
PSW: A Framework-based Tool Integration Solution for Global Collaborative

Software Development

Juho Eskeli

VTT Technical Research Center of Finland

Oulu, Finland

Juho.eskeli@vtt.fi

Carmen Polcaro

Innovalia Association

Bilbao, Spain

cpolcaro@innovalia.org

Jon Maurolagoitia

CBT Communication Engineering

Getxo, Spain

jmaurolagoitia@cbt.es

Abstract—The market of solutions for collaborative and

distributed software development offers currently a wide range

of tools that support specific tasks involved in these kind of

projects. Several solutions aim to support the whole

development process in a single tool or via groups of tools by

providing distributed teams the possibility to share and

connect information and to use common interfaces.

Nonetheless, every one of them includes some disadvantages

that lessen their value for companies that use them across their

distributed development projects. In this paper the authors

will highlight relevant issues associated with collaborative and

distributed software development projects. Prisma Workbench

will be presented as the framework to overcome many of these

issues and to provide a compelling option for teams to integrate

their existing tools into a complete collaborative solution.

Currently Prisma Workbench is being tested by the partners

involved in the ITEA2 PRISMA Project and some of the first

feedback will be presented as well.

Keywords-collaborative software development; global

software development; collaboration; tools; tool integration

I. INTRODUCTION

Collaborative and distributed software development is
currently one of the most common ways of facing the
development for many applications that due to its complexity
or size require a large team working together [1]. The level
of distribution for each group of the team can vary from
different departments of the same company located in the
same building to the case that several companies’ located in
completely distant regions of the world participate in a
common development. The motivation to adopt this
organizational paradigm can vary from case to case: cost
reduction, collaboration between reference centres or using
this as a way to increase the innovation inside the company
[2]. The number of cases that can be found in the industry is
enormous [3][4].

A distributed software organization model brings
problems to the development process that have to be
addressed with specific methodologies or tools. The most

relevant that could be identified as part of the PRISMA
Project[5], previously to the development of Prisma
Workbench (PSW) [6], are highlighted here:

• Communication Breakdown: the barrier of not being
able to discuss issues and agree on specific topics
face to face leads to delays in the development
process.

• Coordination Breakdown: can happen in a project
where people don’t know each other or don’t have
the possibility to interact continuously to adapt
project planning. The chances of the project to go on
wrong track are higher and following of planning is
difficult.

• Control Breakdown: For project managers, having a
clear view of the status of a project when the team is
distributed in different locations and work in
different time zones can be a really challenging task.
The level of control that the project manager will
have is not as deep as in a non-distributed scenario.

• Cost of currently available tools: currently a number
of providers offer their commercial solution for
collaborative development. The price of
implementing these solutions in companies is
sometimes an obstacle.

• Poor interoperability between tools: in a case where
each team is using their own tools, integration
between the tools is difficult and most of the times
impossible. For this reason manual copying or
exporting of data from one tool to another is often
needed.

• Lack of traceability: during the development project
information elements are created which traceability
should be maintained throughout the whole process.
These elements include e.g., client requests, system
requirements, test information, bug reports, and so
on. Having no connection between the tools that
manage each of these elements makes the
traceability maintenance an effort consuming task.

124

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Nowadays, the market of tools that support specific tasks

of the development process is very large. In most cases their
learning curve is high. Therefore, teams feel reluctant to
include a new tool or change the tools that they are currently
using as part of their development process although this
could sometimes lead to a better integration with the rest of a
distributed team.

Another type of tools, which will be discussed in chapter
V of this paper, presents a global solution that supports the
whole development process. As mentioned before, these
solutions include sometimes a price tag that not every
company is able to pay, especially in those cases where
SME’s are involved.

Prisma Workbench, the solution proposed in this paper is
a tool integration framework designed for collaborative
distributed software development. This framework allows
connecting of software development tools to create company
specific software development environment instances. In this
paper the solution is presented from instance point of view;
how it can be used with a particular set of tools. The tool set
mentioned consists of tools proposed by the PRISMA project
partners.

PSW fills the gaps that exist in the current collaborative
software development environments. It allows distributed
teams to integrate their own existing tools and link data
among them. PSW provides the visibility of how the project
is running and what every group is doing to the whole
development team as if everybody would be working in the
same room.

