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Abstract—A common localization method for mobile devices is
the fusion of absolute position measurements with relative motion
information from sensor units. For each location measurement
technique, specific context conditions determine the accuracy of
the obtained location estimates. This paper presents a hybrid
smartphone localization system fusing an absolute localization
method, e.g., Wi-Fi-based signal strength fingerprinting, in an
adaptive way with inertial pedestrian navigation, taking into
account that each of the involved methods might deliver good
results at one location but might also fail at another. Based on
an accuracy factor reflecting the current context conditions of
a location measurement the influence of each of the involved
positioning estimates is weighted accordingly. In a case study
using Wi-Fi fingerprinting, accuracy has been improved by 43%
in an indoor environment.

Keywords–Smartphone Positioning; Indoor Positioning; Dead
Reckoning; Wi-Fi Fingerprinting; Step Detection;

I. INTRODUCTION

Location awareness has become a key feature of many
mobile applications. A common problem in the context of
navigation and tracking applications is the accurate localiza-
tion of a mobile device within a well-known area compris-
ing several buildings and also open space, e.g., a company
premises, an airport, or a university campus. Such sites are
often heterogeneous in the sense that a single localization
method delivers good results in one sub-area but fails in
another. Solutions typically require hybrid methods comprising
a suitable combination of an absolute positioning method with
sensor-based relative positioning.

With respect to mobile devices like smartphones an absolute
positioning method estimates the device location in terms of
latitude and longitude. Relative positioning determines the dis-
tance and heading of the movement, when a device is moved
to a new position. Elevation might also be of interest. As far
as outdoor environments are concerned absolute positioning
is commonly based on global navigation satellite systems
(GNSS) [1], like the well-known Global Positioning System
(GPS) [2], the Russian GLObal NAvigation Satellite System
(GLONASS), the Chinese BeiDou, or the european Galileo
system. While deviation of second generation GNNS will be
in a magnitude of some centimeters in outdoor use [3], satellite
systems are not expected to provide sufficient accuracy inside
of buildings without being supported by expensive comple-
mentary ground component (aka ”pseudolite”) technology [4].

Thus, the quest for accurate and inexpensive indoor lo-
calization techniques has fostered intensive research over the

last decade and resulted in a number of different promising
approaches. While solutions based on cellular signals have
not successfully solved the problem of insufficient accuracy,
the use of IEEE 802.11 wireless networks, e.g., Wi-Fi, has
been widely adopted for real-time indoor localization purposes
[5–9]. The rapidly growing usage of Wi-Fi access points
as navigation beacons is, among other reasons, due to the
ubiquitous availability of Wi-Fi networks and to the fact that
a smartphone can easily measure Wi-Fi signal strength values.
”Received Signal Strength Indication” (RSSI) values of several
Wi-Fi access points are used to determine the current position
of a Wi-Fi receiver. The advent of cheap bluetooth low energy
(BLE) beacons [10], e.g., iBeacons [11], might foster their use
for the same purpose within the next few years.

Regardless of the beacon types and localization algorithms,
absolute indoor localization methods rely on a dense beacon
mesh to allow for accurate localization. In a heterogeneous
area, thus, a practically important issue is the device local-
ization at spots that lack a sufficiently good beacon signal
coverage.

A substantially different approach to localization is dead
reckoning, a well-established relative positioning method.
Starting from a known position, inertial and other sensors, e.g.,
accelerometers, gyroscopes, gravity sensors, or barometers, are
used to track relative position changes. For example, distance
estimation in pedestrian dead reckoning (PDR) systems [12] is
typically based on step detection with motion sensors and step
length estimation. This is combined with direction information
from an electronic compass. Moreover, a barometer could
help in determining the current floor in a building. Modern
smartphones are crammed with all kinds of sensors and, thus,
are well-suited for inertial navigation. Sensor-based localiza-
tion is, however, subject to unbound accumulating errors, and
therefore needs frequent recalibration.

