
A Security Aware Design Space Exploration Framework

Lukas Gressl

Institute of Technical Informatics
Graz University of Technology

Graz, Austria 8010
Email: gressl@tugraz.at

Christian Steger

Institute of Technical Informatics
Graz University of Technology

Graz, Austria 8010
Email: steger@tugraz.at

Ulrich Neffe

NXP Semiconductors Austria GmbH
Graz University of Technology

Email: ulrich.neffe@nxp.com

Abstract—System designers are often faced with a huge variety of
alternative hardware platforms and architectures, when designing
new products. Especially the various options for allocating a
set of tasks to processing units greatly influences the overall
system performance and power consumption. As the possible
design space is too complex for manual evaluation, automatic
Design Space Exploration (DSE) tools are used for selecting first
system designs. These tools assess the various mappings between
tasks and processing units. They target the best allocation,
optimizing the system’s performance and power consumption,
while considering other predefined design constraints. Tradition-
ally, security requirements do not belong to the set of design
constraints these tools deal with. Thus, security requirements
must be introduced manually, which might induce additional costs
to the overall project. To enable security-by-design using DSE, the
Security Aware Design Space Exploration (SADSE) Framework
was developed. This framework allows the integration of attack
scenarios and security requirements, as well as platform security
features into the DSE, at a level of detail not yet considered
by other tools. SADSE allows an optimal allocation of tasks
onto hardware platforms, while satisfying predefined security
constraints. This paper shows how security requirements and
attack vectors are modeled in SADSE, followed by the evaluation
of a keyless entry system use case, where the tool finds a secure
mapping of tasks to processing units.

Keywords–Security; Design Space Exploration; Embedded Sys-
tems.

I. INTRODUCTION

Designing a new product means making a lot of decisions,
ranging from which hardware components to take to what
system functionality and on which component to place them
on. This variety opens up a huge space of alternative designs
which must be considered by designers, system architects and
product owners. The resulting design influences the power
and performance characteristic. This design choice is an issue,
especially in the domain of embedded systems and stretches
from selecting hardware components to mapping of system
functionality. The optimal allocation of system functionality
to dedicated hardware blocks, such as special hardware or
general purpose processors, poses a complex problem. This
allocation cannot be solved manually regarding more than one
characteristic. To tackle this problem and to shorten the design
process, automatic Design Space Exploration (DSE) tools are
used. These tools scan a space of alternative designs and
allocation options, and compute an optimized solution.

Especially for devices in the domain of the Internet of
Things and Cyber Physical Systems (CPS), the information se-
curity plays a vital role. CPS sense data and handle confidential

or even personal information, which imposes security require-
ments to these devices. The security requirements are usually
defined by an expert, and depend on the project setup. These
requirements are considered right at the beginning or integrated
later. Later on integration of security requirements increases
the project’s costs significantly more than introducing security
at the beginning of the design flow. Therefore, most companies,
producing secure products, introduce security requirements
initially at the design phase. In this phase, DSE tools can be
used to support designers in their choices. As traditional DSE
tools lack the ability of considering information security, their
usability for designing secure products is limited.

System Architecture

Design Space Exploration

Processing
Element Hardware Bus

Processing
Element

Application Graph

T1

T2 T3

Processor-specific
Application Properties Mapping

Performance Data
Schedules

Design Constraints and
Optimization Goals

Security Capability
Attack Vectors

Security Requirements

Figure 1. DSE process, based on [1] extended by security requirements,
security capabilities, and attack vectors.

To bridge this gap in the design flow, we present a Security
Aware Design Space Exploration framework (SADSE). The
SADSE framework allows an automatic DSE under consid-
eration of security requirements and threat scenarios. The
framework offers the designer to define security requirements
for single data entities the system tasks operate on, and
attack scenarios for the individual function blocks. Given these
security requirements and attack scenarios together with the
defined hardware platform, the framework performs an opti-
mized allocation of functionality to hardware blocks. Thereby,
it considers the security requirements and the hardware compo-
nents’ security capabilities. Figure 1 shows an overview of the
traditional DSE process extended with the additional security
assets introduced in this paper.

