
The Smart Persistence Layer

Mariusz Trzaska

Software Engineering

Polish-Japanese Institute of Information Technology

Warsaw, Poland

mtrzaska@pjwstk.edu.pl

Abstract— We present an approach to solve the impedance

mismatch problem caused by incompatibility between two

models: object-oriented and relational ones. We believe that it

cannot be unraveled by creating new Object-Relational

Mappers (ORMs) like most of the software industry does. It is

caused by some inherent differences between those two worlds.

In our method we assume that both a programming language

and a data source should be based on the same data model.

Thus we propose a persistence layer for native data structures

of a programming language. The presented idea is supported

by a working prototype called the Smart Persistence Layer,

which also supports extent management and bidirectional

links. The prototype together with LINQ, the native query

language for the .NET platform, formulates an easy-to-use yet

powerful solution.

Keywords-Impedance mismatch; Databases mapping; Object-

Relational Mappers; ORMs; Persistence; LINQ.

I. INTRODUCTION

The impedance mismatch is a negative software
development phenomenon denoting severe incompatibility
between two models: object-oriented and relational ones. It
is caused by the fact that most modern software is
implemented in object-oriented programming languages, but
its data is persisted using relational databases. Such an
approach forces the necessity of translating a rich object-
oriented universe to a pretty simple relational world and vice
versa.

In 2004, Ted Neward coined the phrase
"Object/relational mapping is the Vietnam of Computer
Science" [1]. His thesis was based on the observation that in
the Vietnam and ORM cases there are less and less hope for
success and unacceptable consequences of giving up. Two
years later the phrase became famous thanks to Jeff Attwood
who published the paper [2]. The paper mainly confirmed
Neward's observations. One of the most important
conclusions is choosing a single model both for the
programming and data. Any other options are vulnerable to
some level of the impedance mismatch.

This approach might be seen as too radical but in our
opinion it is the only right choice. Contrary to the Attwood's
preferences [2] we believe that the better choice is to select
the object-oriented side rather than the relational one.

Unfortunately, a few years have passed since the phrase
was coined, and nothing has changed on the battlefield. Even
worse, it seems that nothing will change in the next few
years. The software industry focuses on improving ORMs

rather than changing the approach to the problem. It looks
like a situation where one is looking for a better and better
medicine rather than eliminating the source of the illness. We
believe that improving ORMs is questionable because there
are too big discrepancies between the models and too big risk
that attempts to match them will cut a lot from their
functionalities. Usually, in such a cases and for large
databases the object model is the victim: object-oriented
qualities are reduced to minor (mostly syntactic) differences
between the object and relational data schemas. The object
model becomes a slave of the relational model. It is not
possible to create a generic mapper, which will be able to
automatically transform object-oriented queries addressing
sophisticated object model into relational queries and
commands (SQL), and vice versa. The main reason of that is
the fact that probably there is no general algorithm that maps
object-oriented queries and updates into SQL and still
ensures good performance. In typical cases (our experience
from other projects [3]) a mapper uses non-standard SQL
features (e.g., traversing tables by cursors), thus the SQL
query optimizer has no chances to work properly. Hence
each case has to be manually designed by the programmer.
In fact, it does not even matter how the mapping is to be
defined: using a configuration file, a DSL or some other way.
The result is still the same: the programmer has to spend
his/her valuable time doing some repetitious and error-prone
work.

The problem is not only related to mapping definitions by
programmers. It is much more extensive and spreads on
query languages, different types, semantics, etc.

There are opinions that solving the impedance mismatch
problem should employ extending programming languages
with declarative specification capabilities like JML [4] or
Spec# [5]. Generally we do not agree with such a solution
mainly because of the complexity, e.g., Spec# requires a
dedicated compiler.

Our proposal is based on replacing both an ORM and a
database with a data source native to a programming
language. As a result, there is no impedance mismatch at all.
The approach is supported by a working prototype for the
.NET platform. The prototype provides a persistence layer
and extent management for objects of a programming
language.

