
A Systematic Review of Self-adaptation in Service-oriented Architectures

M. Pilar Romay

Dept. Inf. & Com. Syst. Engineering (DISIT)

St. Paul-CEU University

Boadilla del Monte, Madrid, Spain

pilar.romayrodriguez@ceu.es

Luis Fernández-Sanz, Daniel Rodríguez

Dept. of Computer Science

University of Alcalá (UAH)

Alcalá de Henares, Madrid, Spain

luis.fernandezs@uah.es, daniel.rodriguezg@uah.es

Abstract—The study of adaptivity, i.e., the capability to react to

changes in the environment, is becoming ever more important

in many fields of study, and in the development of software in

particular. This paper presents a systematic review in which

both the extension and complexity of this notion are examined.

After studying the influence from external fields, this review

checks the hypothesis of using the scope of service-oriented

architecture as a comparable model for the whole field. As part

of the systematic review, the influence of the most relevant

bibliography is considered, and the terminology is clarified.

Keywords – adaptivity; self-adaptation; service architecture;

autonomic systems; SOA; systematic review.

I. INTRODUCTION

The growing complexity, along with continuous
operation, of software systems –not only conventional ones,
but also the next complexity level, so-called large-scale
software systems [1] – has greatly increased the interest of a
series of techniques for self-managing system features. These
techniques make possible for them to guarantee a wide range
of properties, all by themselves. Traditionally, these
properties had been dealt with manually, or had to be
developed from specific requirements. Instead of that, the
new approach considers them as intrinsic system properties,
and thus they should be dealt with automatically, and
considered as just another issue in conventional software
systems development.

Systems conceived in such a way are generically known
as adaptive systems or, more specifically, as self-adaptive
systems [2].

Therefore, we have systems able to deal with faults and
critical situations (self-healing), able to control their own
behavior (self-managing) [3], able to observe and evaluate
their own performance (self-monitoring), able to modify their
own configuration to react to changes in their environment
(self-configuring), or even to automatically guarantee certain
system-level properties, such as protection, fault tolerance,
etc. (autonomic systems) [4] [5], among many others.

The wide range of systems which could make use of
these adaptive properties causes a great variability; therefore
many different approaches could be conceived. For this
reason, it is reasonable to focus our efforts on a specific area
of study: in our case, software services. This area has been
chosen because it still covers a wide range of systems and
shows a great variability itself, and therefore it can be
considered as a representative, even a lower-scale analog, for

the whole of the field of adaptive systems. The goal of this
work is, therefore, to study self-adaptive software services.

Software services define, due to their own properties, an
area of a great potential to describe and use adaptive (or
adaptation-related) features. Moreover, service and service-
oriented architectures are among the systems where the need
for these features is clearer, and more compelling: the nature
of services is inherently dynamic, and this implies the need
for adaptation; and also the structure of service architectures
requires the flexibility that self-adaptation provides. In short,
this make our specific goal (consider adaptation in services,
rather than in general systems) even more pragmatic. Finally,
considering the growing, relevance and broad dissemination
of service ecosystems, this is also the environment in which
this approach is currently pertinent and more interesting.

Adaptivity is often described at different levels, namely
at service level or the wider system level [6], but this will not
be the main interest of our study. Instead of that, we will
focus on exploring and analyzing adaptivity and all its
related properties, a set which is often generically known as
self-*.

Moreover, this paper will also consider the impact of
self-organization (considered as a related notion, rather than
as an adaptive feature) within the specific area of service-
oriented architecture. Our main goal is to determine which
properties are implied in adaptive systems, with a special
focus on service architectures – i.e., to be able to evaluate
adaptivity in services.

For this purpose, this paper presents an initial study of
the field, which will be used to delimit the boundaries of the
area and to check the reliability of the hypothesis about the
service-oriented approach and its applicability to evaluation.
The core of this study is structured as a systematic review:
after defining a set of goals and the corresponding research
questions, and discussing the background on the field, the
review makes an extensive bibliography review, which is
carefully examined and analyzed in order to achieve the
corresponding conclusions.

The paper is structured as follows: first, we present the
context of our study, including the definition of four primary
goals and the method of our systematic review. Then, we
provide some background justifying the interest of this study,
as well as the implicit connections between its areas. After
that, we characterize the revised information, and outline the
method we have used to locate and classify this information,
describing the performed searches and their results. We end
by summarizing the conclusions from several perspectives.