The basis of the SADSE framework implementation is the

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

Constraint Programming (CP) based Design Space Exploration
for System Design tool, as described in [2]. The extension of
considering security constraints in the DSE is presented in this
paper and the SADSE framework’s functionality is evaluated
using an embedded access control device as a use case. The rest
of the paper is structured into the following sections: in Section
II previous work considering DSE and security requirements
is presented; in Section III the methodology introduced by
this paper is explained in detail; in Section IV the SADSE
framework is used to evaluate a secure task mapping of a
keyless entry system and the framework’s performance is
evaluated; in Section V a conclusion is drawn and future work
is discussed.

II. RELATED WORK

The optimal allocation of tasks to hardware components
considering the overall system execution time, power con-
sumption, scheduling, etc. is a well described problem for
embedded devices, multiprocessor- and multicore-systems.

Other works already proposed frameworks performing
automatic DSE for embedded systems under consideration
of hardware software codesign. The optimal allocation of
streaming applications onto a heterogeneous multi-processor
system is investigated in the works of Khalilzad et al. [3],
and Rosvall et al. [1] [2]. In the framework proposed by
these authors, streaming applications are represented as syn-
chronous data flow graphs, and their tasks are mapped to
distinct heterogeneous processors. The framework describes
the problem of the optimal mapping of tasks to processors
as a constraint satisfaction problem, which is solved by using
CP. Finding the optimal hardware-software split for embedded
devices using heuristic algorithms in DSE was investigated by
Knerr [4]. In his work, Knerr considers the problem of finding
the best partitioning of functionality implemented in software
and hardware components, considering a predefined hardware
platform. His approach considers various optimization criteria,
such as chip area size, power consumption or performance.

Security requirements in DSE are described in a range of
modeling and analysis techniques. In this area, the work of
Kang [5], Stierand et al. [6], and Hasan et al. [7] are prominent.
In their work, Hasan et al. consider an already existing task
schedule of an real time operating system on a predefined
multicore-system. The authors present a framework allowing
to insert security tasks into this schedule without changing
it and without breaking the system’s real time constraints.
Kang describes a tool which supports system designers in their
decisions considering the correct use of security features.

Stierand et al. [6] present a framework in which security
parameters are introduced into automatic DSE, putting it
into the context of the automotive domain. They focus on
the communication part between tasks, assessing the attack
vulnerability of the channels connecting them. This vulnera-
bility is determined by the capability of the attacker. Thus,
they add security requirements to the exploration. To mitigate
these attacks, Stierand et al. propose to map these vulnerable
tasks onto architecture modules providing hardware security
extensions, ensuring that such attacks cannot be performed. As
the task model of their approach combines functionality and
data as one, the correct mapping of the single tasks to hardware
secured electronic control units depends on the definition of
what operations a task executes on some piece of information.

From the described DSE tools, only Stierand’s framework
focuses on the correct allocation of security vulnerable tasks
on dedicated hardware components during an automatic DSE.
In comparison to their work, the framework presented in
this paper regards data and control flow separately. With this
separation, multiple interpretation variants of a task function-
ality are overcome. This allows a more detailed attribution
of security requirements to the respective information blocks.
Furthermore, we do not regard these security requirements
exclusive to the communication channels between tasks. Our
approach pursues a more holistic way of introducing security
into automatic DSE. We consider the attack scenarios not
only on the communication but also on the tasks, and the
architectural blocks and assign security attributes to the data
used by the tasks. Furthermore, by assigning security levels
to the distinct hardware elements, we do not simply solve a
mapping problem, but are also able to find a suitable platform
configuration. Section III discusses the proposed approach in
detail.

III. PROPOSED METHODOLOGY

Performing an optimal allocation of functionality to a
predefined system architecture under consideration of security
constraints needs a way of accurately defining tasks, architec-
tural blocks, and security constraints. This section introduces
the necessary components and describes the underlying con-
straint solving problem of the SADSE framework.

A. Representation of the System Functionality
According to [4], the functionality of a system is defined by

a directed process or task graph in which the nodes represent
functional elements, and the edges represent data transfers
between those elements. This combined representation of data
and functionality in one task leads to ambiguous results when
attempting to define security requirements on it. Therefore,
we split task functionality and data in our approach. The
SADSE framework allows the definition of distinct security
requirements on data entity without mingling it with the task’s
functionality. Each task is linked to a data entity by a set
of operations. This more precise modeling of the control and
data flow of the system enables the framework to perform a
more comprehensive mapping. This explicits control and data
modeling leaving less space for interpretation what a task is
actually doing with its associated data. This is important when
it comes to the decision of where to map tasks that handle
secure data.