The rest of the paper is organized as follows. To fully
understand our motivation and approach some related
solutions are presented in Section 2. Section 3 briefly
discusses key concepts of our proposal and its

206

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

implementation. Section 4 contains sample utilizations of the
prototype and simple benchmarks. Section 5 concludes.

II. RELATED SOLUTIONS

As we suggested previously, to reduce completely the
impedance mismatch we need to leave the object model and
to eliminate another data model. It means that both business
logic and data store will be on the programming language's
side or the database side. Both approaches have their
advantages and disadvantages. We discuss them shortly.

A. The Programming Language Side

This approach requires that a business logic and a data
source are implemented on the programming language side.
It involves a dedicated data source, which is not only
compatible with the programming language but fully native
to it. The compatibility condition is quite common and
means ability to work with a particular platform. However, it
does not mean common models. The most obvious examples
are relational databases and ORMs. Undoubtedly, the latter
are more convenient for programmers but still require at least
manual mappings.

The nativity condition is fulfilled when plain objects of a
programming language are persisted using an additional tool.
Usually the tool has to be an object-oriented database
management system (ODBMS), i.e., db4o [6], [7] or
Objectivity [8]. Both of them are mature solutions existing
on the market for at least 10 years. However in some cases,
using them could be too complicated. Thus, a more
lightweight solution would be a better choice. Our proposal
follows this idea. More information, comparing the db4o to
our prototype could be found in Section 3.

The reference [9] provides a list of open source
persistence frameworks for the MS .NET platform.
Unfortunately, most of them are implemented as ORMs,
which of course introduces some level of the impedance
mismatch. We have found only two tools, which do not
utilize a relational database: Bamboo.Prevalence [10] and
Sisyphus [11]. However they usually require some special
approaches, e.g., the command pattern utilized for data
manipulation for the Bamboo and necessity of inheritance
from a special class for the Sisyphus.

B. The Database Side

This solution utilizes the database model both for
business logic and data. Thus it requires that the entire
application is implemented in a database programming
language. There are various DBMS and dedicated languages
on the market, i.e., T-SQL, PL/SQL. Both of them have
imperative functionality and PL/SQL has some object-
oriented constructs. There are also fully object-oriented
solutions like SBQL for the ODRA platform [12]. These
seem more appropriate thanks to the more powerful and
flexible model.

The ODRA (Object Database for Rapid Application
development) is a prototype object-oriented database
management system based on SBA (Stack-Based
Architecture). The main motivation for the ODRA project is
to develop new paradigms of database application

development. This goal is going to be reached mainly by
increasing the level of abstraction at which the programmer
works. ODRA introduces a new universal declarative query
and programming language SBQL (Stack-Based Query
Language), together with a distributed, database-oriented and
object-oriented execution environment. Such an approach
provides functionality common to the variety of popular
technologies (such as relational/object databases, several
types of middleware, general purpose programming
languages and their execution environments) in a single
universal, easy to learn, interoperable and effective to use
application programming environment.

III. THE SMART PERSISTENCE LAYER

Programmers use databases for many reasons. One of the
more important are persistence and a query language. A few
years ago Microsoft introduced a query language called
LINQ [13] to ordinary programming languages (e.g., C# and
Visual Basic). The LINQ works with native collections of
the programming language allowing querying them as
regular databases. It is also supported by various ORM
mappers including their own solution called Entity
Framework [14]. Generally speaking, the mapper uses a
relational database for storing data which, of course, causes
some impedance mismatch (especially concerning
inheritance).

Our approach is based on an observation: if we have a
query language (LINQ) natively supported by the
programming language, then we should use native data
structures of the language as well. Such an approach
guarantees that every bit of impedance mismatch simply
disappears. Of course, in real case scenarios a persistency for
the native data is required. At first glance it looks that such a
mechanism already exists for modern programming
languages and is called serialization. Unfortunately, it is not
applicable as a replacement for databases. The main reason is
the fact that the serialization every time stores the entire
graph of objects. This behavior is caused by the way the
serialization works: every saved object is valid, which means
storing all connected objects, objects of connected objects
and so on.