A hybrid method integrates an absolute positioning method
with sensor-based navigation. For example, in a GPS-based au-
tomotive navigation system sensor-based speed and direction
measurements are used to track the current position whenever
GPS signals are degraded or unavailable, e.g., in a tunnel.
Similarly, a PDR system can be combined with GPS into a
hybrid solution for outdoor areas or, together with any absolute
indoor position method, e.g., Wi-Fi-based, for use within a
building.

An interesting aspect of hybrid systems is the distribution
of roles. The absolute positioning could be seen as a minor
subsystem of the sensor-based system supplying the start
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position and, occasionally, intermediate positions for recali-
bration. However, existing systems typically use the absolute
positioning method as a primary method, whereas sensor-
based location measurements are only used in case of degraded
beacon signals. The absolute base-method is used to compute
position estimates (”fixes”) at regular intervals. Each fix is
considered a new known start position for inertial navigation.
Whenever a fix is not available due to poor signal coverage,
the relative movement from the last fix location is used
to determine the current device location. A car navigation
system, e.g., will use inertial navigation in a tunnel. However,
after leaving the tunnel, it will return to the primary method
GPS. This commonly used combination pattern does not take
into account that, depending on the current beacon reception
conditions and despite the accumulating sensor measurement
errors, the dead-reckoned position will often be more accurate
than the base method fix.

This paper proposes a hybrid localization solution, called
”auto-adaptive dead reckoning”, incorporating a more sophis-
ticated way of combining absolute and relative positioning.
Considering that the accuracy of each of the involved methods
might fluctuate extremely between measurement locations, the
fusing algorithm evaluates context conditions, that are critical
for the accuracy, with every measurement. A measurement
value which is considered accurate has a stronger impact on
the result. The term ”adaptive” is used for a fusion algorithm
which associates a weighting factor with each fused method
in order to adapt the algorithm to site-specific measurement
conditions, e.g., Wi-Fi signal coverage within a building. Static
adaptation refers to a configuration time weighting, whereas
auto-adaptive (or dynamic) fusion refers to a dynamic weight-
ing for each individual measurement. This advanced fusing
technique has been implemented as a component of a mobile
application for the Android platform, called SmartLocator
[13].

This paper focuses on indoor localization by combining Wi-
Fi-based fingerprinting (see II-A) with PDR. Nevertheless, the
concept is also applicable to other absolute indoor and out-
door localization techniques, e.g., iBeacons or GPS. Actually,
the SmartLocator implementation also comprises localization
based on GPS and Near Field Communication (NFC) [14].

After presenting related work in the section II, the concepts
of auto-adaptive dead reckoning are described in section
III. Section IV discusses experimental results showing the
achieved accuracy improvements over non-hybrid as well as
hybrid methods with non-dynamic method fusion. Section
V reviews some benefits and shortcomings of the presented
approach and future research plans.

II. RELATED WORK

A large number of solutions to the problem of real-time
indoor localization have been proposed and several efficient
algorithms for absolute and relative positioning have been
published. Auto-adaptive dead reckoning, as presented in this
paper, is based upon Wi-Fi fingerprinting, NFC, and PDR.

A. Wi-Fi-based Fingerprinting

Using an existing Wi-Fi infrastructure for indoor local-
ization is an obvious and well-investigated approach. While
RSSI-based distance calculations have proven to be too inac-
curate to be used for trilateration-based indoor localization,
RSSI-fingerprinting methods are particularly useful in the
context of real-time smartphone positioning [5–9].

Fingerprinting is based on a probability distribution of sig-
nal strengths at a given location. A map of these distributions
is used to predict a location from RSSI samples. From each
visible access point the mobile device receives beacon signals.
The set of all pairs consisting of access point ID and RSSI
value can be seen as a fingerprint for the device’s current
location. In order to determine the device position, a database
is searched for similar fingerprints. The database itself is
created in an offline learning phase, which links fingerprints
to a number of known locations called calibration points.

A major advantage of Wi-Fi fingerprinting is that it does not
require specialized hardware [6][15][16]. Nevertheless, a non-
dynamical Wi-Fi infrastructure with good coverage is needed
to achieve reasonable positioning results.