By splitting functionality and data each single data block
can be attributed with security requirements, determining
how the data must be secured. This assignment must be
performed by a security expert based on a Confidentiality-
Integrity-Availability (CIA) triad [8].Our approach focuses on
the confidentiality, the integrity and the authenticity of the data
entity. Therefore, the security requirement for a data unit is
denoted as the tuple sr = (conf, int, auth), where conf , int,
and auth can either be 0 or 1. Combining the definition of the
security requirements (sr) with the operations, a data entity
basically defines a set of operations and security requirements.
For better readability, a task performing a set of operations
on a set of data entities is defined as a process. The security
requirements for each data entity must be determined by the
designer and serves as an input to the SADSE framework.

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

Figure 2 shows the separation of task functionality and
security attributed data connected by a range of operations.
The system’s functionality is represented as a directed process
graph. The data flow in this graph consists of the set of all tasks
operating on the same data entity. As each process operating
on the same data entity is connected via an edge to its parent
process, the data flow can be found by traversing all parent
processes with the same data entity attribution.

Task Data

Confidentiality (C)
Integrity (I)
Authenticity (A)

read (r)
write (w)
transmit (tx)
receive (rx)
store (st)

Operation

Security
Requirements

Security

Level

Figure 2. Representation of a process, consisting of a task, its associated
data attributed with security requirements, and the task’s operation

performed on the data.

Considering the set of operations, the basic operations on
the data entities, such as read (r), write (w), transmit (tx),
receive (rx), and persistently store (st) are directly defined by
the designer. This set of operations is represented by the tuple
op = (r, w, tx, rx, st), where each element can either be 0 or
1. The security related operations are derived from the basic
operations and the data entity’s security requirement. Addition-
ally to the security requirement, each data entity is assigned a
security assurance level, which must be evaluated by a domain
expert. For simplification, these assurance levels are abstracted
as an integer ranging from 0 to 3, with 3 representing the
highest security level and 0 no security. Any task reading
or writing confidential data must decrypt the data before
processing it and encrypt it before passing it to another task.
The same principle applies to the authenticity of data, which
must be ensured by applying a signature or authentication
code after writing and verified before reading. Transmitting
and receiving of secured data does not enforce any security
operation. These security operations opsec = (enc, sign, stsec)
are derived according to (1). These operations and security
assurance levels must be mapped to the security capabilities of
the individual Processing Elements (PEs) which are explained
in detail in the next section.

opsec(op, sr) =

(
(r ∨ w) ∧ conf
(r ∨ w) ∧ auth

st ∧ (auth ∨ conf ∨ int)

)
(1)

B. Representation of the System Architecture
The hardware platform is represented by PEs, which are

connected to each other via Hardware Bus Systems (HWBs).
PEs can represent general purpose processors or application
specific integrated circuits. PEs and HWBs are assigned dis-
tinct characteristics and attributes. The set of attributes for
PEs are chip area, memory size and power consumption,
whereas the attributes for HWBs are power consumption
and transmission speed. PEs are further characterized by
their security capabilities. They describe the PEs capabil-
ity on cryptography (crypt), verification (verify), and tam-
per resistant storage (trs), which is described by the tuple
seccap = (crypt, verify, trs), where crypt, verify, and trs

are abstracted by a security capability level ranging from 0 to
3, 3 being the highest security capability level and 0 meaning
no security capability. These capabilities are implemented by
additional hardware or software modules. The distinction of
a software or a hardware implementation is performed by the
attribution of the PE. A hardware implementation may increase
the chip area, whereas a software implementation might shrink
the available size of memory. Thus, a PE can be formalized as
a set of modes, in which each mode defines seccaps and the
corresponding attributes. An HWB can be defined as a set of
characteristics and modes. Furthermore, not all PEs are directly
connected to one another. Any two PEs are connected via a
hardware bus. With these definitions, an architectural platform
can be described. Figure 3 depicts two PEs connected to one
another by a hardware bus with their respective attributions.

Processing
Element Hardware Bus

Chip Area
Memory
Power Cons.
Encryption
Authentication
Secure Storage

Mode

Power Cons.
Tansmission speed

Attributes

Attributes

Processing
Element

Mode

Chip area size

Characteristic

Security Capability

Figure 3. Hardware platform representation, consisting of PEs, connected by
a hardware bus.

