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Abstract— Automated driving and connected cyber-physical 
traffic systems present increasing challenges for the 
development and validation of advanced driver assistance 
systems and automated driving functions. In particular, real-
time optimization and testing involves significant workload and 
risk. Providing a holistic, flexibly configurable testbed with real-
time capabilities for the entire vehicle can solve this problem. 
However, in order to make the functionality more accurately 
verified by the test bench, sensor simulation is an important 
component, i.e., the ability to generate real sensor information 
in a simulated environment. In addition, the data structure of 
the virtual sensor, as well as the transmitting type and sampling 
frequency, should be close to or even consistent with that of its 
real sensor. In addition, we also add the noise from the real 
sensor to the virtual sensor. The referenced noise values are 
taken from the data sheet of the real sensor. This alignment 
enables the test bench to better test the real-time functionality 
of the vehicle and its ability to process the sensor signals.  

Keywords—Cyber-Physical System; Virturl sensor; 
Autonomous Driving; Post-Processing; Real-Time Testing 

I.  INTRODUCTION  
 Mobility is undergoing disruptive change due to the 
increasing digitization and networking of vehicles. The 
autonomous driving of electric hybrid vehicles in highly 
interconnected Cyber-Physical traffic systems (CPS) is one of 
the core technologies in this digital transformation process. 
The variety of applications for autonomous vehicles requires 
ever more diverse sensor technology, as well as ever more 
complex and intelligent algorithms from the fields of modern 
control technology and Artificial Intelligence (AI). This 
results in increasingly complex systems. Not only because of 
the increasing range of functionality, but also because of the 
constantly growing degree of interconnection [1]. 

The development of such systems is closely linked to 
safety engineering requirements and is therefore highly 
complex. In order to study the integrated overall functionality 
of intelligent vehicles that are capable of autonomous driving, 
a complete vehicle test bed is essential. This test bed should 

accurately represent the complete system of road, connected 
vehicles, and connected driving environment, as well as 
stimulate the vehicle's sensors. For the above reasons 
presented the paper [2] the concept of a holistic, highly 
flexibly configurable real-time test system for intelligent 
vehicles in cooperating cyber-physical traffic systems, called 
ERAGON. In a closed loop together with the function carrier 
AURONA, this system is able to simulate and stimulate the 
entire autonomous vehicle system, starting from the infusion 
of raw sensor data via the development and testing of AI 
functions up to the stimulation of realistic driving situations. 
Therefore, it is particularly important to test the function under 
test with a simulation test bed for sensor data. It is ideal for 
the simulated data to be bit-for-bit identical to the data 
generated by the physical sensor in the real-world scenario. 
However, this level of similarity may not be necessary or 
achievable. The aim of sensor simulation is to achieve a level 
of data fidelity that ensures the decisions made by the control 
algorithms are equivalent to those made in reality. Therefore, 
the focus should be on achieving a high level of data fidelity 
[3]. 

This paper aims to discuss the virtual sensor simulation in 
ERAGON, how they are transmitted, and the required post-
processing and applications. The rest of the paper is organized 
as follows. Section II presents the holistic model-based RCP 
methodology for the development of complex, interconnected 
mechatronic systems. Section III presents state of the arts of 
the sensor simulation. In Section IV, the concept of the 
simulation of the virtual sensor and their post-processing will 
be introduced. Finally, Section V provides a summary of the 
contents as well as an outlook on further work. 

II. METHODOLOGY 
Through the methodology of mechatronic development, 

specifically mechatronic structuring, the interconnected CPS 
is divided into hierarchically organized subsystems across 
four levels of hierarchy: mechatronic functional modules 
(MFM), mechatronic functional groups (MFG), and 
autonomous mechatronic systems (AMS), and Networked 
mechatronic system (NMS) [4]. The outcome of this 
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structuring is a functional decomposition of the entire system 
into encapsulated modules. These modules are arranged 
hierarchically and have clearly defined physical and 
informational interfaces in both horizontal and vertical 
directions, which lays the foundation for later integration into 
the overall system [5]. 