II. RELATED WORK

Wasserman [7] defines tool integration as follows: ‘tool
integration is intended to produce complete environments
that support the entire software development lifecycle.’ In
our vision tool integration can be used to provide a consistent
software development environment using tools that were not
planned to be used together initially. Furthermore, with the
help of suitable tool set a notable part of software
development lifecycle can be supported. Thus, the vision is
not entirely separate of what Application Lifecycle
Management (ALM) tools attempt to provide. According to
Kääriäinen [8] ALM can be understood as coordination of
activities and the management of artefacts such as
requirements, test cases, etc. during the lifecycle of a
software development project.

Schwaber [9] and Shaw [10] mention that the type of
ALM solutions at that time could be divided into single
vendor (e.g., IBM Jazz), multi-vendor (e.g., Eclipse, ALF),
and single repository approaches. In single vendor approach
a vendor has built a framework where other vendors can
build integrations. In multi-vendor approach development
and direction is driven by open source community (e.g.,
Eclipse, ALF). In single repository approach all the software
lifecycle artefacts are managed in a single place.

According to the previous classification PSW is a multi-
vendor platform. Furthermore, it is a framework integration
based on tools’ own repositories. As described by [11]
framework-based integrations attempt to classify tools and

provide integration between tool classes based on vendor-
neutral interfaces and mechanisms. Furthermore, the
framework-based approach aims to provide an integration
environment and common look and feel without limiting the
choice of tools [11].

As far as we know our solution is unique because it does
not rely on any specific software development tool. Also, in
theory the tool set could be extended to support notable parts
of software development lifecycle using a suitable tool set.
Modelbus [12] is a project of tool integration, but to our
understanding the focus is mainly integration of modelling
tools and study of model transformations. Also Eclipse
Mylyn is advertised as ALM framework [13], but as far as
we can tell it seems to focus largely on task management and
integration of task / defect management tools.

III. FEATURES

PSW has been developed from ground up based on the
experiences achieved from ITEA Merlin[24] and ITEA2
TWINS[25] projects. The previous Eclipse based tool
integration has been described in detail in [14]. In case of
PSW the main interface is via a web browser. This approach
was chosen to decrease dependency on a particular
technology/platform (Eclipse) and making it easier to use
PSW in day-to-day operations (i.e. lower the barrier of
deployment).

The solution proposed is a tool integration framework
designed for collaborative distributed software development.
In its current form it has been previously presented in [5].
PSW allows connecting of software development tools to
create company specific software development environment
instances. In this paper the solution is presented from
instance point of view; how it can be used with a particular
set of tools. The tool set mentioned consists of tools
proposed by the PRISMA project partners.

PSW implements a repository neutral integration of tools.
This means that the lifecycle data produced during software
development process is maintained in separate tools. The
benefit of this type of approach is that it has minimum
impact on the company’s current tool set. The caveat is that
integrations to the tools have to be constructed on a per tool
basis. However, there is no need to create point-to-point
integrations between each of the tools because PSW acts as a
hub where tools are connected via its integration interface.

For PSW one of the primary goals has been to make the
integration of new tools as easy as possible. To get to this
goal the following steps have been taken: designed
integration mechanism for simple integration, provide
example integrations, and created integration instructions.
The integration mechanism has been described in [6]. The
example integrations will be described later in this section.

The solution provides visibility of tools data in easy to
understand dashboards (see Figure 1 and Figure 2) that can
be customized based on the user’s preferences. Furthermore,
the framework handles user sign-in into the separate tools
transparently. The solution also provides the means for the
user to create links between different lifecycle items. These
links can then be exploited in the reporting to e.g.,
demonstrate amount of defects in a build. The reporting

125

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

solution built into PSW allows users to customize their own
reports.

Figure 1. The traceability view showing a requirement and related work

products

Figure 2. The reporting view showing a generated graph based on data

retrieved from the integrated tools

To support collaborative, distributed development PSW
provides means for asynchronous (chat) and synchronous
(voice & video) communication with the help of a tool
(OpenMeetings). The notifications system provides users up-

to-date information about any important events (e.g., build
status) in the project.