C. Attack Vectors

For determining the attack vectors on the system entities,
we use the STRIDE analysis [9]. We focus on the attacker
capabilities of spoofing (S), tampering (T), and information
disclosure (ID), which can be either 0 or 1. These attack
vectors, described by the tuple av = (ID, S, T) can be directly
mapped to sr, as spoofing affects the authenticity, tampering
the integrity, and information disclosure compromises the
confidentiality of the data. From the assets that can be attacked,
we focus on processes, data stores, and data flows. In our
approach, processes from the STRIDE analysis are simply
processes p, data stores are represented by PEs, and data flows
are the set of processes operating on the same entity of the
data. Therefore, the av on a data flow is the combination
of av of the involved processes. The susceptibility of the
physical connections between the PEs is integrated into the
attack vectors of the respective PEs. The attack vectors are
defined by the designer.

The combination of the security requirements of the single
data entities, the operations performed on the data entities by
the processes, and the attack vectors form the basis on which
the SADSE framework performs the mapping of the processes
to PEs. Thereby, the SADSE framework considers the PEs’
security capabilities. The mapping, and its influences on the
overall system performance is explained in the next section.

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

D. Mapping Functionality to Architecture: A Constraint Sat-
isfaction and Optimization Problem

Mapping the functionality of the system described by the
process graph to the system architecture and selecting the
optimal PE-modes is a typical application of combinatorial
optimization. These classes of problems can be solved using
CP. At the core of the CP method, a set of decision variables
describes the problem at hand. Each of these decision variables
has a certain domain of possible values. The variables depend
on one another, described by the constraints. These constraints
determine which combinations of values within the domain of
the single variables are allowed. A constraint solver is used for
finding an optimal mapping of the processes on PEs, satisfying
all constraints [10]. The framework basically distinguishes
between two types of design constraints - constraints to satisfy
and to optimize.

Constraints to be satisfied are the security requirements and
communication feasibility cf . The communication between
two processes is only realizable, if either both processes are
allocated on the same PE, or, if allocated on two different PEs,
there is an HWB connecting them. The security constraints are
a combination of av, sr, and opsec. For each process mapped
to a PE, the security constraints sc = (scenc, scauth, scstore)
are calculated according to (3). The attack vectors of the
process and of the PE, on which the process is mapped, are
denoted avp and avPE , respectively. OPsec, defined in (2)
is the result of all security operations performed by process
p, and n is the number of all data entities p operates on.
Furthermore, asslvlsec = (enclvl, signlvl, stlvl) stores the
maximum security assurance level of the data entities these
security operations are performed on.

OPsec =

(
enc1 ∨ · · · ∨ encn

auth1 ∨ · · · ∨ authn

stsec1 ∨ · · · ∨ stsecn

)
(2)

sc(avPE , avp, OPsec) =

(
(IDPE ∨ IDp) ∧ enc
(SPE ∨ Sp) ∧ auth
(TPE ∨ Tp) ∧ stsec

)
(3)

sclvl(asslvlsec, sc) =

{
enclvl scenc > 0,
signlvl scauth > 0,
stlvl scstore > 0

(4)

Equation (4) is use to calculate the security constraint levels
for each process. For each level, there exists a seccap provided
by the PE, which ensures the data’s security requirement and
mitigates the attack vector, satisfying the data’s security levels.
This mapping function mappPE is denoted by (5), and must be
performed for all possible mappings of processes to PEs. Only
if all mappings return 1, the security constraints are satisfied.

mappPE(seccap, sclvl) = (crypt ≥ enclvl)∧
(verify ≥ signlvl) ∧ (trs ≥ stlvl) (5)

Constraints to be optimized can be the power consumption
of the overall system, the chip area size, as well as the system’s
performance. The performance is calculated considering the
tasks’ Worst Case Execution Times (WCETs). The WCETs
reflect the processing delays of a process executed on a PE,
for which an implementation exists or which can be estimated
by the designer. More specifically, a process’ WCET must be
estimated or known for a PE’s mode to be considered for the

mapping by the SADSE framework. The security capabilities
induce additionally computational overhead, which influences
the overall execution time, depending on the process mapping
the SADSE framework performs. Furthermore, the designer
can specify different modes for each PE, which is also explored
by the tool. Additionally to an optimal mapping of processes
to PEs an optimal selection of the PE modes is done.