 
Figure 1. Seamless model-based development and validation 
process[6] 

After establishing a hierarchical structure and specifying 
all interfaces, a model-based, function-centric approach is 
used to the design of each discrete module, adopting a bottom-
up strategy. The initiation occurs at the most fundamental and 
critical level, the MFM, progressing upwards through the 
hierarchy to assimilate these modules into more complex 
functions. The integration and combination of these functions 
within the larger framework (mechatronic assembly) leverage 
the model-based mechatronic development cycle. 
Subsequently, Model-in-the-Loop (MiL) simulations are 
conducted to create and refine control algorithms and artificial 
intelligence based on a virtual or mathematical model, which 
are then trialed using a vehicle simulation. Within the 
Software-in-the-Loop (SiL) phase, these algorithms, once 
validated through simulation, are translated into operational 
code via automatic code generation, then assessed offline on 
a virtual platform. The sequence advances to Hardware-in-
the-Loop (HiL) simulations, utilizing an augmented real-time 
vehicle model integrated with physical components for online 
verification and enhancement of the algorithms and smart 
functions under actual operational conditions [7]. This 
procedural sequence is delineated in Figure 1.  

In this paper where the vehicle under test belongs to AMS 
due to the autonomous driving function it has, and its other 
underlying actuators such as motor braking are MFM. the 
function of assisted driving is MFG. In testing it is a HiL test 
because the object under test is an entity with physical 
components. 

III. STATE OF ARTS 
Efficient functional verification is a significant challenge 

in realizing autonomous driving, as stated in the literature [8]. 
It is crucial to ensure that the functions designed in the overall 
system are verifiably safe in terms of output quality and the 
probability of misinterpretation [9]. It is necessary to repeat 
the tests for as many situations as possible that the vehicle may 
encounter. Hundreds of millions of kilometers of testing are 
necessary if this task is to be accomplished under real road 

traffic conditions [10]. Reliable and robust environment 
sensing through camera, RADAR, and LiDAR sensors is a 
key element of Advanced Driver Assistance Systems (ADAS) 
and Autonomous Driving (AD-assisted systems). Synthetic 
sensor data is required for driving simulations to develop and 
validate sensor-based algorithms. The classification of 
automotive sensing sensor models is based on their modeling 
approach and coverage effects, and can be divided into three 
categories: ideal, phenomenological, and physical models 
[11]. 

The Ideal Sensor Model, alternatively termed the Ground 
Truth Sensor Model, employs as its input an array of objects 
delineated within the simulation frame, as furnished by the 
World Coordinate System (WCS). This model, representing 
the epitome of accuracy, utilizes the veritable values, 
dimensions, positions, velocities, orientations, and bounding 
boxes of the simulated entities. 

The Phenomenological Sensor Model operates on 
principles similar to those of probabilistic models, while also 
integrating contextual effects. This approach offers a nuanced 
representation of real sensor dynamics. The complexity of 
these models is increased by the need to incorporate special 
phenomena into the sensor framework, and to correlate these 
phenomena with context-sensitive data from the virtual 
environment [11]. 

Physical sensor models are based on physical aspects and 
can be numerically complex. Therefore, they may require 
significant computational power and may not have real-time 
capabilities. Subsequent models use rendering techniques 
provided by the simulation framework as input and generate 
output raw data in the form of point clouds, which contain 
distance, intensity and time stamps. Several rendering 
techniques can generate synthetic LiDAR sensor raw data, 
including ray tracing, ray casting, rasterization (Z-buffer), and 
light paths [12]. 