However, the most important disadvantage is the elaborate
fingerprint database creation and maintenance. Since the ac-
curacy of estimated positions highly depends on the density
of the radio map [6], the construction of a high-density
map is inevitable for Wi-Fi-only positioning solutions. The
auto-adaptive algorithm, in contrast, allows for a significant
reduction of the number of calibration points without loosing
too much overall accuracy.

In order to avoid the map creation overhead completely,
zero-effort solutions based on crowdsourcing have been pro-
posed [17][18]. Although efficient map creation is outside the
scope of this paper, it should be noted that map creation and
map usage algorithms are typically loosely coupled. Thus, any
successful approach to automate map creation could possibly
be generalized for usage with existing fingerprinting systems.

B. Sensor-based Positioning

According to [19], PDR systems can be classified as Iner-
tial Navigation Systems (INSs) or Step-and-Heading Systems
(SHSs). While the INSs typically require specialized hardware,
the SHSs are well-suited for PDR with smartphones.

The SmartLocator solution presented in this paper imple-
ments an SHS, which builds upon efficient algorithms for step
detection and heading estimation. The heading is determined
by a sensor fusion method described in [20]. Step detection
exploits the smartphone’s accelerometer signals. Whenever a
peak with a certain amplitude at the z-axis is noticed, a step
can be assumed [21]. A modified Pan-Tompkins algorithm is
used for signal preparation. Pan-Tompkins, in the context of
step detection, has been used by Ying [22] before.

C. Method Fusion

An interesting approach combining Wi-Fi-based fingerprint-
ing with PDR was proposed in [23]. Their fusing algorithm
uses a limited history of location measurements for both
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methods to achieve accurate position estimations. Another
promising solution is described in [24] . The algorithm builds
on a statistical model for Wi-Fi-localization avoiding the
effort of fingerprinting map creation, deliberately taking into
account the resulting poor accuracy of the obtained position
information. Both fusing methods comprise the use of floor
plans and particle filters in order to obtain more accurate
position information [25].

Particle filtering, however, comes with some drawbacks,
particularly the algorithmic complexity which results in a high
processor load and impacts power consumption. Moreover,
suitable floor maps have to be supplied and maintained.

III. PROPOSED POSITIONING SYSTEM

This section describes auto-adaptive dead reckoning and
its implementation in the SmartLocator positioning system.
SmartLocator actually implements a multi-method approach
comprising indoor as well as outdoor positioning with seam-
less transitions. In order to exploit the capabilities of a modern
smartphone, the system supports various absolute positioning
techniques such as GPS, NFC, and Wi-Fi. Additional support
for Bluetooth Low Energy beacons is in preparation. The
absolute methods are used opportunistically, depending on
their availability.

Although a general discussion of the fusion of several
absolute methods is out of scope of this paper, it is worth
noting that positions determined with GPS, Wi-Fi, or BLE
are considered inaccurate, whereas NFC-based positioning is
treated as accurate. The smartphone nearly has to get in touch
with an NFC tag in order to read it. Hence, reading a tag with a
precisely known position also reveals the exact position of the
reading device. Whenever a precise location can be obtained,
it overrides all other measurements.

In addition to the absolute positioning capabilities, SmartLo-
cator incorporates a PDR subsystem with step detection and
heading estimation. The stride size is simply set to a user-
specific fixed value. However, using the absolute localization
methods, it could straightforwardly be augmented with auto-
matic stride size recalibration.

The emphasis of this paper is to present the way of fusing
PDR with an absolute positioning method. The term ”auto-
adaptive dead-reckoning” refers to this fusing approach. From
the perspective of PDR, absolute localization is needed to
obtain an initial position and for recalibration. In contrast
to a full recalibration, we propose a partial recalibration
determined by a dynamic weight, which reflects the accuracy
of the absolute location estimation. Although this section
concentrates on the fusion of PDR and Wi-Fi fingerprinting,
the approach is not confined to a specific absolute localization
method. It is rather a particular strength of the approach to be
method-independent.

Figure 1 illustrates how absolute location sources are com-
bined with relative positioning information.

The following subsections describe the Wi-Fi fingerprinting
approach (III-A), the step detection algorithm (III-B) and the
auto-adaptive fusion (III-C).

