
Development of Extended-STIL Pattern Compiler for

Test Programming Environment

Seong-Jin Kim
Dept. of Computer Science and Engineering

Sangji University
Wonju-si Gangwon-do, Republic of Korea

Seongjin.gim@gmail.com

Kwang-Man Ko
Dept. of Computer Science and Engineering

Sangji University
Wonju-si Gangwon-do, Republic of Korea

kkman@sangji.ac.kr

Abstract—In this paper, we extended the blocks that can
generate analog signals in the Alternating Current (AC)
Instrument board along with the basic blocks provided by the
Standard Test Interface Language (STIL) standard. We
developed a compiler that extracts test information by analyzing
STIL files by block. In order to verify the accuracy of the test
information extracted by the compiler, experimental results using
Automatic Test Equipment (ATE) are presented.

Keywords—STIL pattern compiler; Standard test interface
language; test pattern

I. INTRODUCTION

Standard Test Interface Language (STIL) is a standard test
interface language that allows one to define test patterns and
waveforms, which are generated when simulating digital
integrated circuits, in one language. STIL provides an interface
between digital test generation tools and the test equipment [1].
It can be created directly as a test generation tool's output
language or used as an intermediate format for processing a
specific stage. Therefore, STIL is ideal for exchanging data
between a Computer-Aided Design (CAD) or a simulator and a
test environment. Test programs written in STIL generally
consist of seven blocks that define STIL, Signals,
SignalGroups, Timing, PatternBurst, PatternExec, and Pattern.
Each block is created based on the design description of the
chip to be tested [2].

In this paper, we expanded the functions of STIL by adding
blocks that can be applied to AC test instruments board along
with the basic blocks provided by the STIL standard and have
developed a compiler that extracts and saves the necessary test
information by interpreting the file created with the extended
STIL. In addition, we utilized the digital instrument board for
open/short test which is a DC parameter test. We also
experimented for gross function test to verify the truth table for
Texas Instruments' SN74LS00N chip in order to validate the
test information extracted by the compiler.

II. BACKGROUNDS AND MOTIVATIONS

A. Standard Interface Language and Block

STIL is a standard language that provides an interface
between digital test generation tools and test equipment. It is
either created directly in the output language of the test
generator or is used as an intermediate format for specific stage
processing. In addition, STIL is well suited as data exchanged
between a CAD or simulator and a test environment [3][4].

STIL files generated by an ATPG or simulator are used as
inputs to a converter or a compiler to classify and store test
information for each component. Among the stored
information, the test vector is loaded into the memory of the
target tester when necessary. The test vector is the most
important element defined in the STIL language. It is used to
detect defects and is usually similar to the truth table type and
consists of input data and output data. The test vectors and
patterns are used in combination and are used to measure the
logic functions and AC/DC functions of semiconductor
products. The STIL file is also used as an input to the STIL
manipulation tool and can be used as an output to generate
STIL files with specific rules and commands added. STIL
allows tester-dependent programs to be applied to specific ATE
systems and directly connects ATPG tools such as CAD/CAE
to the ATE environment. A test program written in this STIL is
generally composed of 7 blocks, and each block is created
based on the design specification of the chip to be tested.

B. Motivations and Contributions

Developers of ATE (Automatic Test Equipment) that can
test and evaluate digital devices and provide an easy-to-access
debug-able test program environment for users to test various
devices. Users who write test programs are required to become
familiar with the structure and behavior of test languages and
ATE, and it is especially important to write and maintain test
patterns used to evaluate and test DUT (Device Under Test)
during testing. Since the use of a test description language is
essential to easily create and manage these test patterns, many
ATE vendors are using STIL standards that can easily describe
the structure and test patterns of DUTs. Therefore, it is
essential that the STIL standard used in the test description
language is software that classifies and stores test information
for each component by analyzing STIL files so that it can be
interpreted by the test equipment [5].

Typically, the ADVANTEST SoC test systems T2000 and
V93000 generate STIL files of patterns, timing, and level
information generated by ATPG as shown in the Figure 3, and
provide STIL Reader to convert the generated STIL files to the
test system. TERADYNE's mixed-signal SoC test systems,
UltraFLEX and J750, also provide IG-XL Test Software,
which converts STIL, WGL (Waveform Generation Language)
and VCD (Value Change Dump). The use of the STIL standard
is essential for testing a variety of devices using ATE, and a
compiler for interpreting and categorizing files written in the
STIL standard is a must-have tool [6].

