
Agile Development of Interactive Software by means of User Objectives

Begoña Losada, Maite Urretavizcaya, Isabel Fernández de Castro

Dept. of Computer Languages and Systems
Faculty of Computer Engineering - University of the Basque Country

20001 San Sebastián

{b.losada, maite.urretavizcaya, isabel.fernandez}@ehu.es

Abstract—Agile methods, model-driven developments and

user-centred design are three approaches widely accepted in

the development of interactive software. In this paper we

present InterMod, a new approach that integrates all three

methods. The project planning is based on User Objectives and

the process is organised as a series of iterations, where the

work is distributed in different workgroups according to some

developmental and integration activities, each one driven by

models. The requirements are incrementally collected and

evaluated with models based on user-centered design. To speed

up this validation, we put forward the SE-HCI model, which

enriches a human-computer interaction model with the

semantics of the application and some basic characteristics of

an abstract prototype. This allows gather and validate the

requirements incrementally. Moreover, this iterative process

speeds up the development and generates results from the

project progress.

Keywords-Software Engineering; Agile method; User-

Centered Design; Model-Driven Development.

I. INTRODUCTION

Currently, Agile Methods (AM) and Model-Driven
Development (MDD) are the predominant approaches in
Software Engineering. AM are able to develop a software
product incrementally and iteratively. They get feedback
from the client at each incremental delivery and, as a result,
adapt the development plan accordingly. Most studies report
increased code quality when agile methods are used but they
also report a lack of attention to design and architectural
issues [1]; moreover, it must be noted that in the area of
Software Engineering quality software comes from good
design.
Current trends establish design as final product models

characterised by iterative and incremental development while
at the same time promoting formal development along the
lines of traditional or waterfall methodologies. Some authors
[2] point out that a drawback of MDD is that the models are
difficult to maintain, because as a project progresses changes
come up and new requirements are added.
On the other hand, in the area of Human-Computer

Interaction, User-Centered Design (UCD) is the dominant
approach. Under UCD, the end user is involved in the
process of multidisciplinary development based on iterative
design and evaluation so the designer understands the user's
needs and tasks [3][4]. But, as is the case with traditional or

heavyweight methodologies, with UCD all requirements
must be gathered and evaluated before they are implemented
[5][6][7].
To make up for the weaker aspects of these proposals,

efforts are being made to integrate agile methods into both
model-driven design [8][9], and into UCD [10]. However,
due to the fact that a majority of software engineering
development processes focus on software architecture,
satisfactory integration has not yet been achieved. Therefore,
we focus our efforts on integrating these three techniques
and we base our methodology in user-centered models
starting from requirements gathering.
The main contributions of the paper can be summarised

as follows:
c1. We propose a new approach to improve Software

Development by applying User Centered and Model-
Driven Development in an Agile manner.

c2. A new integrated model, involved in a Model Driven
Process, to support the project requirements, is
presented: the SE-HCI model. It facilitates usability and
other kinds of incremental evaluation, tested by a
multidisciplinary team of developers and users, just as
proposed by UCD.

c3. Finally, we present an agile methodology organised as a
series of iterations by means of User Objectives (UO) as
a new way to promote a correct development. This
iterative approach guides the incremental development
of software.
Our paper is structured as follows. Section 2 outlines the

primary characteristics of agile methods and how they
compare to the other abovementioned approaches. Section 3
presents our proposal, situating it in the context of related
work. We explain phases and development activities of our
approach and its model structure, especially for the
requirements model, and we show graphically a project
iteration example. Finally, we draw some conclusions and
outline our future work.

II. AGILE SOFTWARE DEVELOPMENT: VIRTUES AND

DEFECTS RELATIVE TO OTHER APPROACHES

Agile software development establishes the following as
principles [11]: Individuals and interactions over processes
and tools, working software over comprehensive
documentation, customer collaboration over contract
negotiation, and responding to change over following a plan.