Depending on the situation and its requirements on ex-
ecution time, power consumption, etc., one implementation
would be preferred over the other. The framework performs an
automatic and optimal mapping of the required functionality
to the respective implementation alternatives, considering their
performance, power consumption, needed memory, and gate
size, and ensuring that the security hardness characterization
fulfills the needed attack mitigation as defined by the designer.

E. SADSE Framework Implementation
As basis of the DSE tool, we used the work of Rosvall et

al. [1]. The data blocks, operations, attack vectors, security
requirements, security capabilities, and security levels were
added to the platform and function graph representations.
The network system was extended by a configurable bus
system. The restrictions imposed by the bus system, and the
security features were implemented as additional constraints
and included into the CP model. The additional delay caused
by the individual security features is added to the calculation
of the overall execution time.

IV. USE-CASE EVALUATION AND RESULTS

The SADSE framework was evaluated by performing a
performance optimized mapping of a keyless entry system. The
system’s functionality was derived from the systems described
in [11] and [12]. The system consists of a lock and a device.
The device’s functionality and architecture is described in here.
The device builds up a connection with the lock by receiving a
request requlock

chall from the lock. The device creates a challenge
respdevchall using its master key keymaster and sends it to the
lock. The lock sends its own challenge resplockchall which is
checked by the device, again using keymaster. The device
derives a long time key keylt from keymaster and sends an
ready request requdev

ready to the lock. It receives a response from
the lock resplockready stating that it is ready to open a session.
The device informs the user, requesting an action actionuser.
It then derives a session key keysession from keylt and creates
an open request requdev

open using keysession.
The hardware platform considered for the analysis is rep-

resented by a device, consisting of an application processor,
a secure element, a micro controller, and a Bluetooth Low
Energy (BLE) radio. All components are connected with each
other by a bus system. The functionality mapped to the device
establishes an authenticated and secure connection between
itself and an external lock. Therefore, it uses keylt and
keysession. The keylt is negotiated between lock and device. It
is used as long as lock and device are paired. The keysession,
which is derived from keylt, is used for the authentication
between lock and device and is updated frequently. Hence,
disclosure of the keysession poses a less severe security impact
to the access system. Figure 4 shows the system’s task graph
and hardware architecture. The mapping is performed based on
the task’s WCETs when running on the individual PEs, and
their security constraints. The goal of the SADSE framework

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

is now to find the optimal mapping of the tasks to the PEs,
running in a specific mode, as well as an optimal selection
of the PEs. This selection is optimal if the overall system’s
execution time is minimal and the security constraints are
satisfied.

Sy
st

em
 A

rc
h

it
ec

tu
re

Sy
st

em
 F

u
n

ct
io

n
al

it
y

Get
message

Secure
Element

MCU

Application
Processor

I2C

SPI SPI

BLE Radio

I2
C

Check
message

Send
message

Get user
actionCheck

challenge

Create
challenge

Derive LT
key

Create
ready

request

Create
session key

create
open

request

O D
SR

O D
SR

O D
SR

O D
SR

O D
SR

O D
SR

O D
SR

O D
SR

O D
SRO D

SR

Mode

Crypt;Verify;

Mode

Mode

Crypt;
Verify;TRS

Mode

Crypt;Verify;

Verify;

Figure 4. Evaluation example. Keyless entry system’s simplified
functionality which is to be mapped to a hardware platform. The PEs are

connected via bus systems

The tasks of the system’s functionality were attributed with
the data blocks they are operating on. The attack vectors
were attributed to the PEs of the system architecture. The
SADSE framework was configured in such a way that the
security constraints should be satisfied and the overall system’
execution time should be minimized. Two runs with changing
data operations on the session key, and a third run without any
security constraints were performed. The security capabilities,
the attack vectors, and the capability levels of the single
hardware blocks are listed in Table I. The security capabilities
of the components are based on existing hardware components.
The Application Processor’s (AP’s) capabilities are derived
from a Snapdragon 410E [13], the Secure Element’s (SE’s) ca-
pabilities from an P6021 [14], the Micro Controller’s (MCU’s)
capabilities from an ARM A57 [15], and the BLE Radio’s
capabilitie’s from an HZX-51822-16N03 [16]. The components
security capabilities define the security levels in each mode.
E.g. the SE’s encryption mechanism AES-256 is assigned a

security level of 3, whereas an AES-128 gets a security level
2. A DES-112 is only assigned a security level of 1. For
authentication functions, such as MAC and HMAC a similar
classification is performed. Table II shows the attributions of
the single data entities with security requirements, and their
security assurance levels. Table III shows the attributions of
the single tasks with data entities and operations.