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

III. EXTENDED STIL

A. Abbreviations and Acronyms

The SourceWave block is a block that allows the user to
create waveforms by defining eight kinds of information, such
as period, frequency, and amplitude for four types of
waveforms such as Sine, Ramp, Pulse, and Staircase. To do
this, we define keywords and token groups that can be defined
in the SourceWave block. A total of 15 keywords can be used
in the SourceWave block and four types of waveforms can be
defined by the user. The waveforms are divided into five token
groups according to the attributes of the keywords. The
division of a keyword into token groups is a way to make it as
simple and easy to use as possible when defining a grammar,

B. SourceWave Definition

Fig. 1 shows the BNF representation of the SourceWave
block syntax and how it can actually be defined based on these
BNF representations.

Fig. 1. BNF Representation of SourceWave Block

In Fig. 1, the SourceWave block can define a signal wave
with one or more outer wave items and only one signal name,
either the signal or the signal name defined in the SignalGroups
block. In the "outer wave" item, we can declare a type and type
subject with three keywords: period, frequency, and sample. In
the waveform definition of the signal, we can declare 8
attributes and 4 waveforms in total.

IV. STIL PATTERN COMPILER

The STIL Pattern Compiler implemented in this study
receives a STIL file composed of basic blocks provided by the
STIL standard as input. The STIL Pattern Compiler analyzes
the file and stores the necessary test information. In addition,
the functions were extended by defining additional blocks
applicable to AC/DC instruments, and an intermediate file that
can be recognized by the test program and the instrument is
generated through the linker and the loader.

A. Overall Structure

The overall structure of the STIL Pattern Compiler is
shown in Fig. 2. The STIL Pattern Compiler is divided into
Small Vector Compiler, Small Vector Linker, and Small
Vector Loader. Small Vector Compiler and Linker operate in
conjunction with Test Program which defines a STIL file, and
Loader works in conjunction with Test OS to send test data to
the instrument.

Fig. 2. The Structure of STIL Pattern Compiler

First, the Small Vector Compiler receives a STIL file as an
input, classifies and analyzes the data by blocks, stores the
analyzed data in a block data structure, and generates an
intermediate file as the input of the linker. Second, the Small
Vector Linker receives the intermediate file generated by the
Small Vector Compiler as input and generates an input file of
the Small Vector Loader. The intermediate files received as
inputs at this time contain pattern and block information.
Finally, the Small Vector Loader receives a compressed file
generated by the Small Vector Linker as input and loads the
test data in the actual instrument.

B. Small Vector Compiler

The main purpose of the STIL Pattern Compiler is to
analyze and classify incoming STIL files and provide the
required test data to the Test OS and Instrument. The structure
of Small Vector Compiler designed and implemented in this
study to perform this function is shown in Fig. 3.

Fig. 3. The Structure of Small Vector Compiler

Small Vector Compiler is divided into Compiler Selector
that receives STIL files as inputs and calls corresponding
Compiler, Compiler Collection area that analyzes and stores
STIL blocks, and Block Data Structure that stores test data.
First, the Small Vector Compiler delivers the user-defined
STIL files received as inputs to the Compiler Selector.
Compiler Selector divides the received STIL files into blocks
and calls the corresponding Block Compiler in the Compiler
Collection area consisting of 18 Block Compilers to analyze
the Block contents. The called Block Compiler extracts the test

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

data while analyzing the block contents, stores it in the block
data structure, and generates an intermediate file for storing the
pattern in-formation and the test data. The Block Data
Structure stored by the Small Vector Compiler contains a lot of
test data which is used as very important data in the Test OS.
The intermediate file is used as the input of the Small Vector
Linker. The core of the Small Vector Compiler implemented in
this study is the Compiler Collection area, which is a set of
block compilers that analyze each block and store test data.

C. Block Compiler

Block Compiler in the Compiler Collection area basically
analyzes the corresponding STIL file and stores necessary data,
and has the structure shown in Fig. 4 to perform such
functions.

Fig. 4. The Structure of Block Compiler

Block Compiler, which receives a STIL file as an input,
first divides it into tokens, which are grammatically meaningful
minimum units, through a lexical analyzer. In order to do this,
we have defined regular expressions and state transitions, and
implemented a recognizer to identify all the tokens that are
needed in the STIL file that was received as input. In the next
step, the parser receives the tokens identified in the lexical
analysis step, checks errors against the syntax defined in the
STIL file, and extracts the test data information if there is no
error. At this time, the extracted data is stored in the Block
Data Structure and is input to the intermediate file generator. In
the final step, the inter-mediate file generator generates an
intermediate file, which is the input of the Small Vector Linker,
in a specific format based on the test data information analyzed
by the parser.

V. EXPERIMENTS AND RESULTS

In order to verify the operation of the STIL Pattern
Compiler implemented in this study and the accuracy of
extracted test data, open/short test, which is a DC parameter
test, and gross functional test were performed for verification
of defects in the circuit using the Digital Instrument Board [7],
which is used in ATE [8], with SN74LS00N, which is a 4
channel NAND gate IC of Texas Instruments. For this purpose,
STIL and a test program for chip operation were prepared,
compiled, and loaded into TestOS and the instrument board,
and the results of the two tests were obtained. In addition, the
information extracted from STIL was verified using the STIL
Viewer Tool of TestOS.