539

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

This approach challenges waterfall or heavyweight
methods in which one activity begins only when the previous
one finishes and where extensive and well-founded
documentation is required. The rationale behind these
traditional methods is to reduce the number of corrections
further on in the process and consequently reduce the cost of
the project. However, in practice this type of planning fails,
as it doesn't allow the changes that inevitably come up
during development [12]. Because of this, versions of the
agile philosophy such as eXtreme Programming (XP) [13],
Scrum [14], Crystal [15], Feature Driven Development
(FDD) [16], UP [17] and others, currently prevail.

A. Agile processes and user-centered design

One of the important aspects of UCD is the collaboration
between users and developers in building software solutions,
each one bringing their experience to bear [18].According to
Norman [19], it is first necessary to think about the needs of
those who will be using the product that is being created in
order to model that information, and then iteratively evaluate
the product with users. Thus, the intention is to improve the
product’s usability such that it is easy to learn, it is easy to
use, errors are reduced and users are satisfied, as defined in
ISO standard 9241-11 [20].
Both proposals centre on the user/client and propose an

iterative development process. These contrast with
traditional architecture-based development processes, which
are directed by the developers, who structure and control the
users' activities.
Nevertheless, the differences between UCD and AM are

great in terms of how they act and what their interests are
[10]. On the one hand, the flexibility in action when faced
with changes that the agile philosophy recommends is at
odds with interface design prior to implementation (up-
front), according to the principles of UCD. On the other
hand, UCD develops a holistic product, while the agile
process results in subproducts in an incremental process.
And while agile methods focus on code development, UCD
methods focus on the design of the interaction that users will
engage in.
Finally, it must be noted that both approaches seek to

satisfy the users' needs. However, in AM users are involved
in checking that the functionality has been correctly
implemented, while in UCD users give input regarding other
aspects such as user satisfaction or efficiency of use for the
whole application. UCD focuses on how end users work with
the system, whereas AM is more concerned with how
software should be built or how the process is managed.

B. Agile processes and model-driven development

In MDD, models serve principally as documentation and
guidance for the subsequent implementation phase. Although
building models is very useful in other areas of engineering,
in Software Engineering there is great apathy toward
building and using models. Many developers think that
modelling demands the creation of excessive and extensive
documentation, which ultimately is of little help when it
comes time to implement and maintain the system [2]. This
is because the changes that arise throughout development

make these models difficult to update. In fact, many
developers skip the model redesign phases and prefer to
modify the code directly.
From this point of view, we have two issues that strongly

conflict in software development. On the one hand, MDD
needs to maintain model consistency as changes come up
during application development. That is to say, our system
will be more flexible if the model that represents it is an
accurate and updated abstraction of itself [21]. On the other
hand, due to unforeseen changes, AM perform modifications
on the implementations that are not reflected in the designs.
Therefore, if the constructed model does not correspond with
reality and our code was initially generated from the model,
this could spell failure for the project.

III. INTERMOD, AN INTEGRATED PROPOSAL

InterMod [22] is a methodology whose aim is to help
with the accurate development of interactive software.
Although it is suitable for use with web design, its utility is
not restricted to just that area. Our latest studies have led us
to place a new focus on the methodology by integrating an
agile process with the other two philosophies namely, UCD
and MDD, already present in our previous work. Also a new
vision of the Requirements Models together with the SE-HCI
model and the User Objective, to guide the process, are
included in this paper.
Our proposal is the following: organise the project as a

series of iterations, just as the agile methodologies do, and
distribute the work in the iterations according to different
developmental activities of the User Objectives. A User
Objective (UO) is a user desire e.g. “buying a t-shirt” or
“reserving a meeting room in a workplace”, that can be
achieved by one or more user functionalities. These are
defined by means of the possibilities that the end user will
perform in the application interface.
The Feature-Driven Design approach (FDD) [16] also

uses MDD and divides the labour into different features (e.g.
“calculate the total of a sale“ or “ add a new customer to a
customer list”) to see measurable progress of the project.
The functionalities implied in our UOs are always direct
user’s intentions, whereas the features can be user’s or
system’s needs. In FDD, use cases obtain the features that
allow the domain objects to be modelled (class diagram and
the operations required in the system). However, our primary
goal is not to model the domain objects but rather to model
the tasks (user actions in the interface), navigation
(action/reaction between the user and system) and
presentation (visual aspects). We focus the development
from the UCD perspective, as a new vision that obtains
partially the interface before implementing the business
logic. Once the objectives have been evaluated in terms of
testing and usability of requirements, our proposal naturally
ties in with the FDD perspective to model the domain
objects.
InterMod has four main steps, i.e. the initial step Analyse

Overall Project takes place at the project beginning, and then
an iterative process with three steps follows: Build User
Objectives List, Plan Parallel Iteration and Perform
Iteration Activities.