Our proposal focuses on delivering a persistency layer
designed in a totally transparent way for the programmers.
We do not want to make programmers use any kind of super
classes or implementing special interfaces. The prototype is
called The Smart Persistence Layer (SPL) and implemented
for the MS .NET platform. However, it is possible to
implement it for other platforms with the reflection
capabilities, i.e., Java. In this case it would be possible to
reuse significant parts of the source code and data files as
well.

A. The Basic Functionality

The most basic functionality for a mapper is delivering
an extent of objects belonging to a particular class. This
could be achieved using many ways. For instance the db4o
[8] uses the following code:

207

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

IList <Pilot> pilots =

db.Query<Pilot>(typeof(Pilot));

However in our prototype we have simplified that to:

IQueryable<Pilot> pilots =

db.GetExtent<Pilot>();

Please note that our method does not require the
parameter, but the result is still strongly typed.

 There is also a debate how objects belonging to different
classes in the same inheritance's hierarchy should be treated.
We believe that the extent of a super class must also contain
all instances of subclasses. This approach guarantees that we
can work on a higher level of abstraction (i.e., different
subclasses of product processed just like products; see also
Section 4). Of course, this relationship works only in one
direction: extents of subclasses will not contain instances of
super classes. Hence the above code returns a collection of
objects belonging to the given class (as a type parameter) and
all subclasses.

Another area related to an extent, which needs a
clarification is how and when new objects will be
incorporated into extent. Our proposal follows the following
rules:

 an object could be added to an extent by executing
by a programmer a dedicated method;

 every object, which is directly made persistent by a
programmer is added to an appropriate extent.

If a programmer would like to achieve automatic adding
to an extent, then the method could be executed in a
constructor of a class. It is especially easy thanks to our
designing decisions. We have utilized the C#'s extension
method mechanism together with the default instance of the
SPL. An extension method is a method adding a
functionality to a class but defined outside the class. The
listing 1 (due to readability all listing are located at the end
of this paper) presents the mentioned method. Please note

that the method's parameter is of type object, which
means that any object could be added to an extent (and the
extension method could be executed on any existing object).
A dedicated logic adds a given object to appropriate extents
(the current one and all super classes). This is performed
based on the object's type. A similar extension method has

been utilized for the Save operation, which persists a given
object.

Another interesting concept is the default instance of our
prototype layer. In case of many applications a persistence
layer is available via a single object, i.e., a file stream or a
DB instance/connection. Hence, we have introduced a
concept of default instance, which is the first (and in many
cases the only one) instance of the persistence object. The
object has to be properly initialized at the very beginning.
Otherwise, during accessing the default instance, appropriate
exception would be thrown. This solution allows accessing
the data without passing a reference to the object. This is also
the case of the previously mentioned method adding an
object to its extent.

Such an approach does not put any restraints on
programmers i.e., implementing an interface or inheriting
from a super class.

B. Bi-directional Associations

One of the key functionality of every data store is the
ability for creating and persisting connections among objects.
In our opinion, it is especially useful if the connections are
bidirectional allowing navigation in both directions (i.e.,
from a product to its company and vice versa).
Unfortunately, databases usually do not support the feature.
According to [7] the db4o does not have it either. This is also
the case of native references existing in popular
programming languages (e.g., MS C#).

The implementation of the mentioned functionality is
complicated especially if we would like to work with the
POCO (Plain Old CLR Object) objects. This approach means
that we cannot expect implementing a specified interface or
functionality inherited from a super class. Another
disadvantage of putting links into a super class would be
problems with navigation using the LINQ.

Thus our goal was to design it as convenient as possible
but still remembering that it would be extremely hard to find
a perfect (totally transparent to a programmer) solution.

One of the approaches is generating classes based on
same templates. This is the case of one of the options in the
Microsoft Entity Framework [14]. However, this
functionality requires some kind of support from a tool and
in our opinion may not be useful for all programmers.

It seems that creating a bidirectional link requires
defining the following data:

 role name,

 reverse role name,

 target object,

 reverse object.
 We had to choose how and when to put them to

minimize the amount of work required from a programmer.
At the beginning we tried creating special annotations for
classes. But it turned out that some data still has to be passed
as string. After some research we came up with another
solution, which spreads on two different levels (see Fig. 1).