Virtual sensors have a wide range of applications in analog 
test platforms. Chen et al. [13] used an integrated simulation 
and testing platform for self-driving vehicles. Their platform 
offers the possibility to test real vehicles in a closed test area. 
Their approach is characterized by the fact that the sensor 
signals (GPS, IMU, LiDAR, and camera) are derived from 
high-precision virtual simulation scenarios and processed as 
real driving commands by the real control unit in the vehicle. 
Ying et al. [14] used an in-vehicle loop simulator and testbed 
to functionally validate self-driving cars Vehicle sensors 
(camera, LiDAR and RADAR) are stimulated by signals 
generated based on a virtual traffic scenario. Thus, this test 
environment enables repeatable and fully manageable test 
scenarios. 

Both commercial and open-source simulation platforms 
provide virtual sensor models that manifest varying degrees of 
fidelity. Among these, CARLA [15] stands out as an open-
source simulation framework offering a variety of sensor 
models. Another notable platform is CarMaker/TruckMaker, 
[16] developed by IPG Automotive, which features a 
specialized Simulink interface encompassing libraries for 
diverse sensors, including both realistic and ideal models of 
LiDAR and RADAR. Similarly, Vector's DYNA4 [17] 
provides an assortment of virtual sensor models catering to 
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LiDAR, ultrasound, and RADAR applications. Additionally, 
AURELION [18] by dSPACE extends its simulation 
capabilities by offering virtual models for LiDAR, RADAR, 
and camera sensors. Complementing these, the Automotive 
Simulation Models (ASM) models facilitate a broad spectrum 
of simulations, ranging from individual components like 
internal combustion engines or electric motors to 
comprehensive vehicle dynamics systems and intricate virtual 
traffic environments. 

IV. CONCEPTION 
This section presents the concept of virtual sensor 

simulation and post-processing. As shown in Figure 2, the 
system is divided into two parts: the real vehicle under test and 
the sensors that the vehicle has. The flowchart on the right 
outlines the process for simulating virtual sensors based on 
real sensor parameters. The process includes the following 
steps: 

• Analyze Data Structure: Understand the 
organization, format, and internal relationships of 
the data. 

• Analyze Transmission Types: Investigate how 
sensor data is sent, which may include 
communication protocols, data transfer rates, etc. 

• Coordinate Transformation: This step converts 
the sensor data to a uniform coordinate system for 
comparison and analysis. 

• Virtual Sensor Generator: This function block 
suggests a system or software to create a virtual 
model or representation of sensor data for 
manipulation or testing in a simulation. 

• Virtual Sensor Post-Processing: After generating 
the virtual sensor data, this step involves further 
refinement or processing, which includes, among 
other things, feature extraction, filtering, calibration, 
and so on. 

• DUT: The final block labeled "DUT" stands for 
Device Under Test, indicating that the processed 
virtual sensor data will eventually be used for testing 
purposes, such as testing a car's autopilot function or 
sensor fusion algorithms. 

Where the vehicle control signals fed back from the DUT 
will be sent to the actual vehicle's driver, creating a closed-
loop test. 

V. IMPLEMENTATION OF THE SERNSOR SIMULATION 
In this section, sensor simulation as well as post-

processing implementation will be carried out based on the 
proposed concepts. 

A. Hardware introduction 
 This section describes the sensor data types of the real 

vehicle under test in terms of data transfer types and rates. 
Figure 3 shows the RCP function carrier AURONA. The 
vehicle is equipped with four direct drives and a break-by-
wire system. All four wheels can be driven, braked and steered 
individually. GPS and LiDAR are used for position detection. 
Objects are detected via camera, LiDAR, ultrasound, and 
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Figure 2. Concept of the sensor simulation and post-processing 

Figure 3. RCP function carrier AURONA 
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RADAR. In this paper, we focus on the Camera, LiDAR and 
GNSS.  

