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Abstract — Basic bio-inspired information-processing motifs, 
such as feed forward can be useful in complex biochemical 
networks for signal processing and biosensing. We propose an 
experimental design and a numerical approach to a synthetic 
enzyme cascade-based biochemical system for feed-forward 
loop implementation that demonstrates an ability to delay and 
stabilize the changes in the output signal in response to chaotic 
fluctuations in the input signal. 
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I.  INTRODUCTION 

Information processing with networked biomolecular 
reactions, termed “biocomputing” [1][2], is a type of 
unconventional computing [3] that offers interesting new 
applications for multi-input biosensing [4]-[6] and generally 
complex signal processing [7][8] without involving 
electronics at each step. Most experimental efforts aimed to 
implementing biocomputing utilize the analog/digital 
approach because it is fully understood and has fault-tolerant 
scalability. This approach has been successfully applied to 
many enzyme-based systems offering a selection of binary 
logic gates [9]-[12]. Small biochemical networks have also 
been explored, utilizing concatenated enzymatic reactions to 
carry out Boolean functions [1][2][13]-[15]. 

However, biomolecular processes also offer tools for 
considering new unconventional network elements and 
architectures that are bio-inspired but are vastly simpler than 
those in nature. Indeed, recent research has involved 
consideration of non-binary network elements for improving 
noise handling of binary steps, and also utilization of several 
bio-inspired memory elements (memristors, etc.) for designs 
of electronic circuitry for specific applications [16][17]. The 
former development [2][18]-[27] allowed to incorporate 
biochemical “filtering” in biocatalytic reactions and reaction 
cascades, leading to a considerable reduction of the noise 
transmission factor. The resulting output response as a 
function of the input was transformed to sigmoid shape 
[2][18][19][21]. 

Realization of such synthetic biochemical systems in the 
framework of biocomputing [1][2][28]-[30] has enabled their 
implementation in practical applications, primarily in 
biosensing. The availability of biomolecular “building 
blocks” offers a toolbox of processes to experiment with 
optimization of networking involved in signal processing 
with biomolecular reaction cascades [1][21]. 

Several research groups have studied biocomputing, 
using synthetic deoxyribonucleic acid (DNA) chains 
(oligonucleotides) [31][32], various proteins (including 
enzymes) [12][14][18]-[21][33]-[36], and other bio-objects 
[10][37][38] (even whole cells). Compatibility of enzymes 
with physiological processes and electronics has favored 
their use in biocomputing designs aimed at near-term 
applications. Enzyme reactions are also particularly suitable 
for interfacing with electronics [39][40] in electrochemical 
settings. Therefore, even small networks with several 
enzymatic steps offer applications [41], e.g., for biosensing 
[4]-[6][31][32], for the point-of-care [33][34] and security 
purposes [35][36].  

Information processing in nature is another successful 
approach, quite different from the analog/digital paradigm. 
Systems biology studies aspects of nature’s information 
processing [8][37]-[39]. Bio-inspired approaches have 
resulted in interesting research involving memory, learning, 
etc. Some of the considered “network elements” enable 
novel electronic circuit designs [16][17] and suggest novel 
biocomputing approaches [40][41].  

Here, we review recent ideas [42] and report new results 
on enzymatic-process realizations of feed-forward loops 
which are the most common network motifs in nature’s 
information processing [8][42]-[46]. Specifically, feed-
forward loops are abundant as signal processing steps in 
cellular processes ranging from regulatory mechanisms [47] 
to cell differentiation [48]. The functionality of feed-forward 
loops and other complicated network motifs is largely 
determined by the connectivity of the various network 
components including biochemical processes [43][49][50]. 
The study of the feed-forward dynamics usually focuses on 
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specific network architectures of interest [45][50][51]. Such 
research is typically devoted to modeling of the temporal or 
spatial features of constituent processes [43]-[45][50][51], 
and to their networking [45][52][53].  

There are several types of feed-forward loops. The most 
common examples of the feed-forward loop network motif 
are the coherent and incoherent feed-forward loops [8], that 
have been extensively studied theoretically [43][44][54]. 
More complicated “topologies” have also been considered 
[49][50], with different types of activation [44][51]. 
However, only limited experimental realizations are known 
to date for feed-forward loops as synthetic biochemical 
processes, specifically, with DNA [55]. 