Wi-Fi
Source

New 
Position

NFC
Location

Step
Detection

Stride
Detection

Last
Position

GPS
Location

Relative
Position

1 Dynamic
Weighting

Dynamic
Weighting

Compass

* * *

Figure 1. SmartLocator Positioning Concept

A. Fingerprinting

The fingerprint-based position is computed with help of the
naı̈ve Bayes classifier [6][15][16], which is more accurate than
algorithms comparing distances between RSSIs [26–29]. This
advantage has been confirmed during the evaluation of this
positioning system.

The naı̈ve Bayes classifier is based on the Bayes theorem,
which defines the probability P of the class C under the
assumption that x is given as follows:

P (C|x) =
P (C)P (x|C)

P (x)
(1)

In case of fingerprinting, P (C|x) describes the probability
that fingerprint x belongs to the class C, which represents a
position. x is a vector of RSSI values.

It is assumed that all values of the input vector x are
independent of each other. For this reason, the conditional
probability P (x|C) is the product of the probability of each
element in x given class C, P (xi|C).

P (x|C) =
∏
i

P (xi|C) (2)

A common approach to compute the likelihood P (x|C),
which depends on the training data, is the following [26][15,
p. 36]:

P (xi|C) =
1

n

n∑
j=1

KGauss(xi, yj) (3)

KGauss =
1√
2πσ

exp

(
− (x− y)2

2σ2

)
(4)

K denotes the kernel function. x is the observed fingerprint
and y are all fingerprints, recorded for location C. n is the
number of recorded fingerprints for location C.

The actual position is interpolated from the three best fitting
fingerprints.

CNN =

3∏
i=1

Ci ∗ P (Ci|x)

3∑
i=1

P (Ci|x)

(5)
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B. Step Detection

The step detection algorithm recognizes pedestrian move-
ments based on a simple peak detection algorithm described
by Link et al. [21]. To improve the amount of detected steps
and decrease the appearance of false positive detections, the
signal is prepared by applying a slightly modified version of
the Pan-Tompkins method.

y(n) =
{

1
4 [2x(n) + x(n− 1)− x(n− 3)− 2x(n− 4)] if y(n) > 0

0 otherwise
(6)

y(n) = (1 + y(n))2 − 1 (7)

A derivative operator uses low-pass filtered accelerometer
values in order to suppress low-frequency components and
enlarge the high frequency components from the high slopes
(6). Negative values are discarded, as they are not needed for
the peak detection. Figure 2 shows the incoming acceleration
signal before (a) and after (b) this preparation.

0.5 1 1.5 2 2.5 3 3.5 4

8
10
12

time [s]

m
/s

2

(a) Raw Acceleration at Z-Axis

0.5 1 1.5 2 2.5 3 3.5 4
0
2
4
6

time [s]

m
/s

2

(b) Squared Derivative Signal

Figure 2. Acceleration Measurements Before and After Preparation

The step detection algorithm examines the signal for peaks
by comparing the last three values, represented by the red
squares in figure 3. A step is assumed whenever the signal
changes by a certain threshold. After a step has been detected,
the algorithm pauses for 300ms to prevent a step from being
detected twice.

1 2 3 4
0

2

4

6

> threshold pause detectionpause detection

time [s]

Figure 3. Step Detection Example. Red Squares Represent Analyzed Values

C. Auto-Adaptive Dead Reckoning

The major innovation of SmartLocator’s hybrid localization
is the accuracy-dependent fusion of absolute and relative

positions. Traditional dead reckoning systems overwrite past
position determinations whenever a new absolute position is
available. This is not reasonable whenever absolute positions’
accuracy is bad or varying. Therefore, every absolute position
is reckoned with past position estimations. The weighting of
the new absolute position depends on an estimation of its
accuracy. As a consequence, accurate absolute positions have a
greater influence on the final position than less reliable position
estimates.

E.g., Wi-Fi positions determined in an area with poor Wi-Fi
coverage just have little influence on the final position estima-
tion and the position determined by detecting the pedestrian’s
steps and heading is weighted strongly. On the other hand,
Wi-Fi positions which are determined in an area with lots of
access points and good signal quality are used to correct the
drift which may occur due to inaccuracies in step detection
and heading estimation.