TABLE I. ATTACK VECTORS AND SECURITY CAPABILITIES

HW av Seccap m0 m1

AP (S, T, ID) (enc, verify) (1,1) (2,2)
MCU (T, ID) (enc, verify) (2,2) (3,3)
SE (S, T, ID) (enc, verify, secstore) (2,2,3) (3,3,3)
BLE (S, T, ID) (verify) (1) -

TABLE II. DATA BLOCK SECURITY REQUIREMENTS AND
ASSURANCE LEVELS

Data Block sr asslvlsec

requlock
chall, actionuser - -

keylt, keymaster, keysession (Conf, Int) (3, 3, 2)

respdev
chall, requdev

open, requdev
ready (Conf,Auth) (2, 2, 2)

resplock
chall, resplock

ready (Conf,Auth) (2, 2, 2)

TABLE III. TASKS AND USED DATA BLOCKS

Task Name Data Block Operations

Get message resplock
chall, requ

lock
chall, resp

lock
ready rx, tx

Check message resplock
chall, requ

lock
chall, resp

lock
open rx, r

Create challenge respdev
chall w, tx

keymaster r

Check challenge resplock
chall rx, r

keymaster r
Derive LT key keylt w, st

keymaster r
Create ready request keylt r

requdev
ready w, tx

Send message requdev
open, requ

dev
ready, resp

dev
chall rx, tx

Get User Action actionuser r
Create session key keysession w, st

keylt r
Create open request keysession r

requopen w

The system’s functionality and the hardware platform are
presented in Figure 4. Table IV shows the full mappings of
tasks to hardware components for the distinct runs. The tasks
Get message and Send message have a fixed mapping to BLE
Radio. As shown in Table IV, the framework was able to
correctly map the security critical tasks to the respective hard-
ware components and select the optimal modes regarding the
overall performance of the system. To introduce the overhead
of the respective security mechanisms of each mode, their
computational overhead was derived using the work of [17].
For simplification, the WCETs of each process to PE mapping
stays unchanged for the single PE’s modes. Thus, the change
in the system’s performance is only induced by the selection
of the security mechanisms.

To demonstrate the effect of the security requirements on
the mapping, two runs. In the first execution, the configuration
as described in the tables was chosen. In the second run, no

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

security requirements were used. Table IV shows the optimal
mappings of tasks to PEs in the respective runs. The PEs are
numbered from 0 to 3: AP (0), MCU (1), SE (2), and BLE
Radio (3). Each PE offers to possible modes, 0 or 1. The PE
and mode mapping is abbreviated with [PE](mode). It can be
seen, that the tool was able to correctly allocate Derive LT
key and Create session key to the secure element in run #1.
In run #2, the allocation changes completely, as no security
constraints are to be solved. In run #1, 45 solutions were found
in less than 400ms. In run #2, the SADSE framework found
5576 solutions in 27 seconds.

TABLE IV. MAPPING TASKS TO PROCESSING ELEMENTS

Task Name mapping #1 mapping #2

Get message [3](0) [3](0)
Check message [1](0) [1](0)
Create challenge [1](0) [1](0)
Check challenge [1](0) [1](0)
Derive LT key [2](1) [1](0)
Create ready request [1](0) 0
Get User Action [0](1) 0
Create session key [2](1) [2](0)
Create open request [1](0) [3](0)
Send message [3](0) [3](0)

The keyless entry system example shows the correct func-
tionality of the SADSE framework. It is able to find a valid
solution which satisfies both the security constraints and has
the fastest execution time. Considering the security constraints
leads to a reduced number of found solution, which also speeds
up the finding of the optimal solution for the keyless entry
example.

V. CONCLUSION AND FUTURE WORK

The SADSE framework allows to define security attack
vectors and security requirements for system functionalities
defined by designers. These security requirements and attack
vectors are defined by security experts, following widely used
approaches, such as STRIDE analysis or the CIA triad. Based
on these requirements and the information about the assumed
performance, the security levels, and power consumption of
the single tasks executed on distinct hardware platforms, the
SADSE framework finds an optimal mapping, under consid-
eration of the security constraints. With this tool, security
requirements can be regarded right at the beginning of the
design phase. Thus, a greater awareness of security constraints
is introduced into the early stages of product design.