Although PSW can be connected to several other
commercial tools or custom developed ones, the project team
has made a selection of open source solutions that cover the
complete development process. By using these solutions,
companies will be able to start working together also if
currently no tool is used for any of the requirements
specification, development or testing tasks. The solutions
that have been selected are the following:

• Edgewall Trac[15]: this tool originally developed for
bug tracking has also been used a simple
requirement management tool. As part of PSW it
should be used for requirement management and bug
tracking.

• Subversion: this versioning system is one of most
popular in the open source community.

• Testlink[16]
:
 This web based test management tool

will support your test case and test data
management.

• Openmeetings: with Openmeeting companies will be
able to host their own audio and video conferencing
solution.

IV. BENEFITS

PSW addresses many relevant issues related to
collaborative and global software development. Some of
these issues were extracted during the research done by the
PRISMA Project and have been highlighted in the
introduction of this paper. After taking into account the
features available in PSW we propose how distributed
development process could be dramatically enhanced using
PSW:

• Communication enabler: the possibility to organize
virtual meetings and link those to other information
items such as requirements, test, etc. enables a
centralized solution where every group of the team
can refer to decisions made any time during the
development process.

• Improved team coordination: by sharing the status of
key information such as requirements or tests and
providing an event log, every member of the team
will be informed of what others are doing. This will
help them to coordinate their own work according to
the planning. In a scenario where groups work in
different time zones this log will be sometimes the
only reference to achieve this kind of coordination.

• Centralized project management: the dashboards
provide information a project manager needs to have
for a quick image of how the project is running
comparing to the plan. It will also give access to
more detailed view of specific tasks. Using only one
tool (PSW) for overview will facilitate the
continuous control of projects. The virtual meeting
functionality will be a key tool for the interaction
between project managers, group managers,
developers and testers.

126

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

• Seamless integration between tools: PSW will
enable tools from different vendors, located in
distant location to integrate while maintaining their
independence. As described in chapter VI, this
integration can be done easily through standard
REST or WS communication interfaces. The number
of manual copying processes between tools to
maintain the traceability throughout projects will be
reduced and in most cases eliminated

• High level of traceability: One of the main benefits
of PSW it the possibility to trace information from
different tools as if all of it would be in one tool.

• Low cost of investment: By including PSW in your
organisation, every group will still be able to use the
same tools as they had done before since they will be
integrated instead of being replaced. The investment
needed is therefore much lower than in other cases
where only tools from the same vendor can be
linked.

The research performed as part of the PRISMA Project
has included the analysis by the partners of the
improvements achieved by using PSW in tasks that were
supported before by independent tools or by no tools at all.
Since the PRISMA project is still ongoing and will be
finished by the end of 2011, only the preliminary results of
this analysis can be presented here. Currently PSW is being
tested in real distributed software development projects in
order to extract the most valuable results. This analysis is
being performed using the tools provided by default with
PSW and described in chapter III. Some of these tools had
already been in use for some time by the partners involved in
the project.

The first comment that has been shared after starting this
testing phase is that, although using the same tools as before,
the information supported by those is not isolated anymore.
The tool supported traceability helps every member of the
team to have a clear view about how every information
artefact is related with the rest.

The centralized reporting tool has been identified by
project, development and test managers as one of the best
features in order to review the status of the overall project. It
is one of the main functionalities where PSW combines data
coming from several tools and provides a higher level of
information.

Future publications will detail the complete results from
this analysis.

V. EXISTING SOLUTIONS AND APPROACHES

As mentioned before, the market offers currently a
number of solutions focused on distributed and collaborative
environment. As described below, most of them include any
restriction due to being closely related with one development
technology, provider or business model.

• Jazz: This solution from IBM is targeted to integrate
the Rational line of tools which support several
phases of the development process. These tools
include Rational Requirements Composer, Build

Forge and Quality Manager. Jazz also offers the
Open Services for Lifecycle Collaboration (OSLC),
an industry initiative to enable interoperability of
tools developed by different vendors. Though
promising, during the research performed in the
PRISMA project, this interoperability was not
achieved. Jazz is free to download from its site but
currently it would be only useful for distributed
teams that use Rational solutions.