540

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

A. InterMod steps: Activities and Models

Fig. 1 shows a scheme of the InterMod process and the
models associated with it.

Figure 1. InterMod process and development activities

At the beginning of the project, it is necessary to analyse
it as a whole in order to determine: (a) what the starting UOs
are, and (b) the design decisions that will guide and give
coherence to this iterative and incremental process. InterMod
proposes the Analyse Overall Project step to achieve these
challenges. The starting UOs (such as those most important
or needed), together with a provisional general menu
incorporating some functionalities, provide the global view
of the application. And this analysis draws up the models
that help to collect the defining characteristics of the system
type (e.g. device type, security, window size, colour, logo,
etc) and those of the user (e.g. colour preferences, font, size,
some limitations as colour blindness, deafness, vision loss,
etc). These characteristics are collected in the System Model
and the User Model respectively. All developments in the
project will inherit, supplement or extend these models in
order to guide and ensure coherence throughout the entire
application.
The application requirements are incrementally collected

during the progressive UO List construction. Each iteration
begins with a revision of the UOs list. The Build User
Objective List step updates the list with the new UOs derived
either from previous UO developments or from the new
needs of the project. It is possible that a UO breaks on two or
more new UOs because of its complexity; on the contrary,
some UOs may be merged in one new integrated UO
because of its simplicity. That is, the UOs included in the list
may be modified, in the sense of agile methodologies [23],
through the different evaluations undertaken by developers
and users, or by the continuous meeting among members of
the same and different teams.
In order to achieve a UO, different activities must be

realised. The next step, Plan Parallel Iteration, decides for
the current iteration:

a) what UOs to develop

b) what activities to make for those UOs

c) how to distribute these different activities to the

workgroups (if there is more than one).

The iteration ends with the Perform Iteration Activities

step. Each workgroup performs the activities established in
its plan.
InterMod has two kinds of Activities: Developmental

Activities and Integration Activities.
The Developmental Activities (DAs) associated with

each UO are strongly related:

• A1.Analysis and Navigation Design

• A2. Interface Building

• A3. Business-Logic Coding.

Just as UCD recommends, before coding a relevant UO,

its interface must be validated. However, unlike UCD, it is
not required that the complete application interface be
developed before moving to the implementation of the
business logic; instead this approach stays framed in the
development of one or several UO groups. That is, each UO
requires the three DAs to be developed but a prerequisite
relation must be done A1< A2< A3 (‘<’ means prerequisite).
A1 has not got any prerequisite activity. A DA of a User
Objective is possible to deal with if and only if the UO is in
the UO list and its prerequisite is achieved.
Furthermore, to assure a correct incremental progress of

the project, some Integration Activities (IAs) are needed:

• I1.Requirement Models (RM) Integration

• I2.Interface Integration

• I3.Code Integration & Refactoring

A restriction is necessary for controlling the correct

development of an IA. Thus, it is possible to carry out an IA
Ik (K=1..3) for a concrete UOj (j=0..n) if and only if the UOj
is the fusion of two UOs belonging to the UO List and the
DAs Ak of these fused UOs are already made. To ensure
consistency in the final application, evaluations of the
incrementally obtained products as well as heuristic and
metric evaluations are included in all activities.
All iterations are guided by the same action plan that

divides the work according to the activities of different UOs,
in such a way that each DA will be next driven by models
and all the integration processes can lead to the revision and
modification of these models. Even during final integration
of the software there may be revisions of all models and new
UOs can be created.
The activities of analysis and navigation design and

