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Abstract—In this paper, we propose the hexagonal quadrature
amplitude modulation (QAM)-type modulation for continuous-
variable quantum communication systems. Our proposed hexag-
onal QAM modulation provides less detection error, which occurs
in discriminating non-orthogonal quantum states, compared to
the previous modulation schemes such as phase shift keying
(PSK)-type modulation or rectangular QAM-type modulation.
Square root measurement (SRM) is used in the receiver to
decrease the detection error probability and receiver complexity.
The theoretical detection error rate for the hexagonal QAM
modulation is obtained by form of square root of matrix. The
detection error rate is verified by Monte Carlo simulation.

Keywords–Quantum communication, hexagonal QAM, contin-
uous variables, coherent states

I. INTRODUCTION

As the usage of personal communication devices increases,
the communication security system becomes more important
than ever. The quantum cryptography using quantum key dis-
tribution (QKD) is regarded as the future possible technology
to guarantee unconditional security [1]. Basically, the quantum
cryptography is based on the fact that nonorthogonal quantum
states can not be distinguished with certainty [2]. Note that
the detection of coherent states is accomplished by quantum
measurement which naturally brings about the detection errors.

In this paper, we consider a quantum detection problem. Al-
ice transmits classical information key to Bob through quantum
channel. Both Alice and Bob prepare a set of quantum coherent
states, and Alice chooses one of the states corresponding to
the message. The receiver, Bob, extracts the message from a
quantum measurement of the received quantum state. Because
the set of coherent states Alice and Bob use are not orthogonal
to be general, all measurement can bring about the detection
error. Our design goal is to build the shared set of quantum
states and to build the quantum measurement.

This quantum detection problem has been researched in
many previous papers [3]–[6]. In [6], Yuen contrived a new
quantum cryptography which also ensures the unconditional
security. The protocol invented by Yuen is called Y-00 protocol
named after himself. In Y-00, a set of phase shift keying (PSK)
type states is considered. Security is from the detection error
rate gap between Bob and Eve, an eavesdropper, where Bob
shares an initial secret key string with Alice but Eve does not.
Y-00 protocol opened a new type of QKD, continuous variable
quantum key distribution (CV-QKD), by using coherent states
as information carrier.

Positive operator valued measurement (POVM) is a set of
Hermitian positive semidefinite operators. In quantum mechan-

ics, all observable quantity is obtained by a special quantum
transaction called quantum measurement. By subjecting the
state to a quantum measurement, we can obtain a value
corresponding to the quantum state. POVM is widely used
to measure quantum states because it is easy to realize in
a physical system and because it has good mathematical
properties for performance analysis [2] [7].

The QAM provides better performance than the PSK in
terms of the error probability in higher spectral efficiency
case [8]. For this reason, QAM is adopted in many recent
communication standards to meet the demand of high speed
data rate. The constellation of QAM has several shapes such as
square QAM, circular QAM, hexagonal QAM and so on. It is
notable that the hexagonal QAM provides the largest minimum
Euclidian distance (ED) given the energy constraint compared
to other QAM schemes. Hexagonal QAM gives less error rate
performance than rectangular QAM but hexagonal QAM is
not popular in practical communication systems because of
its high implementation complexity compared to other QAM
shapes [9].

For PSK scheme, which has the circular symmetric quan-
tum states set, the square root measurement (SRM) detection
has been proven to provide the minimum detection error
probability [2]. On the other hand, for QAM state, which
does not have the circular symmetric quantum states set, the
optimum detection scheme in terms of error probability has not
been known yet. However, SRM detection can provide quite
a good performance when the average number of photons of
coherent states, Ns, is sufficiently large based on which the
application of SRM detection to QAM has been studied in the
literature [10]. The set of QAM state is not circular symmetric
but Kato employed SRM for QAM state detection problem.
Optimality of SRM for QAM state detection is not proven.
But detection probability of QAM state using SRM gives less
detection error than PSK state using SRM with same energy
constraint.

In SRM detection, the ED between two states is the
dominant factor for error detection. In a state set, we have
shown in a previous study [11] that the average detection error
probability is dominant with the minimum ED among the states
of the set. We have shown that circular QAM scheme can
reduce the detection error rate by enlarging the minimum ED
under a given energy constraint. Moreover, hexagonal QAM
scheme has larger minimum ED than circular QAM scheme
so we can expect that hexagonal QAM scheme gives less
detection error rate than PSK, rectangular QAM and circular
QAM.

12Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-495-4

ICQNM 2016 : The Tenth International Conference on Quantum, Nano/Bio, and Micro Technologies



Figure 1. System description

This paper is organized as follows. In Section 2, the mathe-
matical representation of our considering system is described.
In Section 3, the SRM detection scheme in the receiver is
mathematically described. In Section 4, our new hexagonal
QAM scheme is suggested. In Section 5, we show the detection
error performance of our hexagonal QAM scheme with SRM
detection in a numerical way. Finally, Section 6 concludes the
paper.

II. MATHEMATICAL SYSTEM REPRESENTATION

Let us consider the detection problem of quantum states
illustrated in Figure. 1. Alice chooses one of pure states in a
set of coherent states and sends it to Bob. Then Bob measures
the received state and chooses one of the states based on the
minimum detection error criterion. Note that an error occurs
if the state chosen by Bob is different from Alice’s state.

We consider a pure state set ρ of size M in Hilbert space
Hs. Each state of ρ is represented by density operator ρi which
is non-negative and unit trace.

ρi ≥ 0, Tr [ρi = 1] (i = 1, 2, . . . ,M). (1)

From the pure state assumption, each state can be also repre-
sented in vector form such as

ρi = |ψi〉 〈ψi| (2)

where |ψi〉, called ket ψi, is Dirac’s bra-ket notation of the
quantum state and 〈ψi|, called bra ψi, is the dual state of
|ψi〉.

A coherent state |α〉 is an eigen state of photon annihilation
operator, a [12],

a |α〉 = α |α〉 (3)

and can be expressed using the representation in the basis of
number states, |n〉,

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 . (4)

Note that α can be an arbitrary complex value where the real
part of α relies on the position of the photon and the imaginary
part of α relies on the momentum of the photon [13].

For detection of the received states, we employ the POVM
Π̂j which satisfies the following relations

Π̂j ≥ 0, (5)

and
M∑
j=1

Π̂j = Î . (6)

Let us denote P (j|i) , P (ρj |ρi) as the conditional probability
that the quantum state ρi is decided as ρj . Then P (j|i) can
be represented as

P (j | i) = Tr [Π̂jρi]. (7)

Note that the value P (j|i) for (j 6= i) represents the decision
error probability. Then the average probability of decision error
Pe is given by

Pe =

M∑
i=1

qi

M∑
j=1( 6=i)

P (j | i)

= 1−
M∑
i=1

qiPi(i | i) (8)

where qi is a priori probability of the quantum state ρi
satisfying

M∑
i=1

qi = 1, qi ≥ 0. (9)

To simplify the discussion, we focus on the equal probable
case, that is qi = 1

M for all i.

III. DETECTION ERROR PERFORMANCE OF SQUARE
ROOT MEASUREMENT

Quantum measurement is defined as a set of operators.
In quantum mechanics, an operator is similar to a system
in classical mechanics. As long as the state in quantum is
represented in a vector form, the quantum operator can also
be represented in a matrix form. POVM is a good example of
quantum measurement.

Now, we consider SRM for detection. SRM is known as
the optimal detection measurement scheme in distinguishing
circular symmetric states, i.e., PSK states, in terms of detection
error rate. Note that when the state set is not circular symmet-
ric, the optimal detection measurement scheme is not known
yet. However, as shown in [14]–[17], SRM is often employed
for non-symmetric case since it can be built by manipulating
the shared state set. Here, we also employ SRM for the signal
detection of hexagonal states considered in. The hexagonal
states set considered in this paper is not circular symmetric.
But SRM has been employed in many systems because of its
good properties [18].

The detection operator of SRM, denoted as Π̂j for the j-th
state is defined as [17]:

Π̂j = |µj〉 〈µj |
|µj〉 = Ĝ−1/2 |ψj〉

Ĝ =

M∑
i=1

|ψi〉 〈ψi| . (10)

We can easily prove that SRM, Π̂j , satisfies (5) and (6) just by
substituting Π̂j into (5) and (6). It means that SRM is a class
of POVM and we can get the advantage of POVM mentioned
in Section I.

13Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-495-4

ICQNM 2016 : The Tenth International Conference on Quantum, Nano/Bio, and Micro Technologies



In the case of using SRM in detection, the conditional
detection error probability P (j|i) can be calculated by square
root of the Gram matrix G

p(j | i) =
∣∣∣(G1/2)ji

∣∣∣2 (11)

where the Gram matrix G is the Hermitian matrix whose
entries are inner products of coherent states [2]

G =

 〈ψ1|ψ1〉 · · · 〈ψ1|ψM 〉
...

. . .
...

〈ψM |ψ1〉 · · · 〈ψM |ψM 〉

 . (12)

From (4), the inner product of two coherent states can be
calculated as

〈α|β〉 = e−
|α|2+|β|2

2

∞∑
m=0

∞∑
n=0

α∗mβn√
m!n!