The first one is a dedicated class parameterized with two

types: target objects (TTargetType) and reverse object

(TReverseType). Utilizing a parameterized class makes
possible detecting some errors during a compilation time.
The next level uses information passed to the constructor of
the class. It takes a reverse attribute name, which will store
the reverse link and an instance of the class, which should be
the reverse target. The following listing presents the code,
which should be placed inside a business class (see also
Section 4).

ICollection<Tag> Tags = new

SplLinks<Tag, Product>("Products",

this);

208

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Tag

<TTargetType>

Product

<TReverseType>

Tags

Products

Figure 1. Explanation of the implemented bidirectional links mechanism.

Types information (fixed size)

A type
entry

A type
entry …

A data location
entry

A data location
entry …

Data location information (growing)

Entries
count

Figure 2. Structure of the file storing types and location information

It may look a bit complicated but it is created only once

for each link. The SplLinks class implements ordinary
.NET interface for accessing collections thus using it is
exactly the same as any other .NET collection. Creating a
bidirectional link requires only executing a single Add
method with the target object. The reverse connection will be
created automatically based on previously defined data. Of
course, all LINQ queries work as well.

C. The Transparent Persistence

The goal of the persistence process is to store data on
some non-volatile media, usually in a disk file. In case of our
solution we need to persist three types of data, namely:

 business content of the objects,

 location of the above,

 information about types (classes).
All of them can change and grow during the run-time.

After some research we have decided to use two files: the
first one will hold business information whereas the second
the rest. Initially we thought about three files but the types
information is usually quite small and repeatable thus can be
stored at the beginning of the second file (Fig. 2). A
programmer can define amount of the allocated space for the
purpose. A default value is 1MB, which makes possible
storing about 3000 entries. It is possible to use just one file

but at cost of more complicated design and possibly worse
performance.

The single entry regarding the location of data (the type
entry from Fig. 2) consists of:

 object identifier;

 identifier of its type;

 location in the data file where the object's content
starts. This entry is updated every time when an
object is saved;

 location in the index file where the location data
starts.

The above information also exists in the memory to boost
performance. It is saved to disk only as a backup and for
reading objects purposes.

As mentioned previously we do not persist classes
(types) in the file. Thus during an object initialization those
classes have to be accessible by the .NET run-time (e.g., as
standard DLL libraries).

The other file, with business data of persisted objects, can
be read only using the location and types information. It is
read at the very beginning. The current prototype reads all
data to the memory. This could be a problem in some cases
but modern computers are usually equipped with a lots of
RAM. However, in the future versions we will probably
introduce some kind of programmer's policy for defining this
kind of behavior.

209

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 3. A class diagram of the sample implemented using the SPL.

The process of saving and reading objects intensively
uses the reflection mechanism. Currently it is able to deal

with atomic types, lists (classes implementing the IList

interface), ICollection (see Section 3.B) and other types
built using these invariants (see also the sample utilization in
Section 4).

One of the problems related with links, which should be
addressed, is persisting connected objects. When we would
like to persist an object, how should we act with all
referenced objects? There are different approaches, i.e., db4o
[7] uses a concept called update depth. This is simply a
number telling how many levels of connections should be
saved. We have decided to follow another approach. When
we save an object, all referenced unknown (not saved
previously) objects are saved, no matter how deep they are.
Thus the first execution could be costly, but the objects have
to be saved anyway. All next updates will not save known
objects. If a programmer wants to save them, then it has to be

done directly by executing the Save method. The method
should also be utilized every time a single object is modified
(its content will be persisted in the file). This policy
guarantees that persisting an object will not be costly.

IV. THE USE CASE AND SOME BENCHMARKS

Fig. 3 presents a class diagram of the sample created
using our prototype implementation. It describes the
following business case:

 Products have various properties including: a name,
a price and a list of supported languages;

 Every product can be described using various tags;

 A company manufactures many products, but a
product is related to a single company;

 There are various kinds of products with different
properties. Printers contain information about
utilized print technology and laptops store a screen
size.

Although the presented case is quite simple, it contains
different kinds of business information. Thus it allows
verifying the usefulness of our approach.