RM integration deals with the Requirements Model (RM),
which includes the Semantically Enriched Human-Computer
Interaction (SE-HCI) model (more detail in section III.B). In
the Interface Building activity, the Presentation Model is
created for a UO previously designed and evaluated, and the
Interface Integration activity fuse together the
Presentation Model of some UOs. The Presentation Model
of a specific UO settles the graphical elements and others

541

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

characteristics gathered from the Requirements Models.
There are several languages for modeling user interfaces
widely used and tested, such as XIML[24] or UIML [25],
and they may be used to reflect this model. Finally, the
Business–Logic Coding and code Integration &
Refactoring activities deal with the Functionality Model
that guides the implementation in a particular programming
language. This model inherits the behaviour characteristics
from the UO Requirements Models evaluated in the first
activity. UML or SysML [26] are alternative languages
typically used to represent this model.

B. The SE-HCI model in a Model Driven Process

We propose interactive software development based on
user-centered models generated and evaluated during the
project, following the Object Management Group’s Model
Driven Architecture proposal [27].
For each UO the designers involved in the Analysis &

Navigation Design activity formalise the established
Requirements Models (RMs): Task Model and SE-HCI
Model (see Figure 2.).

Figure 2. The SE-HCI model involved in a Model-driven process

The Task Model, which is a classic element in Model-
Based User Interface Development [28][29][30], describes
user performance in completing each task. The concept that
is the basis of RM is the Task, which allows user
performance to be captured. This concept is complemented
by the ordering of tasks (Sequential, Indifferent, Choice,
Concurrent), iteration which establishes whether it is
compulsory to carry out a task and how many times it is
necessary to do so (Unitary, Optional, Repetitive) and
hierarchy, which correctly places the task in the complete
set of tasks. That is, the Task Model defines the semantic
aspects of the application to be associated (see Fig. 3).
The SE-HCI Model, which incorporates information from

the User and System Models, is an abstract description
constructed over the Task Model. The SE-HCI Model is the
core of our proposed methodology, and it not only gathers
the requirements from the Task Model but it also
incorporates three essential aspects. The first two are
behaviour aspects and the third, visual aspect (see Fig. 3):

1) The system direct communication with the user. The
description of both the actions that users and the system
can carry out at the user interface level (who performs
the intervention: usr/sys), during an interactive session
[28], and their possible temporal relations are here
included. That is, it generates those communications in

which the system directly communicates with the user
by displaying an error window or a simple message.
This means that the system's operations on other
elements in the application's environment, such as a
database, won't be expressed in the model since they
will not be involved in any direct communication with
the user.

Figure 3. The Requirement Meta-Model

2) The descriptions of the correct interactions, taken from
the Task Model, as well as the incorrect ones. Both types
of interactions express the different application runs
(next task to perform). That is, this model represents the
semantics of the application through interface
navigation.

3) The basic visual characteristics, such as colours,
sections, button types, etc. The SE-HCI incorporates a
Prototype Model that gathers these aspects, some of that
are assumed from the User and System Models.

Different techniques can be used to implement this

specification. Fig. 4 shows a graphical example of the SE-
HCI for the development of a website; it has been made with
a HTA technique [31] (some symbols express the
characteristics of the tasks). In this case, we use a XML
format to express that SE-HCI specification.
In line with user-centered designs, our proposal stresses,

like Hix's model [32], the integration of the evaluation
process at all stages of the lifecycle rather than just at the end
as is the case in the classic cascade lifecycle. The RMs make
it possible to quickly produce incremental prototypes by
adapting the design according to the modifications prompted
by both user and software developer evaluations. Similar to
our proposal, Propp and his colleagues [33] start with task
models in the process of developing interactive applications
and they then define the navigational structure, the creation
of an Abstract User Interface (AUI) that is independent of
the device, and one or more Concrete User Interfaces (CUI).

542

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 4. Snapshot of the XML description and Task Hierarchy of an
application development

During the development process they perform several
usability evaluations. We propose the evaluation of the
requirements involved in the SE-HCI with an abstract
prototype (Fig. 5) created automatically by transforming the
SE-HCI model. From this point, the evaluation can be carried
out jointly by the designers, customers and developers.
According to Wiegers [34] we think that it’s hard to visualise
exactly how software will behave by reading textual
requirements or studying analysis models. Users are more
willing to try a prototype than to read a document. Wiegers
says: “A prototype is useful for revealing and resolving
ambiguity and incompleteness in the requirements.”

Figure 5. An Abstract Interface with simple menus and buttons

C. Iterations in InterMod. A general example

In this section we explain an iteration progress of a
project. In order to facilitate and simplify the general
example comprehension, we represent graphically Activities
as shown in TABLE I. As above mentioned, each
Developmental Activity (DA) is driven by models: A1-
Requirements Models, A2- Presentation Model and A3-
Functionality Model. And each Integration Activity (IA) is

involved in models integration: I1- Requirements Models,
I2- Presentation Model and I3- Functionality Model.

TABLE I. INTERMOD ACTIVITIES

Development Activities
Graphical

representation
Integration Activities

A1. Analysis &

Navigation Design

I1. RM Integration

A2. Interface Building

I2. Interface Integration

A3. Bus.-Logic Coding
 I3. Code Integration &

Refactoring

Fig. 6 shows a snapshot of the Project Progress State and

the Plan obtained for the Parallel Iteration after some
iterations (iteration i).

Project Progress State

Parallel Iteration Plani

Team 1 Team 2 Team 3

UO6 UO4 UO1 UO10

Figure 6. A Snapshot of the Project Progress with InterMod

Three aspects characterise the state of the project: the UO
list, the UOs fusion list and the UOs progress according to
the Activities (DAs or IAs) performed. This iteration begins
with the Build UO List step to revise the UOs list. After
that, the process goes on with the Plan Parallel Iteration
step where the project members have decided:

a) The UOs to perform (underlined in Fig.6 - UO list

and UO Fusion),

b) The activities for these UOs, which have been

selected taking into account their prerequisites.

c) The distribution into three teams, as follows:

• The first team takes responsibility for two
activities: A1 activity for UO6 (in the UO list)
and I1 for UO4. As it is shown, UO4 is the fusion
of the objectives 2 and 3 (UO Fusion in Fig. 6).
The I1 Activity is possible because the progress
of the project assures that both, the RMs of UO2
and UO3 are already validated (see A1 list in
“DAs & IAs Progress” in Fig.6).

• The second team builds the interface (A2) for the
UO1 whose prerequisite is reached (UO1 is in the
A1 list).

A1 I1 A2 I3

UO list ={UO0, UO1, UO2, UO3, UO4, UO5 ,UO6, …
,UO10}

UO Fusion: UO4={UO2+UO3}, UO10={UO0+UO5}
DAs & IAs Progress:

 {UO0, UO1, UO2, UO3, UO5}

 {UO0, UO5}

 {UO0, UO5} DAs

 � {UO10,}

 � {UO10}

 � { } IAs

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<tasks>

 …

 <task max="999" min="0">

 <id>15</id>

 <name>Shopping List</name>

 <mother>12</mother>

 <comment/>

 <daughters>

 …

 <task max="1" min="0">

 <id>19</id>

 <name>Edit</name>

 <mother>16</mother>

 <type>2</type>

 <comments/>

 <daughters/>

543

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

• Meanwhile, team 3 must integrates and refactors
the code referred to UO10 that is composed of the
objectives 0 and 5 that have been already coded.

The evolution of a UO is not predictable. In each work

meeting project members will select the best UOs activities
to do. Fig. 7 presents two different possible evolutions of
UO12 which is composed of {UO4, UO6}.

Activities A2&A3 of

UO12 subsume A2&A3

activities of UO4&UO6

and so I2&I3 are not

needed because are

already integrated.

Due to

complexity, A3 is

treated separately

in UO4 and UO6,
and so I3 is

needed.

