FPGAs.
Detailed apsects will be discussed in Section III.

III. SYSTEM OPTIMIZATION

With IPOL it is feasible to introduce a new system design
workflow for image processing systems. The design flow
will cover all the aspects of system design, to consider non-
functional properties in the abstract design layers. Therefore,
a description of an image processing system utilizing IPOL
allows an abstract and programming language independent
development. However it is bound to the image processing
domain. The new structural features provide the basis for later
mapping into concrete hardware and tracing back hardware
features to the UML. Figure 2 shows the concept of an image
processing design flow.

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

<Operator>
 <name>Sobel</name>
</Operator>

<Operator>
 <name>Hough</name>
</Operator>
 ...

{

Sobel

SystemC HW

Hough

SystemC HW

}
Image Processing Analysis

Channel
Im

a
g
e
 P

ro
ce

ss
in

g
O

p
e
ra

to
r

La
n
g
u
a
g
e

act::ImageProcessing

Receive
ImageFrame

<<createObj ect>>
Sobel

<<createObj ect>>
Hough

Image

<<datastore>>
buffer

<<datastore>>
buffer

U
M

L
La

y
e
r

S
im

u
la

ti
o
n
 a

n
d

M
a
p
p
in

g
 L

a
y
e
r

Fig. 2. Image processing design flow: The design flow enables the possibility
to create an image processing application using UML.

It enables the user to develop the image processing ap-
plication in an abstract layer such as UML. An automated
mapping of the image processing operators to the simulation
environment with virtual hardware makes a holistic UML-
based design approach feasible. Thus the user is able to design
an image processing application without detailed knowledge of
the underlying hardware architecture. The UML model will be
automatically transfered in an executable SystemC simulation.
This is done by the rules of the domain-specific language,
image processing operator language (IPOL) and controlled by
the image processing analysis. A more detailed view on the
optimization tool is shown at Figure 3. In contrast to existing
approaches the image processing analysis considers the in- and
output pattern of the algorithms for an automated mapping on
specialized or general hardware.

By the example of Figure 3 the Sobel algorithm has a 3×3
input and a 1× 1 output environment. The second algorithm,
called Hough has a different data access pattern. This algorithm
needs only one input pixel for processing, but a 3000× 3000
area for the output. Such memory access pattern influences the
image processing analysis regarding the hardware architecture
selection. In the example of Figure 3 the Sobel is mapped on
the full buffering architecture [1]. Specialized hardware such as
full buffering could be used for algorithms with strong limited
input and output environments. An algorithm with a random or
widely scattered data access pattern is not suitable for that kind
of architecture. The Hough algorithm would be mapped on an
other architecture, with a good connection to external memory.
Because of its large amount of memory in the output area. The
memory access pattern would be checked for all algorithms in
the image processing application. Additionally to the algorithm
behaviour, domain specific requirements could be defined,

<Operator>
 <name>Sobel</name>
<input_area><x>3</x><y>3</y></input_area>
<output_area><x>1</x><y>1</y></output_area>
</Operator>

Hough

Image Processing Analysis

Channel

<Operator>
 <name>Sobel</name>
<input_area><x>1</x><y>1</y></input_area>
<output_area><x>3000</x><y>3000</y></output_area>
</Operator>

CPU

External Memory

<globalconstraints>
<accuracy>20</accuracy>
<powerconsumption>2</powerconsumption>
<fps>30</fps>
</globalconstraints>

Sobel

Line Buffer

Line Buffer

I
(0,0)

I
(1,0)

I
(2,0)

I
(0,1)

I
(0,2)

I
(1,1)

I
(2,1)

I
(2,2)

I
(1,2) External Device

Fig. 3. Image processing analysis with an image processing language

shown at Figure 3. They are called non-functional properties
or ”globalconstraints”. The ”globalconstraints” are used as
inputs for the system optimization. The image processing
analysis uses the non-functional properties to find a suitable
architecture for fulfilling the constraints by using the least
resources. In the example of Figure 3 the image processing
analysis reads the system requirements : accurarcy = 20,
powerconsumption = 2 and fps = 30 and proposes a system
architcture. This means if the image processing system makes
20 frames per second (fps) with the configuration of one, 40
fps with two and 60 fps with three full buffering processing
elements. The system will select two processing elements
for fulfilling the requirements of fps = 30. A graphical
representation of the optimization example is shown at Figure
4.