331

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

mailto:pilar.romayrodriguez@ceu.es
mailto:luis.fernandezs@uah.es
mailto:daniel.rodriguezg@uah.es

II. CONTEXT OF THE STUDY

Though it might seem a secondary issue, the relevance of
adaptivity is such that even well-known authors as Kramer &
Magee have claimed [7] that “a significant advance in the
techniques which are required for the effective development
of adaptive systems would imply an advance of an order of
magnitude in every fundamental aspect of Software
Engineering”.

Having this relevance in mind, the main goal which has
driven the conception of this study is focused in finding a
model which makes possible, by using a set of attributes, to
define and assess adaptivity in the context of services. This
model could alternatively take the form of a framework, or
even a methodology.

Then, this paper intends to provide a characterization of
the field of adaptivity. For this purpose, it lays out a set of
specific goals to drive the study, which should make possible
to measure and digest the breadth of the field, and to confirm
the need of the study itself. Moreover, it also intends to value
the most important contributions in the process.

From these goals, the paper follows a methodological
approach based on [8] with the purpose to achieve a greater
soundness than a traditional narrative description. The more
important limitations of such a study are also considered:
publication limitations (publishing bias), and selection
limitations (selection bias). The first one refers to the relative
impact of negative studies –i.e. which have not significant
differences with previous proposals–, when these have not
been published, or are only rarely referenced in the literature.
Also, there could be interesting studies written in another
language, or even duplicate references which could later
influence the metanalysis. The second one is related to the
definition of inclusion and exclusion criteria: the purpose is
to avoid to neglect the inclusion of relevant work, and also to
include misleading papers, which hinder dealing with the
relevant topics in an objective way.

The systematic review will be developed in the next
sections. First, we will describe the main goals of the study,
and outline our methodological approach. Next, we will
briefly explore the background on service-oriented
architectures and their relationship to adaptivity, focusing on
the need for evaluation and the influence of dynamic service
composition models. Then the systematic review itself is
unfolded: after presenting the main data sources, the search
strategies and selection criteria are described – to later
present the results of the review and discuss the conclusions.

A. Goals of the Study

Therefore, the goals of our systematic study are: (1) To
confirm the breadth and applicability range of adaptivity. (2)
To verify the novelty of this field of study within the context
of Software Engineering. (3a) Related to the previous one, to
evaluate adaptivity in service-oriented architectures. (3b) To
assess interesting contributions which could be applied to the
study’s primary goal (i.e., to determine the properties which
characterize adaptive systems). (4) By exploring the previous
four points, to identify the used terminology.

B. Methodological Approach in the Study

This (systematic) study begins by planning the review,
then conducting the review, and finally reporting the review.
The first activity of this process is a bibliographic search.
Based on a set of research questions related to context
definition, modelling, and management, we defined a list of
keywords and search strings used for our investigation.

The defined searches will be oriented to cover the goals
of the study, as proposed in section II.A. In this part of the
process, the selected keywords and their synonyms are of a
great relevance: the obtained results strongly depend on a
good selection of these terms.

For this reason, we also designed and realized an specific
search, focusing on articles and papers which tried to provide
a wider vision of the field, such as (other) research reviews,
overviews, state-of-the-art articles, etc.

The initial terminology search should just be considered
as an approximation, and it will be later tuned and adjusted,
to be refined by means of the obtained results during all the
process. To some extent, the process itself serves as the main
control in this initial search phase, and it could cause an
additional iteration within the systematic review process – it
just depends on the actual extension and variability of the
terminology in the field.

After the search, we proceed to select and evaluate the
obtained information. For this purpose, as already noted, the
study defines acceptance and rejection criteria related to its
specific goals, and in particular to the main goal – which was
the reason to do the study, in the first place.

To finish, the obtained results will be analyzed and
interpreted. In this phase, the process will make possible to
synthesize the results with regard to the proposed goals.

III. BACKGROUND: ADAPTIVITY IN SERVICE-ORIENTED

ARCHITECTURES

Nowadays, the notions of service orientation (or service-
oriented computing, SOC) [9] and service-oriented
architectures (SOA) have been totally integrated in the
current conception of software. This is the reason why they
define a perfect workbench to assess adaptive properties in
generic software systems.

Therefore, this section reviews the context of work in
both fields, focusing in the assessment of adaptivity, and
service-oriented architectures.

A. Adaptivity Assessment & Evaluation

Adaptive systems can be defined as “systems able to
react to automatically adapt themselves to changes in their
environment”. This reaction can be specifically programmed,
or could rise from an emergent behavior. This category of
systems has been globally designated with the name of self-*
systems [10], which explicitly refers to the variability of the
concrete aspect to consider. However, in recent times most
authors prefer to designate them with the generic name of
adaptive (or self-adaptive) systems, like this paper did also in
the Introduction.

332

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Adaptivity is a complex field of study. First, because the
term has explicitly been conceived to be generic, so we must
first decide which specific feature (“attribute”) are we going
to consider every time. And second, because too often we
lack a clear reference model which could serve as the basis
to compare to the system’s degree of adaptivity. Therefore, it
is necessary to have some kind of model to make possible to
assess those capabilities, either quantitatively (in the ideal
case) or at least roughly, by approximation.

In general, the development of adaptive systems, as well
as the more concrete development of adaptive services, lacks
a clear set of methods and metrics able to assess the actual
capabilities of a specific implementation. That is, it is really
difficult to even decide if a given system is “adaptive” or not.
In fact, this particular distinction is almost intuitive; however
the increasing importance of this features, and the difficulties
in their implementation, highlight the relevance of achieving
the definition of a quantitative approach, able to deal with
concrete values. For this reason, one of the main goals of this
study focuses in checking existing references, which enable
or guide the process to obtain either the model or relevant
metrics, to be able to assess the level of adaptivity, even in a
qualitative way.

B. Service-Oriented Architecture: Service Composition

Mechanisms

A well-known definition of service-oriented architecture
(SOA), as given by Michael Papazoglou [11] states that it is
“a meta-architectural style, based in loosely coupled
services, which provides flexibility to business processes in
an interoperable way, and independently from the
technology”. Therefore, its main goal is interoperability,
which is itself a consequence of loose coupling.

However, a standard definition of SOA is still debated, in
spite of the popularity of the term – probably because it has
been used with different meanings in different contexts, and
referring to different technological aspects. Beyond those
details which distinguish the many variants of the concept of
service (web services, RESTful services, grid systems, etc.),
there are still several intrinsic features in its definition. These
features imply that service-oriented architectures are a priori
more dynamic and flexible than many “traditional” ones, in
particular component-based architectures – and this can be
considered inherent to its own nature.

From this point of view, it is interesting to note at least
two of these features, which suggest this kind of architecture
as a good evaluation workbench for adaptivity:

1) External Composition Mechanisms. First, services are

always part of a modular system – they are conceived to be

used as part of a larger structure. However, there is a subtle

difference to more traditional approaches: service systems

are designed to be composed at runtime.
Services cannot assume anything about the rest of the

elements in the composition. First, their interface is separated
from the rest of the service, and therefore services never
interact directly to the rest of the system. Second, they are
not designed as part of a concrete compound: instead of that,
once they are implemented and deployed, they are included
in some composite system, which was later conceived.

These are the reasons why the well-known composition
models for services (choreography and orchestration) must
be conceived as external compositions. Thus a service does
not even need to know if it is contained in a composite: the
business logic (the “intelligence” of the system) belongs in
the structure itself, not in its individual components. Within
an orchestration, it is in the orchestrator; but choreographies
are even more complex, as the composition schema is
distributed along the composite – i.e. it is decentralized.
Every individual service receives just a “local” subset of
instructions, without a perspective of the global plan. Even
service mashups, a promising approach, are again an external
composition model – in fact, essentially an orchestration.
Another consequence is crosscutting. Unlike traditional
composition, service models do not preclude that the same
service is simultaneously a part of more than one composite.
This implies that every service composition is orthogonal to
any other which is performed later [6].

2) Instrinsically Open Architecture. Of course, many

existing systems, and distributed systems in particular, have

claimed to define an open architecture. In practice, an open

system is every system which, by defining or using an

standard interface, is able to compose any external element

defined as a client of that interface. However, if constraints

imposed by this interface are too strict, the limits they define

hinder the capture of information about the different clients

– i.e. it would present an homogeneous architecture,which is

exactly the opposite of our goal.
Services use a different approach: the interface is defined

at the beginning, to offer a concrete functionality (a service),
and to guarantee a certain quality level (i.e. QoS). But apart
from that, services are conceived, even at the technical level,
to be composed to any other element able to interact to them.
Therefore, they are presented as the ultimate open system: in
the specific case of RESTful web services, for instance, the
only actual constraint is the use of the HTTP protocol, which
was conceived using the REST architectural style itself - and
this is not an actual constraint, nowadays.

Also, we have to consider that the current evolution of
service systems has a clear trend towards a significant rise of
the scale. The original “XML web services” were in general
small modules, of a scale comparable to that of objects, or
even smaller. Currently, the concept is clearly shifting to be
equivalent to so-called Software as a Service (SaaS) – where
the scale of a service is similar to that of a complete
application. In fact, the approach itself is evolving from the
potential provided by a concrete technology which focused
on interoperability, to the design of a new, generic software
distribution model (shifting from “product” to “service”).

In any case, current service-oriented architectures, when
this term is understood in the wider sense [12], present the
same features of flexible and open composition we have
already noted – and this makes them adequate as a
workbench for adaptivity evaluation in software systems.

IV. REVISED INFORMATION & METHODOLOGY

This study is based on information obtained from several
digital bibliography search engines. Specifically, we have

333

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

used search engines from the best known and most widely
recognized publishers in the fields of Computer Science &
Information Technology, as well as Google Scholar.

To have a preliminary structuring of the area, we first
considered the results provided by Google Scholar. The goal
was to assess the research activity on adaptive systems in the
period 2000-2011, including every potential environment,
and comparing these results to those in the specific subarea
of service-oriented architectures in section A .

The remaining searches followed a more systematic
approach, guided by specific goals (in the form of questions),
specifically those which were proposed in section II.A.

Throughout all this search process, we have considered
the possibility of evaluating the used terminology, with the
purpose of extending the search to a wider scope – but still
within the parameters of the study. This evaluation has made
possible to change and evolve the initial searches, to the final
form we will describe in the following.

After performing those search processes, our inclusion
and exclusion criteria were used to select the most relevant
articles. Then we also examined the references cited in these
papers, with the purpose to select other relevant papers,
which were not located previously due to their publication
stage, or which have been published by some additional
publisher. This way, the publishing bias we mentioned in
section II.B.

A. Search Strategy and Selection of Areas

The search strategy has been guided by our goals, by

answering to a set of questions.
The questions were bound to specific terminology. The

variety of meanings of some of the terms used in our search
made necessary to apply an iterative, evolutionary approach,
in which those search terms were finely tuned. At the end of
the process, our study has made possible to obtain a specific
terminology summary, which covers goal (4). This specific
terminology, obtained from multiple sources in the revised
information, has been represented using a pyramidal mesh,
which will be detailed in section IV.C. Therefore the most
significant terms and notions related to our field of study
have been collected, also emphasizing their similarities and
differences, something which is not always completely clear.
This way, in our iterative process we have refined concepts
such as autonomic vs. autonomous, adaptation vs. self-
adaptation, adaptive, self-organization, self-monitoring, etc.

The definition of these terms, as part of the results for our
goal (4), is briefly explained in section IV.C, where it also
explains the aforementioned pyramidal structure.

Within these terms, we should emphasize those which
were considered for our search, namely:

 Adaptation, adaptive, adaptivity, self-*

 “Software service”, service-oriented, SOA

 Evaluation, “quality model”
In order to fulfill our first and second goals, we

performed a series of searches on Google Scholar, as well as
other databases. In the final search on Scholar, the questions
related to these goals were the following:

 Assessment of the number of articles dealing with
adaptivity, against the number of those doing the
same in the service-oriented architecture area.

 Which disciplines (research areas) are dealing with
and applying adaptation?

The first search, which intends to identify the different fields

of study related to adaptivity, is driven by the following

queries, referring to the compared subsets:

 Query #1: (("autonomic" OR adaptive OR
adaptation OR autonomous OR adaptivity OR self)
AND (evaluation OR quality))

 Query #2: (("autonomic computing" OR adaptive
OR adaptation OR autonomous OR adaptivity OR
self) AND (evaluation OR quality)) AND
(("software service") OR ("service-oriented
Architecture") OR ("Service Oriented
Architecture"))

These queries, on the Google Scholar engine, resulted in

about 7.806.600 references for query #1 and a total of 17.565

for query #2. The refined search provides roughly about

1500 results every year, from 2000 to 2011. The scope of the

study is very wide, covering almost any scientific area –

which is not surprising and confirms our intuition.

2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000

770

2980

3180

3050

2630

1980

1410

668

379

243

189

86

Figure 1. References for Query #2 from 2000 to 2011 (1-12)

The most representative areas for query #1 are: Life Science,

Engineering, Social Science and Law, Mathematics and

Statistics, Medicine and Computer Science (e.g. Ubiquitous

Computing, Grid Environments [13], mobile systems and

services [14] [15], Domotics [16], etc.)

Goals numbered as (3) are essential in the context of this

study – i.e. the evaluation of adaptivity in service-oriented

architectures. Related searches have been more specific, and

they have already been performed in bibliography databases

from the publishers themselves. The purpose was to obtain a

more accurate list of articles, trying to reach all the relevant

information – without any accidental loss. We also have used

2; 2980; 18%

3; 3180; 19%

4; 3050; 17%

5; 2630; 15%

6; 1980; 11%

7; 1410; 8%

8; 668; 4%

12; 86; 0%
11; 189; 1%

9; 379; 2% 10; 243; 1%

1; 770; 4%
1

2

3

4

5

6

7

8

9

10

11

12

334

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

references from the selected articles, and in relevant cases we

have also searched for the corresponding citations.

For instance, a representative query could be:

 Query #3: ((("autonomic computing" or self) and
(adaptive or adaptation or adaptivity)) and
(evaluation or quality)) and (("software service") or
("service-oriented Architecture") or ("Service
Oriented Architecture"))

B. Inclusion and Exclusion Criteria.

1) Related to goals (1) and (2): Neither inclusion nor

exclusion criteria were defined – this search was delimited

just by query clauses themselves, i.e. queries #1 and #2. This

could seem less “systematic” than the remainder of the study.

However, we did not intend to do a detailed classification of

areas and fields of study, but to assess if our suggestion (to

focus on service architectures) was reasonable. This goal

alone could be used to justify a specific systematic study,

which would be even more complex than the one presented

here. The reason to include this goal is to perform a shallow

examination of some of the areas suggested by many search

engines, with the purpose of perceiving the actual extension

of the field, as well as its growing rate. A systematic study

on this specific aspect would be of great interest to detect

methods or tools (from other fields) which could be applied

in the context of adaptive software.

2) Related to goals numbered as (3). In this search

process, queries are quite more specific, and they mainly

focus in evaluating adaptivity by means of self-properties.

Therefore it considers papers including models, frameworks,

metrics and evaluations on the topic. This study excluded

papers not dealing with self-properites, and those which did

not focus on assessing adaptivity/autonomic features.

3) Related to goal (4): The resulting terminology has

been extracted from papers selected in the previous phase.

Therefore their inclusion and exclusion criteria are the same.

However, some additional selection criteria are also added;

specifically, articles which define or clarify terminological

aspects, or which perform reviews in which terminological

features are also clarified.

C. Results

1) Related to goals (1) and (2): The range and scope of

the many fields of study which apply adaptivity is too wide

to be considered in this paper – in fact, it would require an

specific study itself. Therefore, for this purpose we refer to

the results outlined in section IV.A, and to the conclusions

summarized in sections V.B and V.C, which expose a global

vision for this part of our study.

2) Related to goal (3): This goal, together with results

about terminology from goal (4), provides a characterization

of adaptivity. The following table summarizes briefly this

part of the study. It describes representative categories of

existing work, indicating for each one of them references,

goals, projects, metrics and their organization.

TABLE I. EVALUATION OF ADAPTIVITY

Ref
Evaluation of Adaptivity

Goal/ Project/ Context Metrics/ Organization

[28]
[29]

Metrics to evaluate Self-*

systems criteria

/ -- /
Web-based C/S, E-learning

(AHA!), Videoconference,

Multiagent Systems

The many metrics for each
Propierties (reuse, genericity…)

/methodological, architectural,

intrinsic characteristic and
runtime

[30]

Metrics for restarting

strategies in WS Reliable

Messaging (WSRM)
/ -- / WSRM

Effective Transmission Time

(ETTi), Unnecessary Resource

Consumption (URCi),
Savings (SAVi)

/ Adaptation parameters

 (structures, payoff,
 environments, time)

[34]

Quality Model for the

software architecture of
self-healing applications

(based on ISO 9126)

/Attribute-based

architectural styles
(ABAS)

/ --

Traditional quality attributes

(Maintainability –Modifiability,
Extensibility-, Reliability –Fault

tolerance, Robustness-)

Specific Autonomic Quality
attributes (Support for detecting

anomalous system behavior,

Failure Diagnosis, Simulation of
expected behavior, Differencing

between expected and actual

behavior, Testing of correct
behavior). Autonomic Metrics:

Detection ratio, Detection time,

Fault Model Observability,
Awareness, Coupling

/ Traditional and Autonomic

attributes

[35]

User-level Quality of

 Service (QoS)

(Context awareness)
/ PLASTIC, model PFM

/ Pervasive Networking

 Environment

Performance evaluation

[36]

Quality model to evaluate
Self-* attributes (adopts 6

features of ISO 9126:

Reliability, Efficiency,
Maintainability, Usability,

Functionality, Portability)

/ --
/ --

The autonomic maturity of each

level in complex software

(Complexity of development,
business domain and

management)

/ Three-level Autonomic
Evaluation Model

(Software Complexity, Relative

Quality Factor, Autonomic
features).

Fuzzy comprehensive evaluation

(qualitative factors)

3) Related to goal (4): These results are summarized in

Fig. 2, which shows the wide spectrum of so-called self-

properties, ranging from very generic properties which can

be applied in many systems (such as context-awareness) to

specific attributes which are only found in some approaches

(like emergence). Apart from these, there are several other,

less frequent, properties – also, many of them are referred to

using different names and variants (self-managing vs. self-

management). All these issues have been considered in the

study, and they are implicitly included in this paper.
Fig. 2 represents three pyramids rather than one – they

are conceptually related, but they must be studied separately.
Pyramid #1 represents environmental adaptation, i.e. the

335

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

capability of a system to perceive its own environment and
integrate in it. Pyramid #2 represents behavioral adaptation,
i.e. the capability of a system to modify its behavior to adapt
to different conditions, ranging from pure observation to full
self-management. And pyramid #3 depicts self-adaptation,
i.e. the capability of the system to manage its own adaptivity,
possibly including its own emergent behavior. Together, this
triple representation describes the full range of adaptation.

Figure 2. The spectrum of self-properties: a pyramidal representation

This (triple) pyramid represents a gradient, rather than
strict layers – i.e. each level is more complex than the one
below itself (at least inside its own pyramid), but it is not
necessarily using its services, though it is probably supported
by some of the layers below. The same applies to the three
pyramids – their separation depicts a gradient, but they can
be considered independently. For example, an autonomic
system is in the cusp of pyramid #2 – this means it is more
complex than a self-healing system, but not necessarily that
there is an emergent behavior (from pyramid #3) above it.

Therefore the pyramidal representation must not be
understood literally – its purpose is to give an idea of their
relative conceptual scope and size. As noted, some of these
properties are built on top of the previous step (for instance,
self-management should always rely on self-healing), but
this is not always true (for instance, self-organization is not
necessarily based on context adaptation).

This representation also helps to outline the distinction
between similar but different terms: for instance, adaptation
(i.e. the full range in the triple pyramid) vs. self-adaptation
(i.e. just the range in pyramid #3). A similar conflict appears
to differentiate autonomous (i.e. the capability of a system to
act independently) from autonomic (understood here as the
combination of several self-properties [4][22]). Indeed, there
is an intimate relationship between adaptation and autonomy;
though they describe different features, to fully achieve each
one of them, the other is also required, at least partially.

V. CONCLUSIONS

We present our conclusions in the following, structured as

the next four sections.

A. Adaptivity and self-properties

Regarding adaptation, there are significant differences in
the way in which these autonomous changes in the system
must be performed. This is mainly related to the way they are
managed [17]. The range covers from the ad hoc way, in
which adaptation (or the adaptors) needs the intercession of
some stakeholder [18], to the automatic way, in which
adaptation (and the adaptors) is fully generated by tools [19].

Self-organization can also be studied within the context
of adaptivity [20], as we have already done in the previous
section (Fig. 2). It should be considered nevertheless as an
independent property, with the same level or complexity and
interest than adaptation itself – of course, the same applies to
the evaluation process [21]. This feature can also be
considered in relation to several self-properties (such as self-
adaptation or self-assembly, in particular), though it is more
basic (and at the same time, can be more complex) than the
majority of the properties listed in Figure 2. This reflection
also requires a discussion of the terminology.

In many cases, the evaluation of adaptivity needs to have
into account the specific context to deal with – some systems
require to be adaptive even when their flexibility is minimal.
This relative scale must also be considered.

B. Adaptivity in different areas

The wide scope of the field suggests that there could be
methods and techniques designed for the evaluation of
adaptivity [2] [4] [5] [22] which could be applied at the
software architecture level. Several techniques have also
been inspired in other fields, such as the Control Loop Model
[2], and some others can still be transferred – much of them
in the context of natural systems, in particular in the context
of self-organization.

The growing relevance of this field is even more apparent
in the context of “new” kinds of applications which are
appearing right now and in the near future. An obvious
example is adaptation in the context of mobile systems,
where context-awareness, which includes a wide range of
techniques, has been an active line of research.

C. Adaptivity in Software Engineering

An immediate conclusion, with respect to the field of
software engineering, is that the evaluation and assessment
of adaptivity is still a relatively new area. A review of the
existing literature shows that there are still several aspects to
define, such as languages or methods [23][24][25], etc. Once
this is done, the quality of service (QoS) could be influenced
by adaptivity, just like it is now by interoperability – this
would be used as the criteria to select and use certain
systems [17]; in summary, this could provide soundness to
autonomous systems. There is already some amount of work
in this direction, but these are still proposals under
discussion, the first contributions which must be refined.

Adaptive systems also begin to be considered within the
specific subfield of Requirements Engineering, for instance
[26]. But, besides deciding when to adapt (adaptation time),
we are also interested in the nature of adaptive capabilities,
and how to define generic models which could determine our
adaptive systems.

336

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

D. Evaluation of Adaptivity

In summary, we can conclude that currently there is not
any effective method able to evaluate the adaptivity of a
software system [27][28] [29][30][31][32][33][34][35][36] –
not even when we refer to this property not in the wider
sense, but focusing on a concrete feature.

Also, as deduced from section IV.B, the scope of service-
oriented architecture is comparatively much smaller than the
general scope of adaptivity. But while the size of the field
has maintained constant, the importance of services has
increased – therefore, we can conclude that our hypothesis is
reasonable, and then, that adaptive services can be used as a
model for generic adaptivity.

REFERENCES

[1] L. Northrop, Ultra Large-Scale Systems: The Software Challenge of
the Future, SEI Books, Software Engineering Institute, 2006.

[2] B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee,
Software Engineering for Self-Adaptive Systems, Lecture Notes in
Computer Science 5525, Springer, 2009.

[3] B.H.C. Cheng, et al, “Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2010),” 32nd International Conf. on
Software Engineering (ICSE 2010), ACM Press, 2010, pp. 447-448.

[4] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” IEEE Computer, vol. 36, 2003, pp. 41-50.

[5] M.C. Huebscher and J.A. McCann, “A Survey of Autonomic
Computing -- Degrees, Models and Applications,” ACM Computing
Surveys, vol. 40, 2008.

[6] C.E. Cuesta and M.P. Romay, “Elements of Self-Adaptive Systems -
A Decentralized Architectural Perspective,” Self-Organizing
Architectures, Lecture Notes in Computer Science, vol. 6090:
Springer, 2010, pp. 1-20.

[7] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural
Challenge,” Future of Software Engineering (FoSE 2007), IEEE
Computer Society, 2007, pp. 259-268.

[8] B. Kitchenham, “Procedures for performing systematic reviews,”
Joint Technical Report, Keele University and National ICT, 2004.

[9] M.P. Papazoglou and D. Georgakopoulos, “Introduction to the
Special Issue on Service-Oriented Computing,” Communications of
the ACM, vol. 46, 2003, pp. 24-28.

[10] O. Babaoglu, M. Jelasity, et al, Self-star Properties in Complex
Information Systems: Conceptual and Practical Foundations, Lecture
Notes in Computer Science 3460, Springer, 2005, pp. 1-20.

[11] M.P. Papazoglou, Web Services: Principles and Technology,
Prentice-Hall, 2007.

[12] NEXOF Reference Architecture Specification, Version 1.0, 2010.
http://www.nexof-ra.eu/?q=node/695. Last access: 07/15/2011.

[13] D. Ardagna, S. Lucchini, R. Mirandola, and B. Pernici, “Web
Services Composition in Autonomic Grid Environments,” Business
Process Management Workshop, Springer, 2006, pp. 375-386.

[14] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S.O. Hallsteinsen, J.
Lorenzo, A. Mamelli, and U. Scholz, “MUSIC: Middleware support
for self-adaptation in ubiquitous and service-oriented environments,”
Software Engineering for Self-Adaptive Systems, Springer, Lecture
Notes in Computer Science 5525, 2009, pp. 164-182.

[15] G. Wrzesinska, J. Maassen, and H.E. Bal, “Self-adaptive applications
on the grid,” Proceedings of the 12th ACM SIGPLAN symposium on
Principles and practice of parallel programming, New York, NY,
USA: ACM, 2007, pp. 121-129.

[16] J. Ferreira, J. Leitão, and L. Rodrigues, “A-OSGi: A Framework to
Support the Construction of Autonomic OSGi-Based Applications,”
Autonomic Computation and Communication Systems: Autonomics
2009, Lecture Notes of the ICST 23, Springer, 2010, pp. 1-16.

[17] C. Canal, J.M. Murillo, and P. Poizat, “Software Adaptation,”
L’Objet: logiciel, bases de données, réseaux, vol. 12, 2006, pp. 9-31.

[18] C. Peper and D. Schneider, “On runtime service quality models in
adaptive ad-hoc systems,” 2009 ESEC/FSE workshop on Software
Integration and Evolution @ runtime, ACM, 2009, pp. 11-18.

[19] A. Bottaro and R. Hall, “Dynamic Contextual Service Ranking,”
Software Composition, Springer 2007, pp. 129-143.

[20] M. Randles, A. Taleb-Bendiab, and D. Lamb, “Cross Layer
Dynamics in Self-Organising Service Oriented Architectures,” Self-
Organizing Systems, Springer, 2008, pp. 293-298.

[21] L. Liu, S. Thanheiser, and H. Schmeck, “A Reference Architecture
for Self-organizing Service-Oriented Computing,” Architecture of
Computing Systems (ARCS 2008), U. Brinkschulte, T. Ungerer, C.
Hochberger, and R. Spallek, eds., Springer, 2008, pp. 205-219.

[22] P. Lin, A. MacArthur, and J. Leaney, “Defining Autonomic
Computing: a Software Engineering Perspective,” Proceedings
Australian Conference on Software Engineering (ASWEC 2005),
IEEE Computer Society Press, 2005, pp. 88-97.

[23] M. Wolski, C. Mazurek, P. Spychała, and A. Sumowski, “The
architecture of distributed systems driven by autonomic patterns,”
Software Engineering Techniques: Design for Quality, K. Sacha, ed.,
Springer Boston, 2007, pp. 49-60.

[24] Y. Liu, M. Tan, I. Gorton, and A. Clayphan, “An Autonomic
Middleware Solution for Coordinating Multiple QoS Controls,”
Service-Oriented Computing (ICSOC 2008), A. Bouguettaya, I.
Krueger, and T. Margaria, eds., Springer, 2008, pp. 225-240.

[25] D. Menasce, H. Gomaa, S. Malek, and J. Sousa, “SASSY: A
Framework for Self-Architecting Service-Oriented Systems,” IEEE
Software, Early Access article, IEEE, in press.

[26] K. Welsh and P. Sawyer, “When to Adapt? Identification of Problem
Domains for Adaptive Systems,” Proceedings of the 14th
international conference on Requirements Engineering: Foundation
for Software Quality, Springer-Verlag, 2008, pp. 198-203.

[27] J.A. McCann and M.C. Huebscher “Evaluation issues in autonomic
computing”. Proceedings of Grid and Cooperative Computing
Workshops (GCC), IEEE CS Press, 2004, pp. 597-608.

[28] L. Masciadri and C. Raibulet, “Frameworks for the Development of
Adaptive Systems: Evaluation of Their Adaptability Feature Through
Software Metrics,” 4th International Conference on Software
Engineering Advances (ICSEA 2009), 2009, pp. 309-312.

[29] C. Raibulet and L. Masciadri, “Evaluation of Dynamic Adaptivity
through Metrics: an Achievable Target?,” Joint Working IEEE/IFIP
Conference and European Conference on Software Architecture
(WICSA/ECSA 2009), IEEE CS Press, 2009, pp. 341-344.

[30] P. Reinecke, K. Wolter, and A. van Moorsel, “Evaluating the
adaptivity of computing systems,” Performance Evaluation, vol. 67,
2010, pp. 676-693.

[31] D. Robinson and G. Kotonya, “A Self-Managing Brokerage Model
for Quality Assurance in Service-Oriented Systems,” High-Assurance
Systems Engineering, IEEE, 2008, pp. 424-433.

[32] G. Feuerlicht, “Simple Metric for Assessing Quality of Service
Design,” Service-Oriented Computing, Springer, 2011, pp. 133-143.

[33] Luqi and G. Jacoby, “Testing Adaptive Probabilistic Software
Components in Cyber Systems,” Foundations of Computer Software.
Modeling, Development, and Verification of Adaptive Systems (16th
Monterey Workshop), LNCS 6662, Springer, 2011, pp. 228-238.

[34] S. Neti and H.A. Muller, “Quality Criteria and an Analysis
Framework for Self-Healing Systems,” Proc. Software Engineering
for Adaptive and Self-Managing Systems (SEAMS’07, ICSE), IEEE
Computer Society, IEEE Digital Library, 2007, p. 6.

[35] M. Autili, P. Inverardi, and M. Tivoli, “Run Time Models in
Adaptive Service Infrastructure,” Run-time mOdels for Self-
managing Systems and Applications, Springer, 2010, pp. 125-152.

[36] H. Zhang, H. Whang, and R. Zheng, “An Autonomic Evaluation
Model of Complex Software,” International Conference on Internet
Computing in Science and Engineering, 2008, pp. 343-348.

337

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://www.nexof-ra.eu/?q=node/695