• Teamforge: This webportal provided by Collabnet
allows the collaboration of developers and IT project
managers by proving the tools to plan and coordinate
projects following agile methodologies. Collabnet
features the management for user stories, source
code integration, discussion forums, bug tracking
and file and document sharing. Teamforge is
licensed as a subscription based service. Although
powerful, this solution forces every group of the
team to use new tools and follow agile development
methodologies which is not always the case in some
companies.

• Application Lifecycle Framework (ALF): This
Eclipse project proposal has been archived but its
goal aimed to provide a logical definition of the
overall interoperability business process. This
technology handles the exchange of information, the
business logic governing the sequencing of tools in
support of the application lifecycle.

• Team Foundation Server (TFS): Microsoft offers
this collaborative back end solution that can be
connected with other Microsoft tools in order to
exchange data among them. TFS does not have any
user interface, rather it exposes web services which
are the connection point between the tools. These
include all the Visual Studio solutions but also
Microsoft Project, Office or Sharepoint and cover
almost the complete development lifecycle. As a
disadvantage, teams where no Microsoft
development tools are used will not be able to
benefit from the TFS integration features.

• SourceForge.net: It claims to be the world's largest
open source software development web site. They
say that as of February, 2009, more than 230,000
software projects have been registered to use their
services by more than 2 million registered users.
SourceForge provides the following features for
projects: discussion forums, wiki, version control
system, file management and other tools more suited
to open source projects.

VI. TECHNOLOGY BEHIND PSW

PSW consists of two main components: a server and
collection of JSR 286 portlets. The server component
integrates tools, implements some basic functions needed by
tool integration such as user management, and provides its
services to the portlets (or other possible clients). The
portlets act as the user interface.

127

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The server is built on top of Apache Tuscany[17], which
is a framework for building Service Oriented Architecture
(SOA) solutions. The framework takes care of runtime
handling (initialization, termination, etc) of services. SOA
was selected because it promotes loose-coupling between
software components. Loose-coupling is useful because it
provides us the freedom to add / remove / change the tools as
needed. Yet another reason was because the SOA based
approach provides us easy access to the distributed tools.

The integration mechanism of PSW has been described
in [6]. A new tool can be integrated by creating a Java class
that implements a Java interface definition provided by us. In
the interface definition there are specific functions that need
to be filled in; i.e. to get all work products (e.g.,
requirements) from the tool. What happens here is that the
integrator creates a glue code that connects the data from the
tool to PSW. The actual data from the tools can be fetched
via any means supported by the tool, e.g., using REST or
WS. Example integrations and guidance are provided to
make the integration as easy as possible.

The server also takes care of authenticating the users to
the tools. In essence a user’s account for the tools is tied to
the user’s PSW account. Furthermore, it implements a
traceability service which can be queried for work product
relations and for creating new ones. The traceability
mechanism is implemented so that no data is replicated.
Instead unique identifiers are used to identify the work
products in the tools, and the relations are stored in a
relational database, MySQL[18]. The information artefacts
are maintained in the original tool repositories.

For improved performance the data from tools has to be
temporarily cached, for which Memcached[18] is used.
Caching is needed because some of the tool specific queries
can take a long time to complete (e.g., due to amount of data,
tool location). The cache is updated at definable intervals.
During an update the changes in the work products are
detected and stored. The changes can then be queried using
the notification service and shown in the user interface (i.e.
portlets).

The user interface consists of several portlets
implemented following the JSR 286

¡Error! No se encuentra el origen de

la referencia.
 standard. The views (e.g., traceability, reporting)

are implemented via one or many portlets and use the
services provided by the server to produce their output. The
portlets have been designed so that minimal or no changes
need to be done if the set of tools is changed. The
techonologies used are Java, JavaServerPages[20] (JSP), and
Javascript (JQuery etc.). For current implementation
Liferay[21] portal has been chosen to run the portlets since it
supports the JSR 286[22] standard. Nonetheless any other
platform which support this standard could be used

The reporting feature is the most recent addition into
PSW. It enables users to build their own customized reports.
An existing implementation (BIRT[23]) was studied and
found promising; however the effort needed to implement
custom reports with it in portlets was considered to be too
much compared with the result. The reporting feature
enables users to filter the data (e.g., from which tools, what
type of work products) they use for the reports. Some

rudimentary manipulation of the data can also be performed
e.g., addition or grouping of values. Existing traceability
information can also be used to create e.g., requirements test
coverage report. The plot types supported are currently bar,
line, and pie chart. New types can be easily implemented
with the library that is responsible for generating the charts.
Additionally, the parameters used for creating the report can
be stored for further usage, e.g., recurring reports. Reports
with data can also be stored, named, and dated for reference.
Finally, the reports can be exported in CSV and PDF
formats.