Let Loc(i, t) be a measurement obtained by localization
method M(i) at time t, e.g., an absolute Wi-Fi or GPS
position. The contribution of Loc(i, t) to the resulting lo-
cation information depends on the method-specific accuracy
factor. The accuracy factor Q(Loc(i, t)) is obtained by context
evaluation and reflects the measurement’s context-dependent
reliability.

In addition, a time-dependent factor αt is added to the
accuracy factor. In this way, positions have a stronger influence
if the last position determination was long ago. The linear αt

used in SmartLocator is represented by figure 4.

α = max(Q(Loc(i, t)) + αt, 1) (8)
Loc(t) = Loc(i, t) ∗ α+ Loc(t− 1) ∗ (1− α) (9)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

∆t(s)

α
t

Figure 4. Time-Dependent Factor

1) Accuracy Factors: The accuracy factor Q(Loc(i, t))
depends on the method i used for positioning. This section
describes various methods to compute the accuracy factor for
Wi-Fi fingerprinting, GPS and NFC.

Wi-Fi: Evaluations revealed an average error of 2.94 meters
for pure Wi-Fi positioning. However, the error varied from
0.07 to 7.99 meters. Figure 5 shows the analysis of the
gathered test data, revealing a relation between the average
error and the amount of access points, which have been
available for position determination. Even in case of good Wi-
Fi coverage, error varies from 0.3 to 7.3 meters. The accuracy
factor Q(Loc(wifi, t)), illustrated in figure 6, takes this relation
into account to reduce the influence of unreliable position
measurements.
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Figure 5. Accuracy Factor for Wi-Fi positioning
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Figure 6. Wi-Fi Accuracy Factor Depending on Amount of Access Points

GPS: The GPS position is determined via the smart phone’s
operating systems’ API. Each GPS position includes an accu-
racy property, which represents an estimated average error in
meters. The accuracy-factor, shown in figure 7, is based on
this accuracy property.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

estimated error in meter

Q
(L
oc

(g
ps
,t

))

Figure 7. Accuracy Factor for GPS positioning

NFC: Near Field Communication (NFC) is used for po-
sitioning by placing passive NFC tags at points of interest.
In order to scan an NFC tag, the smart phone needs to
get in touch with it. Therefore, the location of the smart
phone can be expected to be the location of the NFC tag.
As a consequence, the accuracy factor Q(Loc(nfc, t)) always
returns the maximum value of 1, which means that an NFC
position overwrites prior location determinations completely.

IV. EVALUATION

SmartLocator has been tested under realistic circumstances
in a university campus. Using eight Wi-Fi access points for
positioning, fingerprints at 67 different locations have been
recorded. The fingerprint locations are distributed equally with
a distance of two meters. Hence, an area of about 280 m2

is covered. Four orientations have been measured for any
location. Three fingerprints for each orientation, resulting in
an overall amount of 804 fingerprints.

A track of 70 meters has been walked in various speeds,
with different devices and in different directions to get a repre-
sentative evaluation. 14 reference positions have been marked

2 Access Points

3 Access Points

4 Access Points>
Reference Points

Figure 8. Wi-Fi Positioning Test Area with Fingerprints

at the track. Those known reference positions are compared
to the estimated positions, to determine the accuracy of the
different approaches. Figure 8 shows the test environment,
including the test track, which is illustrated by a grey line.

Figure 9 shows a visualization of one test run. The test
started in the bottom right corner and followed the light
green path. The blue line represents the actual positioning
result. Figure 9b shows the results gathered with traditional
dead reckoning, which means that absolute positioning results
overwrite prior positioning estimations. Figure 9c presents a
static weighting of 0.5, i.e., new absolute positions are just
reckoned up by half. Figure 9d visualizes the positioning
results achieved with a dynamic, auto-adaptive combination.