Modeling allows exploration of the potential future 
incorporation of bio-inspired network elements into 
biochemical circuits [8][42][56][57], for instance, for 
biocomputing [52][58][59]. Numerical approaches include 
biochemical systems theory [60], kinetic modeling [42][43], 
Gaussian models [49], cellular automata simulation [50], etc. 

In Section II we discuss possible realizations of feed-
forward biochemical system. Section III is devoted to 
proposed experimental design and numerical approach to the 
synthetic biochemical system with enzyme-catalyzed 
biochemical reactions that demonstrate feed-forward 
response. In Section IV offers a concluding discussion. 

 

II. DISCUSSION OF THE FEED-FORWARD REALIZATION 

In this work, we propose a realization of feed-forward 
systems with few coupled enzymatic reactions [42], which, 
if realized, will be a much simpler implementation than 
those in nature. Let us discuss an example of a possible 
design and offer a general introduction. The details of the 
actual biochemistry of this and other systems are explained 
in [42]. Unlike the various earlier-realized biocomputing 
gates, feed forward in most cases is not functioning as a 
binary gate [60]-[63]. We expect that the considered designs 
[42] will initiate research into synthetic information 
processing setups not aimed at “artificial life” [64]-[66], but 
rather at a more limited and hopefully more tractable task of 
mimicking the nature’s information processing. 

The challenge of attempting enzyme-process realizations 
of the feed-forward loop is that it has two “signal 
transduction” steps (see the scheme in Figure 1), each 
involving the input signal, X, usually not being directly 
converted into the output Z. Instead, in the primary (direct) 
step, X acts as the activator (promoter), denoted by →, or 
repressor (inhibitor), denoted by ⊣, of ongoing processes that 
generate the output signal, Z. The secondary (indirect) 
pathway in the loop consists of the input X affecting 
(activating or repressing) the processes that produce another, 
intermediate signal, Y. This intermediate signal, Y, in turn 
activates or represses the ongoing processes of the 
production of the output, Z. In Figure 1, two enzyme-
catalyzed biochemical processes (shown in boxes) constantly 
produce chemicals that are signals Y and Z. 

For biochemical realizations, we will consider the 
simplest situation when X or Y, rather than X and Y together 

activate the output signal, Z, production. The latter is 
another feed-forward option. In the simplest classification 
[44][62], there are 8 different loop types: 

X→Z or X ⊣Z,    X→Y or X⊣Y,    Y→Z or Y⊣Z. (1) 

The feed-forward loop is “coherent” or “incoherent” 
depending on whether the net effect of X on the production 
of Z in the secondary pathway is the same as in the primary. 
The most common feed-forward loops in nature involve 
three activations [44][47][48]. 

We present a potential realization of such a process [42] 
with enzymatic reactions in Figure 1. Such systems require at 
least two biochemical processes that generate signals Y and 
Z. The chemical reaction rates of these processes are then 
controlled by the input at time t, X(t). Here chemical input 
signal X activates (promotes) the production of both Z and Y, 
whereas Y promotes the production of Z. 

  

 
 

Fig. 1. Feed-forward loop with activation in all the signal 
transduction steps. The top scheme shows the activations involved. 
The biochemical processes are explained in Section III, with 
additional details founds in [42].   

 

In some situations, activation can be made rather sharp 
as a function of parameters, and inhibition can also be made 
sharp. Then, the feed-forward loop can approximate binary 
logic gates [67]. However, generally feed forward is not 
binary. Its primary network function, specifically with three 
promotions (Figure 1), is to provide a stabilizing role. 

Indeed, feed-forward loop as a network element has the 
capability to delay the changes in the output signal, Z(t), in 
response to erratic fluctuations and fast variations in the 
environmental input signal, X(t) [42][45][47][51][52]. This 
frequently enables threshold behavior [8][44], whereby the 
response begins and/or stops only when one or several of 
the chemical concentrations cross (up or down) activation 
thresholds. Otherwise, the system does not respond to input 
signal variations. This property avoids waste of resources in 
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natural-pathway responses. The secondary pathway 
provides the postponing of the effect of changes in the input 
signal, X, in its net impact on Z. The system’s response can 
then also have its own response time scale(s) [44][68]-[70]. 