〈m|n〉

= e−
|α|2+|β|2

2

∞∑
n=0

(α∗β)
n

n!

= e−
|α|2+|β|2

2 +α∗β

= Aαβ exp θαβ (13)

where

Aαβ = exp

[
−1

2

(
(αR − βR)2 + (αI − βI)2

)]
(14)

θαβ = [αRβI − αIβR] . (15)

and

αR = Re{α}, αI = Im{α}, βR = Re{α}, βI = Im{α}.

In (11), we point out that the off-diagonal element of square
root of the Gram matrix directly influences the conditional
detection error probability. In (12), we can see that the off-
diagonal elements of the Gram matrix is in inner product form
between two different states. In (14), the Euclidian distance
between two different states is the dominant factor in the
amplitude of inner product between the states. Now, we can
say that a states set with large minimum ED can reduce the
detection error rate. Hence, it is desired to make the signals
spread as far as they can in given signal average energy
constraint.

IV. MINIMUM EUCLIDIAN DISTANCE MAXIMIZING
MODULATION : HEXAGONAL QAM

In classical communication systems, the hexagonal QAM
scheme is used because of low peak to average power ratio [9]
or used in the case considering multiple retransmission system
for the automatic repeat request [19]. But hexagonal QAM
scheme is rarely used because it can not be demodulated by the
two dimensional projective way which deduces the complexity
of the receiver.

To detect quantum coherent states, the two dimensional
projective way is limited by Heisenberg type uncertainty. In
this paper, we consider SRM detection and the detection
error performance of SRM is affected by the minimum ED
among the states. The hexagonal QAM state gives the largest
minimum ED under a given energy constraint.

−3A −2A −A 0 A 2A 3A

−3A

−2A

−A

0

A

2A

3A

Figure 2. States set for 16-ary hexagonal QAM

The shape of constellation points of Hexagonal QAM is in
the form of a shell. We can easily find the number of signals
that make the complete shell, and that number is

3n2, n ∈ N (16)

where n is the number of shells. Figure. 2 shows an example
of quantum hexagonal QAM states for M = 16 case. States
for 16-QAM are denoted as

|ψ1〉 = |A(−
√

3

3
)〉

|ψ2〉 = |A(

√
3

6
+ j

1

2
)〉

|ψ3〉 = |A(

√
3

6
− j 1

2
)〉

...

|ψ16〉 = |A(−
√

3

3
+ j2)〉 (17)

where A is a real valued fundamental amplitude. Euclidian
distance between most neighboring states is set to be A.

We can see that the first and the second shell is full of
states, and the third shell has empty spaces. These empty
spaces degrade data rate performance. In our quantum modu-
lation, we consider uncoded classical information so the gap
between 2n for classical bit and (16) for hexagonal QAM
symbol degrades the rate.

V. NUMERICAL RESULT

For comparing the error rate of detection, the average value
of the photon number, Ns is a common parameter which is
defined as:

Ns =

M∑
i=1

qi 〈ψi| n̂ |ψi〉 (18)

where n̂ = â†â is the number operator of the coherent state.
The detection error probability is calculated by substituting
(17) to (13), (12), (11) and (8). In (11), square root of
Hermitian matrix is calculated by eigen value decomposition
in MATLAB.
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Figure 3. Detection error rate for M = 8 and M = 16
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Figure 4. Detection error rate for M = 32 and M = 64

As seen in Figure 3, we can certify that all types of QAM
schemes give less detection error rate than the PSK scheme.
The rectangular QAM states are from [17]. The detection
error rate of our hexagonal QAM scheme is less than other
modulation schemes. And we can also see that the performance
gain of our hexagonal QAM scheme is steady compared to
the rectangular QAM case which works well in M = 16 case
but does not work well in M = 8 case relatively. Figure 4
shows the detection error rates for higher order cases in large
Ns. Our hexagonal QAM scheme also performs better than
other schemes in detection error rate in higher order cases.
Especially, we can find a cross-over between PSK scheme for
M = 32 and hexagonal QAM scheme for M = 64. It means
that our hexagonal QAM state can carry more information bits
and can give less detection error performance in some cases.

As the modulation size M grows, we need more photons
to meet a certain detection error rate. Our hexagonal QAM
scheme still has performance gain in higher modulation cases.
The average number of photons to meet a certain detection
error rate is still less in our hexagonal QAM state for higher
order cases.

VI. CONCLUSION

In this paper, we proposed a new hexagonal QAM scheme
that reduces the detection error probability by maximizing
the minimum ED between states in the constellation. We
used SRM to detect the sent state. Numerical simulation
showed that our hexagonal QAM gives less detection error rate
under an average photon number constraint in several sizes of
modulation.
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