Listing 2 contains the complete source code of the
Product and Tag classes. The code, aside from normal C#
functionality, together with the SPL provides full
persistency, extents and query capabilities (thanks to the
native LINQ). No additional configuration/mapping files,
known from ORMs, nor special identifiers are required.
Please note utilization of different types of data including the

SplLinks class accessed using a standard C# interface

(ICollection).
Similar simplicity can be observed on listing 3. A

programmer creates instances of the Product and Tag

classes, links them together (the Tags property) and persist

(the Save method) using a few simple steps.
The important aspect of every data management system

is its performance. We plan to perform detailed tests
comparing our solutions to other approaches including
ORMs and raw databases. Currently we have run some
simple tests measuring speed of our prototype (the test
computer configuration: Intel Core i7 2.93GHz, RAM: 8GB,
Windows7 x64). The results are promising.

210

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The test utilized two classes from the above business

sample: the Product and Company (Fig. 3). They were
connected using our bidirectional link. Table 1 presents
times required by various operations.

TABLE I. RESULTS OF THE SIMPLE PERFORMANCE TESTS (ALL

RESULTS ARE IN SECONDS; LESS IS BETTER)

Number of

objects

and the operation

Products: 50,000

Companies:

5,000

Total: 55,000

objects

Products: 100,000

Companies:

1,000

Total: 101,000

objects

Initializing the

SPL

0.0180 s 0.0180 s

Generating and

persisting data

17.3210 s 31.4018 s

Retrieving entire

extent of Products

0.0100 s 0.0130 s

Retrieving entire

extent of

Companies

0.0040 s 0.0050 s

Opening file,

reading all data

and creating

objects

21.9753 s 58.4323 s

Query Products

for the price

(LINQ)

0.0320 s 0.0550 s

Query Products

with the specified

Company's name

(LINQ)

0.0120 s 0.0330 s

As it can be seen, the results are decent, especially for an
early prototype. Please note short times for executing the
LINQ queries, i.e., finding all products manufactured by a
particular company took only 0.03s (for 100,000 products). It
is probably caused by the fact that in the current prototype all
data is kept in the RAM memory and a disk file is only a
backup. That's why the time of opening the file and reading
all data could be significant in case of bigger data sets (for
101,000 objects it is about 58 seconds). As we mentioned
previously, we plan to add an option for loading data only
when needed.

V. THE CONCLUSION AND FUTURE WORK

The impedance mismatch is a real problem experienced
by many programmers for a very long time. In this paper, we
have presented our approach to solve it. The idea is based on
eliminating the causes rather than improving medicines (in
this case various ORMs). We believe that the best method is
to use the same coherent model both for programming and a
data source. This could be achieved by providing a
persistence layer and extent management for native objects
created in a particular programming language.

The mentioned solution is even more useful if there is an
existing query language natively supported by the

programming platform. This is the case of the .NET and the
LINQ query language. The implemented prototype follows
our proposal by adding persistency and extent functionality
to standard C# objects. Moreover the functionality has been
achieved without imposing on a programmer any special
requirements regarding a super class nor interfaces.

Furthermore, our prototype adds functionality for easy-
to-use bidirectional associations. They are usable as standard

C# collections implementing the ICollection interface.
As a future work we would like to extend our prototype

with some other useful functionalities associated with
databases like indexes or transactions. However, we would
like to implement them (in a way) preserving the lightness
and flexibility of our solution.

Another field, which could be researched is performance.
We are going to conduct dedicated tests comparing our
prototype to other similar solutions like object-oriented
databases or ORMs.