In an experimental realization, we have to control the 
availability of the input chemical, X(t), inputting or 
deactivating this compound by physical or (bio)chemical 
methods, at the rate, Rext, that can be negative or positive, 

 
ݔ݀
ݐ݀

ൌ ܴ௘௫௧ሺݐሻ ൅ reaction	terms, (2) 

 
where the “reaction terms” describe the kinetics of a 
possible consumption of X by the biochemical processes of 
the feed-forward loop itself. The quantification of the feed-
forward effect will consist of detecting how the response 
time dependence of Z(t) is affected by the presence of the 
secondary transduction step, X →	Y →	Z. This pathway can 
be enabled at various degrees of activity. 

The stabilizing effects expected of feed-forward 
functions have never been realized in simple “synthetic” 
enzymatic systems. Here, we highlight the challenges 
involved in such realizations, see [42]. Ref. [42] also offers 
an example of an enzymatic system with all the 
transductions being repression, ⊣, steps. 

 
 

III. DESIGN AND MODELLING 

Let us outline the principles of feed-forward design [42] 
based on enzymatic cascades. Specifically, consider the 
system shown in Figure 1. This cascade includes the 
functioning of two enzymes with activations in all steps: 
Glutathione reductase (GR), which biocatalytically converts 
glutathione from its oxidized form, Glutathione disulfide 
(GSSG), to the reduced form, Glutathione (GSH). Then, 
GSH, acts as the intermediate signal, Y, in the feed-forward 
functioning. In parallel, β-nicotinamide adenine dinucleotide 
is converted from its reduced form, NADH, to the oxidized 
form, NAD+. Alcohol dehydrogenase (ADH), 
biocatalytically oxidizes ethanol (Et-OH) to yield 
acetaldehyde (AcAd), while β-nicotinamide adenine 
dinucleotide is converted from its oxidized form, NAD+, to 
the reduced state NADH. These processes can yield the 
increase in the amount of NADH that can be measured 
optically by changes in absorption. Thus, as expected for 
feed forward, signals Z and Y are generated continuously 
once the reactions are started. In fact, the rate of production 
of NADH must be kept in check, to avoid rapid build-up of 
signal Z: The excess concentration of NADH, 

 
∆NADH(t) = NADH(t) – NADH(0), (3) 

 
is the measured output signal, Z(t). The names of the 
additional chemical compounds in Figure 1, are abbreviated 
as follows: dithiothreitol (DTT), diethyldithiocarbamate 
(DDC), disulfiram (DS), and their role is detailed in [42]. 

The full realization and characterization of the proposed 
enzymatic cascade will require addressing several 
challenges, even though some of the processes have already 
been studied in the literature. Possible experimental 
realizations and preliminary tests are described in [42]. 

Generally, the structure of enzymatic feed-forward 
realizations is shown in Figure 2. We will next discuss a 
kinetic modelling approach to such systems. In modelling of 
feed-forward loops, one can set up coupled rate equations 
[42] describing signal and other compound variations. This 
approach can yield the expected features, including the 
delayed response of the output to the input’s 
variations/fluctuations, and other properties. For enzymes, 
the resulting systems of equations will be more complicated 
and contain different terms than those considered in purely 
phenomenological formulations [7][62]. 

 

 

 
 

Fig. 2. Principle of an enzymatic-cascade feed-forward design in 
terms of the constituent enzymatic processes. Activations or 
repressions (promotions or inhibitions) are shown by brown lines. 