(a) Wi-Fi only

(b) Traditional Dead Reckoning

(c) Static Weighting of (α = 0.5)

(d) Auto-Adaptive Weighting

Figure 9. Comparison of Different Weightings

Remarkably, all figures reveal a clearly visible deviation
from the real path at the same location (in front of the
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restrooms, left of the middle). This results from a coincidence
of two local environment conditions. The first factor is the
poor Wi-Fi-coverage in this area. Furthermore, a heavy metal
fire door impacts the magnetometer of the electronic compass.
Obviously, if neither of the involved measurement methods
obtains an accurate location, the method fusion cannot com-
pensate the resulting drift completely.

The evaluation revealed that the traditional dead reckoning
(Trad. D.R.) approach performed even a little bit worse than
the pure Wi-Fi positioning. A static combination of relative
and absolute positions was able to slightly improve the posi-
tioning accuracy, especially in the foyer at the left side of the
floor plan. Auto-adaptive combination of Wi-Fi and relative
positioning is able to reduce the average positioning error
significantly. The average error has been improved from 2.94m
(Wi-Fi only) to 1.67 meters, the upper quartile from 3.54m to
2.29m.

Wi-Fi only Trad. D.R. α = 0.5 auto-adaptive
0

2

4

6

8

E
rr

or
(m

et
er

)

Figure 10. Comparison of Wi-Fi-only Positioning, Classic Dead Reckoning,
Static and Dynamic Weighting

V. CONCLUSION

The positioning system described in this paper reveals a
significant increase of localization accuracy through auto-
adaptive combination of absolute and relative positions. Even
though the accuracy estimations for Wi-Fi positioning are
rather rudimentary, the average error has been reduced by
1.27 meters to 1.67 meters. Comparing the average absolute
deviation with the results of other solutions, e.g. [23], the auto-
adaptive dead reckoning approach seems to be quite promis-
ing, although additional evaluations with different environment
conditions are necessary to gain more confidence in the
statistical evaluation. More sophisticated accuracy estimation
methods [30] and the additional use of floor map information
[24] could probably improve this result further.

The evaluation shows that areas with bad Wi-Fi coverage
and large rooms benefit the most. As a result, this positioning
system can be used in areas which do not meet the require-
ments for Wi-Fi-only positioning approaches.

An unsolved problem is the determination of an initial
position at starting locations with poor Wi-Fi coverage. Con-
sidering the enormous effort needed to construct a fingerprint-
ing database, it obviously makes sense to also consider the
selective deployment of NFC tags in such areas. These tags
are cheap, permit exact localization, and will be supported
by the vast majority of future smartphones. Moreover, the
implementation of NFC-based localization has shown to be
rather uncomplicated.

It is an important characteristic of the auto-adaptive fusion
method that it is independent from the evaluated positioning
methods. It could be applied to any other technique as long as
a weighting factor can be determined. It can be assumed that
GPS-based outdoor positioning and BLE-based indoor tech-
niques benefit similarly. However, the quantitative evaluation
is still in progress.

We consider some performance aspects at last. The low-
complexity fusion method and the avoidance of elaborate prob-
abilistic algorithms for particle filtering result in a good real-
time behavior. Several test runs with different smartphones
have shown that even on low-end hardware the SmartLocator
runs without any visible performance problems. However,
a more detailed analysis of algorithmic performance factors
would be interesting, since time-consuming computations have
negative effects on response times and power consumption.

REFERENCES

[1] C. J. Hegarty and E. Chatre, “Evolution of the global navigation
satellitesystem (gnss),” Proceedings of the IEEE, vol. 96, no. 12,
2008, pp. 1902–1917.

[2] US Government, “Official U.S. government information about
the global positioning system (GPS) and related topics,”
http://www.gps.gov, 2015, accessed: March, 3rd 2015.

[3] P. Misra and P. Enge, Global Positioning System: Signals,
Measurements and Performance Second Edition. Lincoln, MA:
Ganga-Jamuna Press, 2006.

[4] J. Wang et al., “Pseudolite applications in positioning and
navigation: Progress and problems,” Positioning, vol. 1, no. 03,
2002.

[5] M. Youssef and A. Agrawala, “The Horus WLAN location
determination system,” in Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services, ser.
MobiSys ’05, 2005, pp. 205–218.

[6] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-
based user location and tracking system,” in INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 2. Ieee,
2000, pp. 775–784.

[7] M. Weber, U. Birkel, R. Collmann, and J. Engelbrecht, “Wire-
less indoor positioning: Localization improvements with a leaky
coaxial cable prototype,” in 2011 International Conference on
Indoor Positioning and Indoor Navigation (IPIN), Guimaraes,
Portugal, pp. 21–23.

[8] T.-N. Lin, S.-H. Fang, W.-H. Tseng, C.-W. Lee, and J.-W.
Hsieh, “A group-discrimination-based access point selection
for WLAN fingerprinting localization,” Vehicular Technology,
IEEE Transactions on, vol. 63, no. 8, 2014, pp. 3967–3976.

[9] M. Brunato and R. Battiti, “Statistical learning theory for
location fingerprinting in wireless LANs,” Computer Networks,
vol. 47, no. 6, 2005, pp. 825–845.

[10] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation
of bluetooth low energy: An emerging low-power wireless
technology,” Sensors, vol. 12, no. 9, 2012, pp. 11 734–11 753.

[11] N. Newman, “Apple iBeacon technology briefing,” Journal of
Direct, Data and Digital Marketing Practice, vol. 15, no. 3,
2014, pp. 222–225.

[12] S. Beauregard and H. Haas, “Pedestrian dead reckoning: A basis
for personal positioning,” in Proceedings of the 3rd Workshop
on Positioning, Navigation and Communication, 2006, pp. 27–
35.

[13] N. Becker, “Development of a location-based information and
navigation system for indoor and outdoor areas,” Master’s

130Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-399-5

ICONS 2015 : The Tenth International Conference on Systems



thesis, Technische Hochschule Mittelhessen, Giessen, Germany,
2014.

[14] R. Want, “Near field communication,” IEEE Pervasive Comput-
ing, vol. 10, no. 3, 2011, pp. 4–7.

[15] M. A. Rehim, “Horus: A WLAN-based indoor location deter-
mination system,” Ph.D. dissertation, University of Maryland,
2004.

[16] Y. Chen and H. Kobayashi, “Signal strength based indoor
geolocation,” Princeton University, Tech. Rep., 2002.

[17] P. Bolliger, “Redpin-adaptive, zero-configuration indoor local-
ization through user collaboration,” in Proceedings of the first
ACM international workshop on Mobile entity localization and
tracking in GPS-less environments. ACM, 2008, pp. 55–60.

[18] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen,
“Zee: zero-effort crowdsourcing for indoor localization,” in
Proceedings of the 18th annual international conference on
Mobile computing and networking. ACM, 2012, pp. 293–304.

[19] R. Harle, “A survey of indoor inertial positioning systems
for pedestrians,” IEEE Communications Surveys & Tutorials,
no. 15, 2013, pp. 1281–1293.

[20] S. Ayub, A. Bahraminisaab, and B. Honary, “A sensor fusion
method for smart phone orientation estimation,” in 13th Annual
Post Graduate Symposium on the Convergence of Telecommu-
nications, Networking and Broadcasting., 2012.

[21] J. B. Link, P. Smith, N. Viol, and K. Wehrle, “Footpath: Accu-
rate map-based indoor navigation using smartphones,” in Indoor
Positioning and Indoor Navigation (IPIN), 2011 International
Conference on. IEEE, 2011, pp. 1–8.

[22] H. Ying, C. Silex, A. Schnitzer, S. Leonhardt, and M. Schiek,
“Automatic step detection in the accelerometer signal,” in 4th
International Workshop on Wearable and Implantable Body
Sensor Networks (BSN 2007). Springer, 2007, pp. 80–85.

[23] L.-H. Chen, E.-K. Wu, M.-H. Jin, and G.-H. Chen, “Intelligent
fusion of wi-fi and inertial sensor-based positioning systems for
indoor pedestrian navigation,” 2014.

[24] F. Ebner, F. Deinzer, L. Köping, and M. Grzegorzek, “Robust
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