Figure 7. A Snapshot of two UO12 possible evolution

When the Plan is ready, the teams go on with the
activities assigned. After each iteration is completed, the
process repeats:

• Step2- Build of UO list- All teams contribute with
their work and evaluation results to the list
actualization.

• Step3- Plan Parallel Iteration- Taking into account
the prerequisites of the activities and the project
needs, the distribution is carried out.

• Step4- Perform Iteration Activities- Each team
makes their activities and the process goes again to
the Step2 until the application is completed.

IV. CONCLUSION AND FUTURE WORK

In this article we presented a new vision of the InterMod
methodology, a proposal integrating three philosophies:
UCD, MDD and AM. From the point of view of agile
methods, our work is organised in a series of iterations in
which the user objectives (UO) to be dealt with are
developed. This iterative process speeds up the development
and generates results from the project progress. InterMod
proposes some developmental and integration activities
driven by models to achieve the UOs In the first analysis, the
initial user objectives are obtained and then, the different
activities to achieve these UOs are distributed among the
workgroups. Each iteration is open to include new user
objectives, whether obtained through previous refinements or
through evolution or alterations during the agile development
of the application itself. The possibility to distribute the work
in parallel increases the speed of resolution, although the
process itself requires integration points to ensure
consistency.
The SE-HCI model is the core of our proposal models

architecture. It is involved in a Model Driven Process that

obtains an abstract prototype created automatically by
transforming the SE-HCI model. This prototype allows the
evaluation of the requirements and facilitates the end user's
participation, as recommended by UCD and AM. Early
evaluations of the requirements reduce the number of the
corrections further on in the process and therefore, reduce its
cost.
This process allows for the gathering and validation of

the requirements incrementally. Because of this agile
approach, InterMod, unlike UCD, does not require the
complete development of the application interface before the
implementation of the business logic, but assures usability.
The new InterMod methodology has been refined in

parallel with the development of a demonstrator. A small
initial set of UOs has evolved to a complex system. It has
been carried out by means of UO creation, development and
integration processes. This make us think of the scalability
and practicability properties of the proposed methodology.
However these aspects have not been treated in this paper as
a deeper work needs to be done.
We are currently working on reusing models. It should be

understood in the broadest sense of the word. A UO model
can be defined once in a project, but it can be reused at
different points in the project. Similarly, a model developed
in previous applications can be reused in a current project.
Thus, a model can be converted into a pattern or a solution to
a design problem. That is to say, we believe that it is
important to value the possibility of creating patterns, in
order to facilitate and speed up design processes.

ACKNOWLEDGMENT

This work has been partially supported by TIN2009-14380
and DFG 157/2009.

REFERENCES

[1] Mcbreen, P., “Questioning Extreme Programming”, Pearson
Educ., Boston, MA, USA 2003

[2] Ambler, S., “Debunking Modeling Myths”,
http://www.ambysoft.com/onlineWritings.html (Last Access:
August 2011).

[3] Norman, D.A. and Draper, S.W., “User-Centered System
Design: New Perspectives on HCI”, Lawrence Erlbaum
Associates, Inc, Mahwah, NJ, USA, 1986.

[4] Vredenburg, K., Isensee, S., and Carol Righi, C. , “User-
Centered Design: An Integrated Approach”, Prentice Hall,
2001.

[5] Norman, D., “Why doing user observations first is wrong”.
Interactions 13, 4, 2006, pp.50--63

[6] Cooper, A. and Reimann, R.: About Face 2.0, “The Essentials
of Interaction Design”, JohnWiley & Sons, Inc., Indianapolis,
Indiana, USA, 2003

[7] Constantine, L. and Lockwood, L.: Software for Use, “A
Practical Guide to the Models and Methods of Usage-
Centered Design”. ACM Press, Addison-Wesley Co., 1999

[8] Robles, E., Grigera, J., and Rossi, G., “ Bridging Test and
Model-Driven Approaches in Web Engineering”, in: Gaedke
M., Grossniklaus M, Díaz O. (eds.) ICWE 2009. LNCS, vol.
5648,. Springer, Heidelberg 2009, pp. 136--150

A2 A3
A1

UO6

UO4
I1

A1 A3

I3

UO6

UO4
I1 A2

UO6

UO4

544

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[9] Ambler, S.W., “ The object primer: agile modeling-driven
development with UML 2.0.” Cambridge University Press,
Cambridge 2004

[10] Ferreira, J., “Interaction Design and Agile Development, A
Real- World. Pers.”, Ph. D. 2007.