Currently, the SADSE framework only regards abstract
security levels, considering the capability of the components
and the needed security levels of the data entities. These levels
are mere placeholders and are to be replaced by real cost
factors. To acquire these security costs, a novel method will
be developed, helping designers to assess the right level of
protection. Furthermore, we want to include distinct security
communication protocols, as well as add key distribution
mechanisms to the SADSE framework.

ACKNOWLEDGMENT

Project partners are NXP Semiconductor Austria GmbH
and the Technical University of Graz. This work was supported
by the Austrian Research Promotion Agency (FFG) within the
project UBSmart (project number: 859475).

REFERENCES
[1] K. Rosvall and I. Sander, “A constraint-based design space exploration

framework for real-time applications on mpsocs,” in Proceedings of the
Conference on Design, Automation & Test in Europe, ser. DATE ’14.
3001 Leuven, Belgium, Belgium: European Design and Automation
Association, 2014, pp. 1–6.

[2] K. Rosvall, N. Khalilzad, G. Ungureanu, and I. Sander, “Throughput
Propagation in Constraint-Based Design Space Exploration for Mixed-
Criticality Systems,” Proceedings of the 9th Workshop on Rapid Simu-
lation and Performance Evaluation: Methods and Tools - RAPIDO ’17,
2017, pp. 1–8.

[3] N. Khalilzad, K. Rosvall, and I. Sander, “A Modular Design Space
Exploration Framework for Embedded Systems,” IEEE Proc. Computers
& Digital Techniques, vol. 152, 2005, pp. 183–192.

[4] B. Knerr, “Heuristic Optimisation Methods for System Partitioning
in HW / SW Co-Design,” Ph.D. dissertation, Vienna University of
Technology, 2008.

[5] E. Kang, “Design Space Exploration for Security,” no. April 2008, 2016,
pp. 1–4.

[6] I. Stierand, S. Malipatlolla, S. Froschle, A. Stuhring, and S. Henkler,
“Integrating the security aspect into design space exploration of em-
bedded systems,” Proceedings - IEEE 25th International Symposium
on Software Reliability Engineering Workshops, ISSREW 2014, 2014,
pp. 371–376.

[7] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “A design-
space exploration for allocating security tasks in multicore real-Time
systems,” Proceedings of the 2018 Design, Automation and Test in
Europe Conference and Exhibition, DATE 2018, vol. 2018-Janua, 2018,
pp. 225–230.

[8] M. Farooq, M. Waseem, A. Khairi, and S. Mazhar, “A Critical Analysis
on the Security Concerns of Internet of Things (IoT),” International
Journal of Computer Applications, vol. 111, no. 7, 2015, pp. 1–6.

[9] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Threat modeling-
uncover security design flaws using the stride approach,” MSDN
Magazine-Louisville, 2006, pp. 68–75.

[10] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling:
applying constraint programming to scheduling problems. Springer
Science & Business Media, 2012, vol. 39.

[11] J. Xu and et al., “Pairing and authentication security technologies in
low-power bluetooth,” Proceedings - 2013 IEEE International Confer-
ence on Green Computing and Communications and IEEE Internet of
Things and IEEE Cyber, Physical and Social Computing, GreenCom-
iThings-CPSCom 2013, 2013, pp. 1081–1085.

[12] H. Oguma, N. Nobata, K. Nawa, T. Mizota, and M. Shinagawa, “Passive
keyless entry system for long term operation,” 2011 IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks,
WoWMoM 2011 - Digital Proceedings, 2011, pp. 1–3.

[13] “ARM Cortex®-A57 MPCore ProcessorCryptography Extension Tech-
nical Reference Manual,” ARM Limited, Tech. Rep.

[14] “BSI-DSZ-CC-1072-2018 for NXP Secure Smart Card Controller
P6021y VB *,” 2018.

[15] “Qualcomm Snapdragon 410E Processor(APQ8016E) Technical Refer-
ence Manual,” Qualcomm Technologies, Inc., Tech. Rep.

[16] Shen Zhen Huazhixin Technology Ltd, “HZX-51822-16N03 Bluetooth
4.0 Low Energy Module Datasheet,” Tech. Rep., 2017.

[17] A.-K. Al Tamimi, “Performance Analysis of Data Encryption Algo-
rithms.”

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