(a)

(b)

<globalconstraints>
 <fps>30</fps>
</globalconstraints>

result:
 <fps>20</fps>

result:
 <fps>40</fps>

Sobel

Line Buffer

Line Buffer

I
(0,0)

I
(1,0)

I
(2,0)

I
(0,1)

I
(0,2)

I
(1,1)

I
(2,1)

I
(2,2)

I
(1,2) External Device

Sobel

Line Buffer

Line Buffer

I
(0,0)

I
(1,0)

I
(2,0)

I
(0,1)

I
(0,2)

I
(1,1)

I
(2,1)

I
(2,2)

I
(1,2) External Device

Sobel

Line Buffer

Line Buffer

I
(0,0)

I
(1,0)

I
(2,0)

I
(0,1)

I
(0,2)

I
(1,1)

I
(2,1)

I
(2,2)

I
(1,2) External Device

Fig. 4. Image processing analysis: Global constraints and hardware mapping

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

It shows that the architecture with one processing element
do not perform the 30 fps. An architecture with two process-
ing elements passes the test. This optimization will be done
for all algorithms and all ”globalconstraints”. Once the static
mapping is done the dynamic SystemC simulation run the
image processing application with the selected hardware for
testing the system configuration. Depending on the simulation
result, the system will be mapped on real hardware or has
to make an other iteration of the optimization. By a new
optimization step the simulation results serve as input for the
image processing analysis.

IV. CONCLUSION AND FUTURE WORK

In this paper, a new concept and first steps of the underlying
methodology have been introduced for modeling and imple-
menting complex image processing systems with a holistic
top down approach on heterogeneous computer architectures.
The approach covers all layers from abstract UML to a
domain-specific language to the executable specification with
virtual hardware down to real hardware. In one of our next
research steps, we are going to design a connection to the
Open Virtual Platform (OVP) [10] and SoClib [11]. That will
help developers to include the simulation results for specific
processor architectures in their model, without the need of
possessing that processor in physical.

ACKNOWLEDGMENT

This work was financially supported by the Research
Training Group 1773 ”Heterogeneous Image Systems”, funded
by the German Research Foundation (DFG).

REFERENCES

[1] M. Schmidt, M. Reichenbach, and D. Fey, “A Smart Camera Processing
Pipeline for Image Applications Utilizing Marching Pixels,” in Signal
and Image Processing : An International Journal (SIPIJ). SIPIJ, 2011,
pp. 137–156.

[2] M. Reichenbach, R. Seidler, and D. Fey, “Heterogeneous Computer
Architectures: An Image Processing Pipeline for Optical Metrology,”
in Proceedings of ReConFig. IEEE, 2012, pp. 1–8.

[3] “Vivado HLS,” April 2015. [Online]. Available: http://xilinx.com
[4] “Intel Cofluent,” April 2015. [Online]. Available: http://intel.com
[5] M. Schmidt, M. Reichenbach, and D. Fey, “A generic vhdl template for

2d stencil code applications on fpgas,” in International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops (ISORCW). IEEE, October 2012, pp. 180–187.

[6] W. Burger and M. Burge, Principles of Digital Image Processing.
Springer, 2009.

[7] J. C. Russ, The Image Processing Handbook. Crc Pr Inc, 2011.
[8] F. Mischkalla, D. He, and W. Mueller, “Closing the Gap between

UML-based Modeling, Simulation and Synthesis of Combined HW/SW
Systems,” in Design, Automation and Test in Europe (DATE), 2010.

[9] A. Fidjeland and W. Luk, “Archlog: High-Level Synthesis of Re-
configurable Multiprocessors for Logic Programming,” in Field Pro-
grammable Logic and Applications, 2006. FPL ’06. IEEE, 2011, pp.
1–6.

[10] “Open Virtual Platform,” April 2015. [Online]. Available: http:
//www.ovpworld.org/

[11] “SoClib,” April 2015. [Online]. Available: http://soclib.fr

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems

