
 UML 2.0 Profile for Structural and Behavioral Specification of SCA Architectures

 Wided Ben Abid Mohamed Graiet Mourad Kmimech
 MIRACL, ISIMS MIRACL, ISIMS MIRACL, ISIMS
 BP 1030, Sfax 3018, TUNISIA BP 1030, Sfax 3018, TUNISIA BP 1030, Sfax 3018, TUNISIA
 benabidwided@hotmail.com mohamed.graiet@imag.fr mkmimech@gmail.com

 Walid Gaaloul
 Computer Science Department Télécom SudParis
 Mohamed Tahar Bhiri 9, rue Charles Fourier 91 011 Évry Cedex, France Eric Cariou
 MIRACL, ISIMS walid.gaaloul@it-sudparis.eu Université de Pau et des pays de l’Adour
BP 1030, Sfax 3018, TUNISIA Avenue de l'Université BP 1155 64013
 Tahar_bhiri@yahoo.fr PAU CEDEX France

 Eric.Cariou@univ-pau.fr

Abstract— Service Component Architecture (SCA) aims to
simplify the construction of service oriented architecture
(SOA) to encourage a better reuse and to be independent from
used technologies. In the other hand, UML 2.0 is the de-facto
standard for graphical notation and modelling in software
engineering. To face this situation we recommend an
adaptation of UML 2.0 to SCA. It is in this context that we
have defined a profile UML 2.0 for SCA containing a set of
stereotypes applied to metaclasses stemming from the
metamodel UML 2.0. These stereotypes are completed by
formal constraints in OCL. Our profile introduces new
elements to reflect the architectural concepts of SCA.

 Keywords-Software architecture, SCA, UML 2.0, OCL,
Profile and Metamodel.

I. INTRODUCTION

Nowadays, software engineering aims to decrease the
complexity of application development by reusing
heterogeneous and distributed software components. Thanks
to the Web technologies, to the SOA architecture (Service
Oriented Architecture) [1] and the SCA Architecture
(Service Component Architecture) [2], the opening of the
company to the world is made possible. The use of the
standard SCA as the model of specification of the service
oriented components architectures produces concepts and
notations which are not readable and easily understandable,
especially in the industrial circles. Using a graphical model
seems a way that could overcome this disadvantage.

The UML language being a modelling standard which
supplies, on one hand readable graphic representations and
on the other hand proposes diagrams to specify workflows,
seems a relevant way to model SCA Architectures. To face
this situation, we recommend an adaptation of UML 2.0 to
the SCA. It is in this context that we defined a profile UML
2.0 of specification of the architectures SCA. Our profile
UML 2.0-SCA is a set of stereotypes applied to metaclasses
stemming from the UML 2.0 metamodel.
The proposed stereotypes are endowed with the constraints

of use expressed formally in OCL [3]. Such a profile is
defined to favor:

• Recovery (or reuse) of software architecture
described in SCA from the academic world.

• Design and implementation of software systems
having explicit and documented software
architectures.

• The transformation of model according to the
approach MDA [4] [5] [6]. For example, the
transformation of a PIM (Platform Independent
Model) described in this profile to another PIM or
PSM (Platform Specific Model) described in UML
2.0 or using others profiles.

Then, we partially automate our proposed formalization
methodology using an MDE (Model Driven Engineering)
approach. For this, we will transform the metamodel of the
proposed UML 2.0-SCA profile to SCA metamodel. These
metamodels respectively play the role of source and target
metamodels for the exogenous transformation of the profile
UML2 to SCA. In addition, we implemented
ProfilUML2SCA, a tool for this transformation using the
MDE language ATL (ATLAS Transformation Language)
[7].

This paper has four main sections besides an introduction
and a conclusion. The first and second section will position
our contribution with respect to different approaches of
modelling software architectures and initializes an SCA
metamodel to express in a semi-formal way the SCA
concepts to be modeled in UML 2.0 to establish
correspondences. The third section describes an extension of
the proposed UML profile. In Section 4, we present our
automatic MDE approach for Exegenous transformation
from our profile to SCA application.

II. SOFTWARE ARCHITECTURE IN UML

UML is a modelling language which is generalist, semi-
formal and widely used in the industrial world. However,
several researchers [8] [9] studied the possibility of
modelling software architecture by using UML. Two
approaches corresponding to the standard UML are

439

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

proposed. The first strategy uses UML as it is, to represent
the architectural concepts of the ADLs, such as component,
connector, role, port and configuration. The major advantage
of this approach is the understanding of this modelling by
every user of UML. But this strategy has limitations on the
inability of UML, especially UML1.x to translate
architectural concepts explicitly. For this reason, we use a
second approach which consists in defining profiles.
UML can be adapted to every domain through the
extensibility mechanisms offered by this language such as
stereotypes, tagged values and constraints. These
mechanisms offered by UML extend UML without changing
the UML metamodel. The advantage using profiles consists
in clarifying the representation of the architectural concepts.
So, we define this profile based on the strategy of using
extensibility mechanisms of UML 2.0 to constrain the UML
metamodel in order to adapt to the architectural concepts of
SCA.

III. METAMODELLING OF THE SCA ARCHITECTURE

A. Structural aspects of SCA

SCA provides a programming model for building
applications and systems based on a SOA. The main idea
behind SCA is to be able to build distributed applications,
which are independent of implementation technology and
protocol. SCA is the result of a collaborative project OSOA
(Open Service Oriented Architecture) [10] which aims to
provide a set of specifications including firstly a model for
creating components and also a programming model for
building software applications based on architecture services.

In this section, we introduce only the model for creating
software components. SCA provides an assembly model
representing a network of services and allows building the
SCA components in different languages, while ensuring
integration with existing models. The basic unit of
deployment of an SCA application is composite. A
composite is an assembly of heterogeneous components,
which implement particular business functionality (see
Figure 1 below).

Figure 1. Diagram of an SCA composite [11]

A SCA composite is an assembly, which can contain
components, services, references of services, declarations of
properties allowing the configuration of its components, and

links specifying the connections between components.
Independently of whatever technology is used, every
component relies on a common set of abstractions including
services, references, properties, and bindings.

A component is the basic entity for the construction
of SCA application. This element has an implementation that
must be either Java class or a BPEL process. Independently
of the technology used for its implementation, the
component is based on a common set of abstractions such as
services, references and properties. Figure 2 shows an
example of an SCA component:

Figure 2. Example of SCA component

Each SCA component implements a business logic
exposed by one or more services. A service describes what a
component provides, i.e., its external interface. A reference
specifies what a component needs from the other
components or applications of the outside world. Services
and references are matched and connected using wires or
bindings. A component also defines one or more properties.

To provide distant communications between services,
SCA offers the possibility of using a protocol described in
the binding specified within the service and\or within the
implementation, for example the protocols JMS (Java
Message Service), RMI (Remote Method Invocation) or
SOAP (Simple Object Access Protocol) to perform
synchronous or asynchronous communications. A single
service or reference can have multiple bindings, allowing
different remote software to communicate with it in different
ways.

B. Behavioural aspects of SCA

The web services technology is widely used as support of
the interoperability between applications. In this context, the
interactions between components of the SCA Architecture
are made through its service interfaces. The communication
is realized by means of message exchanges. A web service
defines the functionality it provides and the required
information that must be met to perform its function. The
functionality of the web service can be implemented in
any number of ways and languages such as XLANG [12],
Web Services Flow Language(WSFL) [13] and Business
Process Execution Language(BPEL) [14].

BPEL is a language of composition which is spirit to
become a standard. This language describes a business
process who specifies the execution order between a

440

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

numbers of constituent activities, the partners involved, the
message exchanged between these partners and the fault and
exception handling mechanisms, to achieve a commercial
goal.

The main concept of BPEL is the BPEL process. It uses
several concepts as Partner links, handlers, variables,
correlation sets, and activities for the process logic. The
atomic element of a process is an activity, which can be the
“send of a message” (activity: reply), the “reception of a
message” (activity: receive), the “call of an operation”
(activity: invoke) or “manipulate data” (activity: assign).
Structured Activities prescribe the order in which a
collection of activities take place like “execute these
structured activities prescribe the order in which a collection

of activities take place like “execute these activities
sequentially” (activity: sequence), “repeat the execution of
this activity” (activity: while) or “parallel execution of
activities” (activity: flow).

In this section, we thus decided to elaborate a metamodel
for SCA Architecture representing most of the concepts
stemming from this specification. This metamodel allows, in
our context, to express in a semi-formal way the concepts
SCA both structural and comportemental to be modelled in
UML 2.0. Our metamodel is built as an extension of the
metamodel proposed by the community OASIS
(Organization for the Advancement of Structured
Information Standards). Our metamodel is illustrated in
Figure 3.

Figure 3. A metamodel of SCA

The behavioral aspect is represented in this metamodel
by the BPEL process. While being a powerful language for
implementing processes, BPEL is difficult to use. Its XML
representation is very verbose and only readable for the
trained eye. Several vendors offer a graphical interface that
generates BPEL code. However, the graphical

representations are a direct reflection BPEL code and not
easy to use by end-users. Therefore, we provide a mapping
from UML to BPEL. In the following section, we are going
to establish stereotypes to model respectively behavioral and
structural concepts of the SCA Architecture.

441

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

IV. UML PROFILE FOR SPECIFYING SCA ARCHITECTURES

This part is dedicated to the technical definition of the
profile SCA-UML. Such a profile contains a set of
stereotypes applied to métaclasses UML 2.0 and defined by a
set of constraints OCL. In UML 2.0, the state machines can
be used to specify the behavior of several elements of the
models described in UML 2.0, such as instances of a class
UML 2.0. While the state machine description of protocols
can be used with profit to express protocols related to
scenarios of use of services offered by interfaces or ports
(Figure 4).

Figure 4. State machine description of protocols associated at the interfaces

or ports

The concept of state machine UML2 .0 is used as a basis
for stereotyping behavioral aspects of SCA or more precisely
BPEL activities.

In the rest, we will establish stereotypes to model
structural and comportemental aspects of SCA such as BPEL
process, BPEL activities, component, ports services, ports
references and connectors. We provided particular care to the
development of formal constraints in OCL related to
stereotypes. This gives a better idea for the context of use of
these stereotypes.

A. SCA Components

An SCA component is described by an UML 2.0
component stereotyped by <<SCAComponent>> (Figure 5).
The stereotype <<SCAComponent>> is defined by the
following OCL constraints:

• No provided or required interface is associated with
<<SCAComponent>>.

 self.provided -> isEmpty () and self.required ->
 isEmpty ()
• All ports associated with <<SCAComponent>> are

<<SCAPortService>> or <<SCAPortReference>>
and must be of type port.

 self.ports -> forAll (p| p. stereotype =
 SCAPortService and p.SCAPortServiceType =
 #port) or (p| p. stereotype = SCAPortReference
 and p.SCAPortReferenceType = #port))
• <<SCAComponent>> has at least one port.

 self.ports -> size () >= 1 and (self.ports.oclAsType
 (service).stereotype = SCAPortService or

 self.ports.oclAsType (reference).stereotype =
 SCAPortReference)
• One and only one <<SCAProtocolStateMachine>>

is associated with <<SCAComponent>>.
 self.stateMachine -> size () = 1 and
 self.stateMachine.oclAsType
 (ProtocolStateMachine).
 Stereotype =SCAProtocolStateMachine)

Figure 5. The Component metaclass in UML 2.0 metamodel

B. Services and references

A service from an SCA component provides a set of
business functionality to other SCA components whereas a
reference represents the services offered by other
components. For it a SCA service is described by an UML
2.0 port (Figure 6) stereotyped by <<SCAPortService>>. A
SCA reference is described by an UML 2.0 port (Figure 7)
stereotyped by <<SCAPortReference>>.

A port is the element of a component used to
interconnect components via connections between ports. A
port realizes an interface of services.

The stereotype <<SCAPortService>> is defined by the
following OCL constraints:

• All the offered interfaces associated in
<<SCAPortService>> are SCAInterface.

 self.provided -> forAll (i | i.stereotype =
 SCAInterface)
• <<SCAPortService>> has at most one interface

provided and no interface required.
 self.provided -> size () <=1 and self.required->
 isEmpty ()
• One and only one <<SCAProtocolStateMachine>>

is associated with <<SCAPortService>>.
 self.protocol -> size () = 1 and self.protocol ->
 forAll (psm| psm.stereotype =
 SCAProtocolStateMachine)

442

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 6. The metaclass Port in the metamodel UML 2.0

The following OCL constraints are defined for the
stereotype <<SCAPortReference>>:

• All required interfaces associated with
<<SCAPortReference>> are SCAInterface.

 self.required -> forAll (i| i.stereotype =
 SCAInterface)
• <<SCAPortReference>> has at most a required

interface and no interface provided.
 self.required -> size () <=1 and self.provided->
 isEmpty ()
• One and only one <<SCAProtocolStateMachine>>

is associated with <<SCAPortReference>>
 self.protocol -> size () = 1 and self.protocol ->
 forAll (psm| psm.stereotype =
 SCAProtocolStateMachine)

 Figure 7. The metaclass Port in the metamodel UML 2.0

C. The interfaces of components

Every SCA interface (a port of a component) possesses
one or several operations. An SCA interface is described by
an UML 2.0 interface (Figure 8) stereotyped by
<<SCAInterface>> for ports services and interfaces. This
one is defined by the following OCL constraints:

• All the operations associated with SCAInterface are
operations without parameter.

 self.ownedOperation -> forAll
 (o|o.formalParameter -> isEmpty ())
• No attributes are associated with an SCAInterface.
 self.ownedAttribute -> isEmpty ()
• Exactly one and only one

<<SCAProtocolStateMachine>> is associated with
each <<SCAInterface>>.

 self.protocol -> size () = 1 and self.protocol ->
 forAll (psm| psm.stereotype =
 SCAProtocolStateMachine)

Figure 8. The metaclass Interface in the metamodel UML 2.0

D. BPEL Process

A BPEL process is represented as a protocol state
machine describes the comportemental aspect of SCA with
the stereotype <<SCAProtocolStateMachine>>. But the
definition of the stereotype requires the introduction of other
stereotypes such as <<SCAProtocolTransition>>,
<<SCARegion>>and <<SCAVertex>> to express more
formally the behavioral aspects.

1) <<SCAVertex>> stereotype
Each activity has a descriptive name and an entry action

detailing the work performed by the activity. For these, an
activity in BPEL can be represented by a state in diagram
state machine (see Figure 9), stereotyped by
<<SCAVertex>>. This stereotype is defined by the following
OCL constraints:

• All transitions incoming <<SCAVertex>> must be
SCAProtocolTransition.

 self.incoming -> forAll (t |
 t.oclAsType (ProtocolTransition).stereotype
 SCAProtocolTransition)
• All outgoing transitions of <<SCAVertex>> must be

SCAProtocol transition.
 self.outgoing -> forAll (t | t.oclAsType
 (ProtocolTransition).stereotype =
 SCAProtocolTransition)

Figure 9. the metaclass Vertex in the metamodel UML 2.0

443

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

2) <<SCARegion>>
The stereotype <<SCARegion>> applied to the metaclass

Region (see Figure 10) is defined by the following OCL
constraints:

• All vertices belonging to <<SCARegion>> are
SCAVertex.

 self.subvertex -> forAll(s | s.stereotype =
 SCAVertex)
• All transitions belonging to SCARegion must be

SCAProtocolTransition.
 self.transitions -> forAll (t | t.oclAsType
 (ProtocolTransition).stereotype =
 SCAProtocolTransition)

Figure 10. the metaclass Region in the metamodel UML 2.0

3) <<SCAProtocolStateMachine>> stereotype
The stereotype <<SCAProtocolStateMachine>> applied

to the metaclass StateMachine (see Figure 11) is defined by
the following OCL constraint:

• All regions belonging to stereotype
SCAProtocolStateMachine must be SCARegion.

 self.oclAsType (ProtocolStateMachine).region->
 ForAll(r | r.stereotype = SCARegion)

4) <<SCAProtocolStateMachine>> stereotype
The stereotype <<SCAProtocolStateMachine>> applied

to the metaclass StateMachine (see Figure 11) is defined by
the following OCL constraint:

• All regions belonging to stereotype
SCAProtocolStateMachine must be SCARegion.

 self.oclAsType (ProtocolStateMachine).region->
 ForAll(r | r.stereotype = SCARegion)

Figure 11. The StateMachine metaclass in UML 2.0 metamodel

Finally, Figure 12 illustrates our UML2.0 profile for
SCA.

Figure 12. A metamodel of Profile UML 2.0-SCA

444

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

V. EXOGENOUS TRANSFORMATION OF PROFILE UML

2.0-SCA TO SCA

In this part of paper, we aim to automatically transform
this profile into an application using an MDE approach of
automation [15]. Before the transformation of our profile
into ecore, we have created its implementation in Domain
Specific Language (DSL).

A. Our approach

In this section, we present in a detailed way the
PofilUML2SCA tool written in ATL allowing the
transformation of an extension of profile proposed
previously towards an SCA application.

Figure 13 illustrates our proposed approach for an
automatic transformation of a profile UML 2.0-SCA to SCA.
We distinguish two levels of specification: M2 (a Meta model level)
and M1 (a model level) as define by the MDA approach. In our
approach a transformation model defines how to generate a
model (SCA model) according to the metamodel (SCA Metamodel)
from the model (Profile model) consistent with the metamodel
(Profile Metamodel).

Figure 13. The proposed approach for an automatic transformation profile

into SCA

The source and target models (i.e., the Profile UML 2.0-
SCA model and the SCA model) and the ProfilUML2SCA
tool are consistent with their ProfilUML, SCA and ATL
metamodels. These metamodels are also consistent with the
Ecore meta-model of the EMF platform [16]. The profile
source metamodel, resp. the SCA target metamodel, is
represented by an Ecore diagram in Figure 12, resp. Figure 3.

B. Global Overview on the ProfileUML2SCA tool

In the next, we present the standard rules for the
development of our tool. Our profile transformation into
SCA is based on rules issued from OCL constraints. An ATL
module corresponds to the transformation of a set of source
models into a set of target models according to their
metamodels. Its structure is formed by a section header, an
optional import section, a set of helpers and a set of rules.

The header section (Figure. 14) defines the names of the
transformation module and the variables of the source and
target models. The following ATL source code represents the
header of the ProfilUML.atl file, thus the ATL header for the
transformation from Profile UML-SCA to SCA application:

Figure 14. The header section of transformation

• module defines the module name.
• create introduces the target model declaration.
• from introduces the source model Declaration.
In this part of paper, we present the transformation rules

of the structural aspect transformation of our profile
ULM2.0-SCA using the ATL language.

We define the rule which allows us to transform an
SCAComponent in the profile to Component in SCA, here
an SCA component takes the same name as a SCA.

• Each instance of a stereotype SCAPortService is
transformed into a Service in SCA.

• Each instance of a stereotype SCAPortReference is
transformed into a Reference in SCA.

• Each instance of a stereotype

SCAProtocolStateMachine is transformed into a
BPELProcess.

 rule SCAComponent2Component{
 from scac:ProfilUML!SCAComponent
 to c: SCA!Component (
 name<-scac.name)}

rule SCAPortService2Service{
from scaps:ProfilUML!SCAPortService
 to s:SCA!Service(
 name<-scaps.name,
 component<-scaps.component,
 interface<-scaps.provided,
process<-scaps.provided.protocol)}

rule SCAPortReference2Reference{
from scapr:ProfilUML!SCAPortReference
 to r:SCA!Reference(
 name<-scapr.name,
 component<-scapr.component,
 interface<-scapr.required,
process<-scapr.required.protocol)}

445

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

VI. CONCLUSION

This paper proposes a UML profile for specifying the

SCA Architectures. This profile is based on the reuse of
concepts for the description of the elements of the model
which essentially arise from the SCA Architecture. Such a
profile will facilitate the work of the developers which are
not still familiarized with complex languages and notations.

In a second part, we proposed an MDE approach
which allows transforming a metamodel of our extension
of a UML profile proposed into an SCA metamodel. To do
so, we elaborated two metamodels: the ProfileUML
metamodel and the SCA metamodel. Then, we designed and
implemented a ProfilUML2SCA tool in order to transform a
profile model conform to its metamodel to a SCA model
conform to its meta-model.

The extension proposed in this paper provides a special
study of the structural and behavioral aspects of the SCA
Architecture. So, we intend to extend our profile to take into
account the advanced concepts such as SCA connector and
composite.

 REFERENCES
[1] Open SOA Collaboration, Service Component Architecture

(SCA), SCA Assembly Model v1.00 specifications, 2007.
[2] OSOA, Open Service Oriented Architecture, the Home Page,

2007. http://www.osoa.org/
[3] J. Warmer and A. Kleppe, “The Object Constraint Language,”

Addison-Wesley, August 2003.
[4] X. Blanc, “MDA en action ingénierie logicielle guidée par les

modèles,” Eyrolles, 2005.
[5] Object Management Group. MDA Guide, version 1.0.1, 2003.

http://www.omg.org
[6] J.Bézivin and X.Blanc, Promesses et Interrogations de

l’Approche MDA, Développeur Référence, Septembre 2002.
[7] F. Jouault, “Contribution à l’étude des languages de

transformation de modèles,” thèse de doctorat, Ecole Dotorale
sciences et technologies de l’information et des
matériaux, Nantes, 2006.

[8] D. Garlan, S.W. Cheng, and A. Kompanek, “Reconciling the
Needs of Architectural Description with Object-Modelling
Notations,” Science of Computer Programming Journal,
Special UML Edition Elsevier Science, 2001.

[9] N. Medvidovic, D.S. Rosenblum, D.F. Redmiles, and J.E.
Robbins, “Modelling Software Architectures in the Unified
Modelling Language,” ACM Transactions on Software
Engineering and Methodology, vol. 11, no .1, January 2002.

[10] OSOA. SCA Service Component Architecture: Assembly
Model Specification, March 2007.

[11] SCA, “Building Your First Application Simplified BigBank,”
SCA Version 0.9, August 2007.

[12] S. Thatte, “XLANG Web Services for Business Process
Design”, October 2005.

[13] F. Leymann, Web Services Flow Language.WSFL 1.0,
October 2005. http://www-
3.ibm.com/software/solutions/webservices/
pdf/WSFL.pdf.

[14] T. Andrews, F. Curbera , H. Dholakia , Y. Goland , J.Klein ,
F. Leymann, K. Liu , D. Roller, D. Smith, S. Thatte, I.
Trickovic, and S. Weerawarana, Business Process Execution
Language for Web Services, October 2005.

[15] R. Maraoui, M. Graiet, M. Kmimech, M.T. Bhiri, and B.
Elayeb, “ Formalisation of protocol mediation for web
service composition with ACME/ARMANI ADL,” Service
Computation IARIA 2010-Lisbon-Portugal, November. 2010.

[16] F. Budinsky, D. Steinberg, and R. Ellersick, “Eclipse
Modelling Framework : A developer’s Guide,” Addison-
Wesly Professional, 2003.

rule
SCAProtocolStateMachine2ProcessBPEL{
from
psm:ProfilUML!SCAProtocolStateMachine
to bp:SCA!BPELProcess(name<-psm.name)}

446

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