In this case, the data in LiDAR is set of laser point cloud, 
which can be denoted by 𝑆𝑆 . Every laser point cloud 𝑠𝑠𝑖𝑖 
contains a distance value in x, y and z axis and the intense. 
The configurable parameters are scanning frequency 𝑓𝑓𝐿𝐿  as 
well as the scanning angles 𝜃𝜃ℎ  and 𝜃𝜃𝑣𝑣 , where 𝜃𝜃ℎ  is the 
horizontal scanning angle and 𝜃𝜃𝑣𝑣  is the vertical angle field. 
Equally important is the angular resolution in the vertical ∆𝜃𝜃𝑣𝑣  
and horizontal directions ∆𝜃𝜃ℎ. Using these parameters, which 
can be obtained from the datasheet, the 𝑃𝑃𝐿𝐿  parameter set can 
be formed. The LiDAR data is transmitted via Ethernet and 
the actual sampling frequency is 10Hz. 

The data type in the camera is a matrix 𝑀𝑀, where the size 
of the matrix is determined by the length 𝑙𝑙 and width 𝑤𝑤 of the 
image. For the sensor simulation, the required camera 
parameters are the FOV (Field of View) 𝜃𝜃𝐶𝐶, the information 
of the lens (aperture 𝑓𝑓𝐶𝐶𝐿𝐿and focal length 𝐹𝐹𝐹𝐹𝐶𝐶𝐿𝐿) and the frame 
rate 𝑓𝑓𝐶𝐶 . All parameters of the camera can be formed as a 
parameter set 𝑃𝑃𝐶𝐶 . The transmission type is Ethernet, and the 
frequency is 20 FPS. 

The IMU and GPS sensors are integrated in the GNSS, 
which provide the vehicle's dynamic state𝑥𝑥𝑉𝑉 , and absolute 
coordinates in the geographic coordinate system 𝑃𝑃𝑉𝑉 . The 
vector 𝑥𝑥𝑉𝑉 contains the acceleration of the vehicle in the 
Cartesian coordinate system along the axial direction 
(𝑎𝑎𝑣𝑣𝑥𝑥 , 𝑎𝑎𝑣𝑣𝑦𝑦 , 𝑎𝑎𝑣𝑣𝑧𝑧) and the angular velocity as it rotates around the 
axis of the same Cartesian coordinate system (𝜔𝜔𝑣𝑣𝑥𝑥 ,𝜔𝜔𝑣𝑣𝑦𝑦 ,𝜔𝜔𝑣𝑣𝑧𝑧), 
while the GPS provides the latitude 𝑙𝑙𝑎𝑎𝑙𝑙𝑣𝑣, longitude 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑣𝑣  and 
altitude ℎ𝑣𝑣. All parameters of the camera can be formed as a 
parameter set 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. The transmission type is CAN-BUS and 
the measurement frequency can reach 100Hz. 

In following simulations, it’s needed to strive for the 
virtual sensor data to be consistent with the parameters of the 
real sensor data. 

B. Coordinate system 
In autonomous driving, the key to precise perception of the 

environment by the vehicle is that different sensor data can be 
expressed in a uniform coordinate system, so it is essential to 
define a uniform vehicle coordinate system and to find the 
position of the sensors in that vehicle coordinate. Therefore, 
we need to define the coordinates of the sensors as 𝐵𝐵𝐵𝐵𝑆𝑆𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 
and the coordinate system of the vehicle as 𝐵𝐵𝐵𝐵𝑆𝑆𝑣𝑣 . The 𝐵𝐵𝐵𝐵𝑆𝑆𝑋𝑋 
coordinate system represents the body coordinate system. The 
transformation of the sensor coordinate system to the vehicle 
coordinate system can be expressed using the 𝑇𝑇𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉  matrix. 
The data 𝑑𝑑𝑖𝑖𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  in the sensor can be converted to the vehicle 
coordinate system by the (1). 