VII. CONCLUSION

In this paper the authors have presented relevant issues
that development teams face when a distributed organization
model is adopted. These issues, which were identified as part
of the research of the PRISMA Project, have been the
motivation to develop PSW, a solution that allows the
integration of a heterogeneous number of tools in order to
collaborate and exchange data while maintaining their
independence.

Solutions for collaborative software development that are
currently available have been described, highlighting the
advantages of PSW among them.

PSW features, technology background and benefits have
been also thoroughly explained in order to make clear how
using this solution in a distributed and collaborative
environment could dramatically reduce the impact of this
organization model in software development projects.

ACKNOWLEDGMENT

The authors would like to thank the partners involved in
the ITEA2 PRISMA Project for their contribution and
inspiration.

REFERENCES

[1] P. Parviainen, J. Eskeli, T. Kynkäänniemi, M. Tihinen, 2008. Merlin
Collaboration Handbook - Challenges and Solutions in Global
Collaborative Product Development. In Proceedings of ICSOFT
(SE/MUSE/GSDCA)'2008. pp.339~346

[2] T. Forbath, P. Brooks A. Dass, A , “Beyond Cost Reduction: Using
Collaboration to Increase Innovation in Global Software
Development Projects.”, 2008. IEEE International Conference on
Global Software Engineering.

[3] M. Bass, J.D. Herbsleb, C. Lescher, “Collaboration in Global
Software Development Projects at Siemens: An Experience Report” ,
2007 , IEEE, International Conference on Global Software
Engineering.

[4] Booz Allen Hamilton, “Globalization of Engineering Services”,
August 2006 , NASSCOM

[5] Prisma Project website http://www.prisma-itea.org/

[6] J. Eskeli, J. Maurolagoitia, “Global Software Development: Current
Challenges And Solutions.”, 2011. ICSOFT

[7] A. Wasserman, “Tool Integration in Software Engineering
Environments”, Springer-Verlag, Berlin, International Workshop on
Environments, pp. 137-149, 1990.

[8] J. Kääriäinen, “Towards an Application Lifecycle Management
Framework”, VTT Publications, Dissertation, 103p., 2011.

[9] C. Schwaber, “The Changing Face of Application Life-Cycle
Management”, Forrester Research Inc., August 2006.

128

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[10] K. Shaw, “Application Lifecycle Management for the Enterprise”,
Serena Software, White Paper,
http://www.serena.com/docs/repository/company/serena_alm_2.0_for
_t.pdf, April 2007. (available 24.5.2011)

[11] J. Pederson, “Creating a tool independent system engineering
environment”, In: IEEE Aerospace Conference, 8 pp., March 2006.

[12] C. Hein, T. Ritter, and M. Wagner, “Model-driven tool integration
with modelbus”, In Workshop Future Trends of Model-Driven
Development, 2009.

[13] http://www.eclipse.org/mylyn/ (read 27.05.2011)

[14] J. Eskeli & P. Parviainen, “Supporting hardware-related software
development with integration of development tools”, Proceedings -
5th International Conference on Software Engineering Advances,
ICSEA 2010, IEEE Computer Society, pp. 353 – 358, 2010.

[15] Edgewall http://trac.edgewall.org/

[16] Teamst http://www.teamst.org/

[17] Apache Tuscany http://tuscany.apache.org/

[18] Mysql http://www.mysql.com/

[19] Memcached http://memcached.org/

[20] JSP http://java.sun.com/products/jsp/

[21] Liferay http://www.liferay.com/

[22] JSR286 http://www.jcp.org/en/jsr/detail?id=286

[23] BIRT http://www.eclipse.org/birt/phoenix/

[24] Merlin-project
http://virtual.vtt.fi/virtual/proj1/projects/merlin/icgse.html

[25] TWINS-Project http://www.twins-itea.org/

129

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