REFERENCES

[1] Neward, T.: The Vietnam of Computer Science,
http://blogs.tedneward.com/2006/06/26/The+Vietnam
+Of+Computer+Science.aspx. Last accessed: 02-04-2011

[2] Atwood, J.: Object-Relational Mapping is the Vietnam of
Computer Science,
http://www.codinghorror.com/blog/2006/06/object-relational-
mapping-is-the-vietnam-of-computer-science.html, Last
accessed: 02-04-2011

[3] Kuliberda, K., Wiślicki, J., Adamus, R., and Subieta, K.:
Object-Oriented Wrapper for Relational Databases in the Data
Grid Architecture, w: On the Move to Meaningful Internet
Systems 2005: OTM 2005 Workshops, Agia Napa, Cyprus,
October 31 – November 4, 2005, Proceedings. LNCS 3762,
Springer 2005, pp. 528-542

[4] Chalin, P., R. Kiniry, J., T. Leavens, G., and Erik Poll.
Beyond Assertions: Advanced Specification and Verification
with JML and ESC/Java2. In Formal Methods for
Components and Objects (FMCO) 2005, Revised Lectures,
pages 342-363. Volume 4111 of Lecture Notes in Computer
Science, Springer Verlag, 2006, pp. 342-363

[5] Barnett, M., Rustan K., Leino M., and Schulte W.: The Spec#
programming system: An overview. In CASSIS 2004, LNCS
vol. 3362, Springer, 2004, pp. 144 - 152

[6] Paterson, J., Edlich, S., and Rning, H.: The Definitive Guide
to Db4o. Springer (August 2008), ISBN: 978-1430213772

[7] db4o tutorial,
http://developer.db4o.com/Documentation/Reference/db4o-
8.0/net35/tutorial. Last accessed: 2011-04-02

[8] The Objectivity Database Management System.
http://www.objectivity.com. Last accessed: 2011-04-02

[9] Open Source Persistence Frameworks in C#. http://csharp-
source.net/open-source/persistence. Last accessed: 2011-04-
02

[10] Bamboo.Prevalence - a .NET object prevalence engine.
http://bbooprevalence.sourceforge.net/. Last accessed: 2011-
04-02

[11] Sisyphus Persistence Framework.
http://sisyphuspf.sourceforge.net. Last accessed: 2011-04-02

[12] Adamus, R., Daczkowski, M., Habela, P., Kaczmarski K.,
Kowalski, T., Lentner, M., Pieciukiewicz, T., Stencel, K.,
Subieta, K., Trzaska, M., Wardziak, T., and Wiślicki, J.:
Overview of the Project ODRA. Proceedings of the First
International Conference on Object Databases, ICOODB

211

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

2008, Berlin 13-14 March 2008, ISBN 078-7399-412-9, pp.
179-197.

[13] Magennis, T.: LINQ to Objects Using C# 4.0: Using and
Extending LINQ to Objects and Parallel LINQ (PLINQ).

Addison-Wesley Professional, ISBN-13: 978-0321637000
(2010)

[14] Lerman, J.: Programming Entity Framework: Building Data
Centric Apps with the ADO.NET Entity Framework. O'Reilly
Media, Second Edition, ISBN: 978-0-596-80726-9 (2010)

LISTING 1. AN EXTENSION METHOD ALLOWING ADDING AN OBJECT TO ITS EXTENT

public static class Helpers

{

 // ...

 public static void AddToExtent (this object objectToAdd)

 {

 NmoDatabaseManager.DefaultInstance.AddToExtent(objectToAdd);

 }

}

LISTING 2. A CODE USED FOR THE PRODUCT AND TAG CLASSES

public class Product

{

 public string Name { get; set; }

 public decimal Price { get; set; }

 public bool IsSpecial { get; set; }

 public IList<string> SupportedLanguages { get; set; }

 internal ICollection<Tag> Tags { get; set; }

 internal Company Company { get; set; }

 public Product() {

 Tags = new SplLinks<Tag, Product>("Products", this);

 }

}

public class Tag

{

 public string Name { get; set; }

 public ICollection<Product> Products { get; set; }

 public Tag() {

 Products = new SplLinks<Product, Tag>("Tags", this);

 }

}

LISTING 3. A CODE USED FOR PERSISTING INSTANCES OF THE PRODUCT AND TAG CLASSES

var tagSpecialOffer = new Tag(){Name="Special Offer"};

var product1 = new Product(){Name="Everyday Desktop VX5000", Price=799.0m,

 SupportedLanguages = new List<string>(){"en",

 "de", "pl"}};

product1.Tags.Add(tagSpecialOffer);

product1.Save();

212

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