 
𝑑𝑑𝑖𝑖

𝑉𝑉 = 𝑇𝑇𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉 ∗ 𝑑𝑑𝑖𝑖𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (1) 

C. Virtual Sensor Generator 
Based on the previous state of arts, this paper describes the 

generation of virtual sensors using the advanced capabilities 
of the ASM model and AURELION. AURELION is a 
versatile software designed for simulating and visualizing 

sensor data. It facilitates the integration of actual sensor 
readings into various stages of development, testing, and 
validation processes for perception algorithms and driving 
functionalities. AURELION facilitates multiple development 
stages, such as hardware-in-the-loop (HIL) and software-in-
the-loop (SIL), by providing flexible data interfaces that allow 
for the customization of virtual sensor parameters. 
Additionally, AURELION's open interface enables the 
retrieval and analysis of data from virtual sensors. 

On the other hand, ASM offers a wide range of simulation 
models designed for automotive applications, which can be 
selectively integrated to meet specific requirements. ASM 
provides detailed insights into the vehicle's motion and 
displacement, allowing for the simulation of virtual IMU and 
GPS sensors. This approach, which integrates ASM and 
AURELION, provides a strong framework for accurately 
representing and analyzing vehicular dynamics and sensor 
systems. 

D. Post -Processing  
Different sensors require different post-processing 

methods. For camera sensors and LiDAR sensors the post-
processing is feature extraction. In this work, the camera 
images are used to identify other traffic participants and traffic 
signals in the virtual environment based on the YOLO [18] 
algorithm. YOLO V8 is used in this article and notable for its 
speed and efficiency, dividing the image into a grid and 
simultaneously predicting bounding boxes and probabilities 
for each grid cell. 

A key formula in YOLO calculates the confidence score 
for each bounding box, indicating the likelihood of object 
presence and the accuracy of the box location, which can be 
represented by the (2).  

 
𝐵𝐵𝑙𝑙𝑙𝑙𝑓𝑓(𝑂𝑂𝑂𝑂𝑂𝑂𝐶𝐶) = 𝑃𝑃(𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐) ∙ 𝐼𝐼𝑂𝑂𝐼𝐼𝑝𝑝𝑆𝑆𝑆𝑆𝑝𝑝𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡ℎ             (2) 

 
Here, 𝑃𝑃(𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐)is the probability that an object exists within 
the box, and 𝐼𝐼𝑂𝑂𝐼𝐼𝑝𝑝𝑆𝑆𝑆𝑆𝑝𝑝𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡ℎrepresents the intersection over union 
between the predicted and the actual bounding boxes. 

The virtual LiDAR sensor can obtain the object of the 
surrounding traffic participants and their location information 
in real time through Exwayz's [19] object recognition 
algorithm.  

In virtual simulation, we cannot directly obtain the global 
coordinates under the Geographic coordinate system provided 
by GPS but are based on the global coordinates of the 
simulation environment 𝑃𝑃𝑡𝑡𝑉𝑉𝑉𝑉. To obtain GPS information, it is 
necessary to convert the coordinates in the simulation 
environment into GPS coordinates. Since the virtual 
simulation environment is built based on the real scene, the 
initial position of the Ego vehicle in the virtual environment 
can be obtained as 𝑃𝑃0𝑉𝑉𝑉𝑉 = (𝑥𝑥0𝑉𝑉𝑉𝑉 ,𝑦𝑦0𝑉𝑉𝑉𝑉), which corresponds to 
the GPS data 𝑊𝑊0 = (𝑙𝑙𝑎𝑎𝑙𝑙0, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0) in reality.  

When the vehicle starts to move, the position of the vehicle 
at any moment in the virtual environment can be expressed by 
𝑃𝑃𝑡𝑡𝑉𝑉𝑉𝑉 = (𝑥𝑥𝑡𝑡𝑉𝑉𝑉𝑉 ,𝑦𝑦𝑡𝑡𝑉𝑉𝑉𝑉) . The final GPS coordinate 𝑊𝑊𝑡𝑡 =
(𝑙𝑙𝑎𝑎𝑙𝑙𝑡𝑡 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡) can be represented by (3) and (4). 
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𝑙𝑙𝑎𝑎𝑙𝑙𝑡𝑡 =
(𝑦𝑦𝑡𝑡𝑉𝑉𝑉𝑉 − 𝑦𝑦0𝑉𝑉𝑉𝑉)