A. Test Program Configuration

In order to drive and test the chip, it is necessary to write
and compile the test program. For this, the STIL must be
defined first based on the chip specification. Fig. 5 shows the

pin configuration, logic diagram, and truth table among the
chip specifications used for the experiment in this study.

(a) Package (b) Logic diagram

(c) Function table

Fig. 5. The Specification of SN74LS00N

In this figure, the SN74LS00N consists of 14 pins (8 inputs,
4 outputs, Vcc, and GND) and 4 NAND gates. The output has
a low value only when the inputs are all high.

Fig. 6. The Definition of STIL for SN74LS00N

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

Base on this, the STIL for chip test was defined as shown in
Fig. 6. First, the signal name and type for the input and output
pins of 4 NAND gates were declared in the signal block and
the signals defined above were classified into seven groups in
the SignalGroups block for convenience. In the Timing block,
a WaveformTable with the name ts0 was defined with nine
WaveformChars for a period of "100ns" and "all" groups. In
addition, timing and pattern names to be used were described
in the PatternBusrt and PatterExec blocks. Finally, in the
Vector (block) block, the operation of actual signals was
defined using the signal and timing block information.

B. Experimental Environment

After compiling the STIL file and test program created in
Section 4.1 and loading the test data to TestOS and the Digital
Instrument Board, the experimental environment as shown in
Figure 16 was constructed to test the characteristics and defects
of the corresponding device using the device verification tool.

Fig. 7. The Experimental Environment

First, TestOS is connected to the Digital Instrument Board
to load the compiled test program and test data. The Digital
Instrument Board used in the experiment has 64 I/O channels
with basic 200Mhz/400Mbps speeds and provides 32 timing
sets and 4 edges per channel. Next, an interface board was used
for connection between the Digital Instrument Board and the
DUT as shown Fig. 8. A total of five devices can be connected
to this interface board and two SN74LS00N chips were
connected in this study.

Fig. 8. The Connection Configuration: Instrument board and Interface board

C. Experiment Result

In the first experiment, open/short test, which is a DC
parameter test, was per-formed to verify that the DUT operates
normally in the specified environment. TestCenter Tool, an
engineering tool for device verification, was used to execute
the test defined in the test program and analyze the
characteristics of the device. The result of the experiment is
shown in Figure 18. From the result, we can see that the
measured values of all the signals defined in the STIL file are
between -0.2 and -1.5 V, con-firming that all the pins of the
two tested devices are normal.

Fig. 9. The Result of Open/Short Test

In the second experiment, a gross functional test was
performed to verify the presence of defects on the DUT circuit.
To obtain the execution result of the test, we used the Pattern
Tool which shows the pattern information defined in the
PatternExec block and the actual execution result of the pat-
tern and the waveform of each signal. The result of the
experiment is shown in Fig. 10. The yellow line in the result
signifies the response data output from the DUT, and the blue
line signifies the expected data to be compared with the DUT
output. The green line is the baseline of the data, and the upper
side of the line signifies HIGH and the lower side LOW. Figure
10(a) and 10(b) show the wave-forms of the response data
output by each DUT and the expected data for output signals,
verifying that the waveform of the response data from each
DUT matches that of the expected data. There-fore, the two
tested devices have no problem in the circuit.

(a) The Result of Gross Function Test of DUT 1

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

(b) The Result of Gross Function Test of DUT 2

Fig. 10. The Result of Gross Function Test

Finally, the information extracted by the STIL Pattern
Compiler was confirmed by using the STIL Viewer Tool of
TestOS, as shown in Fig. 11. The Viewer Tool shows block
information such as Signal (Fig. 11(a)), SiganlGroup (Fig.
20(b)), and Timing (Fig. 20(c)) information defined in the
STIL, and it can be seen that the test information extracted by
the compiler is normally stored.