 
We use the standard Michaelis-Menten type model, 

which focuses on the dominant enzyme bio-catalysis 
mechanism. The first enzyme, E1, binds a substrate, S1, to 
produce a complex, C. This complex can either on its own 
or by binding another substrate, S2, produces the product(s) 
P1,2 (Figure 2), restoring the enzyme to its original form. In 
the chemical reaction notation, we have, 

 

S1 + E1 
݇ଵ
⇄
݇ିଵ

C,     S2 + C 
݇ଶ
→
	

 E1 + P1 + P2.                     (4) 

 
The second step can usually be assumed irreversible, but the 
first one requires two rate constants. These process 
parameters, here k±1, k2, are generally not known 
individually and have to be fitted from experiments. 
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Activation/repression can involve several mechanisms, 
one of which can be a complex formation, for example, 

 

I1 + E1

ଵݎ
⇄
ݎି ଵ

 ଵതതത + W.                                                        (5)ܧ

 
Here, the “complex” is the modified enzyme ܧଵതതത  with a 
different activity, with larger or smaller rate constants, ݇േଵതതതതത, 
݇ଶതതത in processes similar to those in Equation (4), and it can 
be restored to the original form, E1, for example by reacting 
with some other chemical, here denoted W. If, for instance, 
I1 is our input, X, then the added “reaction terms” in 
Equation (2) enter via such chemical processes, 

 
ௗூభ
ௗ௧

 = Rext(t) – r1I1(t)E1(t) + r–1W(t)	ܧଵതതത (t),                    (6) 

 
whereas the time-dependence of the quantities entering here 
is in turn set by their own rate equations, for example,  

 
ௗாభ
ௗ௧

 = – r1I1E1 + r–1Wܧଵതതത – k1S1E1 + k–1C,                     (7) 

 
etc. Note that in the next stage, when writing the rate 
equation for S1, for instance, terms resulting from its 
reaction with both the original and modified enzymes will 
enter, with their respective rates, 

 
ௗௌభ
ௗ௧

 = – k1S1E1 + k–1C – ݇ଵതതതS1ܧଵതതത + ݇ିଵതതതതത̅(8)                      .ܥ 

 
Even within this relatively simple chemical kinetics 

description, enzymatic cascades lead to systems of 
numerous chemical rate equations, with parameters that 
depend on the physical and chemical conditions of the 
experiment, and that are documented only to a very limited 
extent; typically, at most a single parameter, calculated in 
our notation from the quantities k±1 and S2(0)k2, call the 
Michaelis-Menten constant, is tabulated. 

Attempts can be made to consider much more simple 
enzymatic feed-forward realizations. Let us consider the 
cascade sketched in Figure 3, where X is one of the 
substrates for enzyme E1, but also for enzyme E2. The 
former enzyme outputs Z as one of its products, whereas the 
latter outputs Y. However, Y is a substrate for enzyme E3, 
which also outputs Z. Such systems are easier to design for 
experimental realizations because they involve process 
cascades of the type already realized in the binary-
biocomputing-gate research [1][2]. The “activation” by X 
and by Y consists of them simply being the actual inputs 
enabling the reactions. The availability of the primary input 
substrate, X(t), was controlled by adjusting Rext(t), to yield 
the shown time dependence. 

 
 

 
 
 

Fig. 3. The top scheme shows a three-enzyme system, which 
was numerically modelled as a candidate for a simplified all-
activations feed forward. Our modelling results indicate that a 
limited feed-forward-type delayed response is possible, as 
illustrated by the blue curve. 

 
 
In this model, adjustable quantities (concentrations of 

those chemicals that are not designated as input/output 
signals) can be selected as needed to achieve variants of 
delayed response, Figure 3, to various protocols, Rext(t), of 
controlling the input signal availability. However, this 
simplified approach cannot provide the full-featured feed-
forward realization even for the all-activations case. More 
complicated cascades [42], such as that shown in Figure 1, 
will have to be explored in future work. 

 

IV. CONCLUSION 

We surveyed the conceptual design for cascades of 
enzyme-catalyzed biochemical reactions that promise 
realizations of the feed-forward response. This design of 
synthetic biochemical system with few coupled enzymatic 
reactions demonstrated the activation in all the signal 
transduction steps with a capability to delay the changes in 
the output signal. Such enzymatic-process realization of 
feed-forward loops is expected to have a stabilizing effect in 
the response to chaotic fluctuations in the input signals. 
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