𝑒𝑒𝑒𝑒
∙

180
𝜋𝜋

+ 𝑙𝑙𝑎𝑎𝑙𝑙0 (3) 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 =
(𝑥𝑥𝑡𝑡𝑉𝑉𝑉𝑉 − 𝑥𝑥0𝑉𝑉𝑉𝑉)

𝑒𝑒𝑒𝑒 ∙ cos �𝑙𝑙𝑎𝑎𝑙𝑙0 ∗
180
𝜋𝜋 �

∙
180
𝜋𝜋

+ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0 (4) 

 
Since the motion parameters of the car obtained from the 

simulation model are ground truth, which has no noise, while 
the data in the real IMU sensor includes zero-bias and random 
walk noise, the post-processing for the IMU sensor is to assign 
the motion state values to the real noise, whose noise values 
can be found in the manufacturer's parameter descriptions. 
Therefore, the simulation of real IMU values should be done 
by (5) and (6), where 𝜔𝜔�  and 𝑎𝑎�  are the noisy IMU 
measurement, 𝑂𝑂𝑔𝑔, 𝑂𝑂𝑎𝑎 are the zero bias of the gyroscope and 
accelerometer, and 𝑙𝑙𝑔𝑔, 𝑙𝑙𝑎𝑎 are their random walk noise. 

𝜔𝜔� = 𝜔𝜔 + 𝑂𝑂𝑔𝑔 + 𝑙𝑙𝑔𝑔 (5) 
 

𝑎𝑎� = 𝑎𝑎 + 𝑂𝑂𝑎𝑎 + 𝑙𝑙𝑎𝑎 (6) 

E. Result 
In this section, the results of the post-processing will be 

shown, as can be seen in Figure 4, where the vehicles and 
traffic signals at the crossroads in the image captured by the 
virtual camera are successfully detected, and the detected 
objects are boxed by the rectangular frame. After the object is 
recognized, its corresponding weight is displayed. 

 

 
Figure 4. Object Detection in the camera image 

The recognition of objects in the virtual LiDAR point 
cloud is illustrated in Figure 5, where the recognized objects 
are boxed by cubes. 

 

 
Figure 5. Object Detection in the Point-Cloud 

Figure 6 and Figure 7 show the data from the virtual IMU. 
In order to make the noise in the IMU data more visible, a 
release frequency of 100 Hz (the same as the real device) was 
used to simulate two hours of IMU stationary. In that case, the 
measurements of the noiseless IMU should be 0 except for the 
z-axis acceleration, which receives the effect of gravitational 
acceleration. With the added noise, the value of this IMU is 
around 0 and z -axis acceleration is around the -9.81. 

 
Figure 6. Noisy IMU data-acceleration 

 
Figure 7. Noisy IMU data - angular velocity 

Figure 8 shows the GPS values. Loading the converted 
GPS path into OpenStreetMap shows that its virtual GPS data 
basically matches the real driving path. 

 

 
Figure 8. Simulated GPS path on the map 
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VI. CONCLUSION AND FUTURE WORK 
This paper describes the simulation of virtual sensors in 

ERAGON, a highly configurable real-time test system for 
intelligent vehicles that simulates autonomous driving 
environments together with the functional vehicle AURONA. 
The paper focuses on camera, LiDAR, GPS and IMU sensors 
and post-processing techniques including feature extraction 
and noise modeling to refine the virtual sensor data for 
practical applications. The results section illustrates the 
effectiveness of the system in detecting vehicles and traffic 
signals through virtual sensor data, demonstrating the 
potential of virtual simulation in enhancing the design and 
testing of self-driving car technologies. The following work 
will continue to refine the techniques for virtual sensor 
simulation and post-processing, and fusion of multiple virtual 
sensors. 
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