(a)The Information of Signal

(b)The Information of SignalGroup

(c)The Information of ts0 Timing

Fig. 11. The Information of STIL Viewer Tool

VI. RELATED WORKS

STIL-based pattern generation tools eliminate the process
of switching to a specific format of the tester by directly
connecting ATPG tools with ATE [9]. Compatible with the
ADVANTEST T2000 system, OPENSTAR ™ has established
an efficient communication link between the Electronic Design
Automation (EDA) system and the ATE platform. In addition,
they applied the same standards as STIL, Core Test Language
(CTL), and Standard for Embedded Core Test (SECT) to
support common solutions [10]. Teradyne's Ultra FLEX digital
instruments were applied to the Test Insight Tool Suite [11].
Test Insight is the primary partner for Teradyne and Advantest,
offering a variety of tools for testing and validating test
conversions, testing programs [12]. In particular, ATEGEN, a
test program generator, generates tester program files for
various ATE formats such as general IC tester, J750, and 93K
for files written in WGL and STIL. STILVerify, the STIL
Checker for Mentor Graphics Tessent®, is commercially
available as a tool for parsing and verifying files written in the
STIL standard. STILVerify provides Verilog test bench
functionality by checking that files written in STIL are
syntactically correct, and by running them in the Verilog
simulator to verify the contents and behavior of the code [13].
Synopsys' TetraMax ™ ATPG provides test patterns in STIL
format and is a tool that automatically generates high-quality
test patterns to reduce mistakes in test patterns created to test
complex logic [14]. The STIL Director of Toshiba
Microelectronics Corporation is a system tool for building test
environments based on the STIL standard and is available as a
Toshiba STIL design kit. Because it is an open system, it can
be easily applied to specific system environment by plug-in
method and can be customized in various environments by
using Access interface [15].

VII. CONCLUSION

In this study, we defined the blocks provided by the STIL
standard and extended the functions of STIL by adding blocks
applicable to the AC/DC test instruments. We also developed
the STIL Pattern Compiler, which can extract and save the
necessary test information, by analyzing the file created by
STIL. Open/short test and gross functional test were performed
on the SN74LS00N chip of Texas Instruments to verify the
operation of the implemented compiler and the extracted test
information. For the verification experiment, first, the STIL file
and the test program were created. Second, the experimental
environment was constructed using the Interface Board which
connects the Digital Instrument Board, DUT and Digital
Instrument Board used in TestOS and ATE. Finally, open/short
test and gross functional test were conducted by loading a test
program from TestCenter, a device verification tool. The logs
provided by the TestCenter and the results of the Pattern Tool
confirmed that all pins of the two tested devices were normal
and that there were no defects in the circuit.

ACKNOWLEDGEMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT and Future
Planning (20173030223).

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

REFERENCES

[1] IEEE Computer Society, IEEE Standard Test Interface Language (STIL)
for Digital Test Vector Data Language Manual IEEE Std. 1450.1999,
IEEE New York (1999)

[2] D. Fan et al, Case Study-Using STIL as Test Pattern Language, NPTest,
Inc. LLC, ITC International Test Conference, pp. 811-817, 2003.

[3] P. Wohl and N. Biggs, P1450.1: STIL for the simulation environment,
VLSI Test Symposium, 18th IEEE, 2000.

[4] A. Pramanick, R. Krishnaswamy, M. Elston, T. Adachi, Harsanjeet
Singh, B. Parnas, and L. Chen, Test programming environment in a
modular, open architecture test system, ITC 2004 International, 2004

[5] M. Sato, H. Wakamatsu, M. Arai, K. Ichino, K. Iwasaki, and T. Asaka,
Tester Structure Expression Language and its Application to the
Environment for VLSI Tester Program Development, Journal of
Information Processing Systems pp.121-132, 2008.

[6] ADVANTEST, STILReader, [online]
https://ebiz.advantest.com/aac/EProductSheets/viewDatasheets.html?id=
36&menu=soctab

[7] TESTIAN, TA15 (AC Test Instrument Board), [online]

http://www.testian.co.kr/eng/_products_05.htm

[8] TESTIAN, Spider Nano (Desktop ATE), [online]
http://www.testian.co.kr/eng/_products_02_1.htm

[9] H. Lang, B. Pande, and H. Ahrens, Automating test program generation
in STIL-expectations and experiences using IEEE 1450 [standard test
interface language], The Eight IEEE European, pp. 99–104, 2003.

[10] Y. Ma, “Open Architecture Software for OPENSTAR™ Test Platform,”
IEEE Future of ATE (FATE) Workshop, Charlotte, N.C., 2003.

[11] TERADYNE Teradyne Software Solutions, [online]
http://www.teradyne.com/services/software

[12] Test Insight, ATEGen, http://www.testinsight.com/products/design-to-
tester-conversion/test-program-generator.aspx

[13] Mentor Graphics, STIL Checker, [online]
https://www.mentor.com/products/silicon-
yield/request?&fmpath=/products/silicon-
yield/stil_checker&id=73528dbf-95b3-41cc-b9d6-a114a4286ecc

[14] Synopsys, TetraMAX ATPG, [online]
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-
test/test-automation/tetramax-atpg.html

[15] Toshiba Microelectronics, STILDirector, http://www.tosmec-
web.toshiba.co.jp/stildirector/eng/products/stildirector1.html

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