[11] Fowler,M. and Highsmith, J., “ The agile manifesto, Software
Development”, 2001, pp 28--32

[12] Highsmith and J., Cockburn, A., “Agile Software
Development: The business of innovation”. Computer 34, 9,
2001, pp120—127

[13] Beck, K., “Extreme Proamming Explained-Embrace Change”.
Addison-Wesley, 2000.

[14] Schwaber, K. and Beedle, M. “Agile Software Development
with Scrum”, Prentice-Hall, 2002.

[15] Cockburn, A., “Agile Software Development”, Addison-
Wesley, 2002

[16] Palmer, S.M. and Felsing, J.M., “A practical guide to feature-
driven development”. Prentice-Hall USA, 2002.

[17] Jacobson, I., Booch, G., and Rumbaugh, J., “The Unified
Software Development Process”, Addison-Wesley, 1999.

[18] Robey, D., Welke, R., and Turk, D., “Traditional, iterative,
and component-based development: A social analysis of
software development paradigms”, Information Technology
and Management, Volume 2, Number 1, 2001, pp53-70

[19] Norman, D.A., “The invisible Computer”, Cambridge M.A.
MIT Press, 1998.

[20] ISO, (International Organization for Standardisation), 9241-
11. Ergonomic requirements for office work with visual
display terminals. Part 11: Guidance on usability, 1998.

[21] Eric Evans, Domain-Driven Design, “ Tackling complexity in
the heart of software”, Addison Wesley, 2004

[22] Losada, B., Urretavizcaya M., and Fernández-Castro, I., “ The
InterMod Methodology: An Interface Engineering Process
linked with Software Engineering Stages”, In Macías,J.A.,
Granollers,T., Latorre,P.(eds). New Trends on Human-
Computer Interaction: Reseach, Development, New Tools and
Methods. Springer, 2009

[23] Larman, C., “ Agile & Iterative development: A manager’s
guide”. Addison-Wesley, 2004.

[24] eXtensible Interface Markup Language http://www.ximl.org/
(Last Access: August 2011).

[25] Abrams,M. and Helms, J., UIML Specification, 2002
http://www.oasis- open.org /committees /download.php
/5937/uiml-core-3.1-draft-01-20040311.pdf (Last Access:
August 2011).

[26] Nolan, B., Brown, B., Balmelli, L., Bohn, T., and Wahli, U.,
“Model Driven Systems Development with Rational
Products”. ibm.com/redbooks 2007

[27] Object Management Group. Model Driven architecture.
Technical report, 2003 http://www.omg.org/mda (Last
Access: August 2011).

[28] Paternò, F. “Model-Based Design and Evaluation of
Interactive Applications”, Springer-Verlag London, 1999

[29] Puerta, A., “A model based interface development
environment” , IEEE Soft.Vol.14-4, 1997

[30] Limbourg, Q., Vanderdonckt, V., Michotte, B., and Bouillon,
L., “USIXML: A Language Supporting Multi-path
Development of User Interfaces” .LNCS , 3425, 2005, pp
200—220,

[31] Annet, J. and Duncan, K.D., “Task Analysis and Training
Design”, Occupational Psychology, vol. 41, 1967, pp. 211-
221

[32] Hix, D., and Hartson, H.R., “Developing User Interfaces:
Ensuring Usability Through Product and Process”, John
Wiley and Sons, New York NY, 1993.

[33] Propp, S., Buchholz, G. and Forbrig, P., “Integration of
Usability Evaluation and Model-based Softwae
Development”, Journal Advances in Engineering Software.
Vol. 40 Issue 12. 2009, pp 1223—1230

[34] Wiegers, K. E., “Software Requirements”. Microsoft Press,
2003, pp 234--235

545

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

