
BPEL-RF Tool: An Automatic Translation from WS-BPEL/WSRF S pecifications
to Petri Nets

Maŕıa D́ıaz, Valent́ın Valero, Hermenegilda Macià, Jose Antonio Mateo, Gregorio Dı́az
Informatics Research Institute of Albacete (I3A) Albacete, Spain

Email: {Maria.DiazTello, Valentin.Valero, Hermenegilda.Macia,JoseAntonio.Mateo, Gregorio.Diaz}@uclm.es.

Abstract—Composite Web services technologies are
widely used due to their ability to provide interoperability
among services from different companies. Thus, orchestra-
tion languages like WS-BPEL have recently appeared to
manage the interactions of multiple services in order to
achieve a global aim. Web services are usuallystateless,
which means that no state is stored from the clients
viewpoint. However, some new applications and services
have emerged, which require to capture the state of some
resources. Therefore, new standards to model Web services
states have arisen, such as Web Services Resource Frame-
work (WSRF). In this paper, we present a tool, which
takes as input a specification in BPEL-RF (a language
defined on the basis of both standards), and transforms it
into a prioritised-timed coloured Petri net (PTCPN). These
PTCPNs can be verified and validated with the well-known
tool, CPNTools.

Keywords-Web Service compositions; WS-BPEL; WSRF;
Coloured Petri nets; Tool support; Stateful workflows

I. I NTRODUCTION

The development of software systems is becoming
more complex with the appearance of new computational
paradigms such as Service-Oriented Computing (SOC),
Grid Computing and Cloud Computing. In January of
2004, several members of theGlobus Allianceorgani-
zation and the computer multinationalIBM with the help
of experts from companies such asHP, SAP, Akamai, etc.
defined the basis architecture and the initial specification
documents of a new standard to describe distributed
resources, Web Services Resource Framework (WSRF)
[10]. The WSRF elements that are considered in the
language BPEL-RF are:

• WS-ResourceProperties: There is a precise
specification to define WS-Resource properties,
based on a Resource Properties Document (RPD),
which represents the properties of the associated
resource (disk size, processor capacity, etc.).
Nevertheless, for simplicity, we only consider a
single property for each resource, which is an
integer value. Resources are identified by their
EPRs (End-Point References); so, we will also use
this mechanism for identification purposes, but,
for simplicity, we will consider these references as
static, instead of assuming a dynamic mechanism
to assign them. As a shorthand notation, EPRs will
also be used to denote the resource property values.
Among the operations allowed by the standard are
GetResourceProperty and SetResourceProperty,
which are used to manipulate the resource property
values.

• WS-ResourceLifetime: The WSRF specification
does not provide a standard way to create resources.
However, resources have an associated lifetime,
which means that once this time has elapsed, the
resource is considered to be destroyed. We have then
included, for completeness, an operation to create
resources,createResource, in which the initial value
of the resource, its lifetime and the activity that must
be launched upon its destruction are indicated. We
also have an operation in order to modify the current
resource lifetime,setTimeout.

• WS-Notification: Clients can subscribe to WSRF
resources in order to be notified about some topics
(resource conditions). We therefore include thesub-
scribeoperator, indicating the condition under which
the subscriber must be notified, and the activity that
must be executed upon that event.

WS-BPEL [3], for short BPEL, is an OASIS orchestra-
tion language for specifying actions within Web service
business processes. BPEL is an orchestration language
in the sense that it is used to define the composition of
services from a local viewpoint, describing the individual
behaviour of each participant. BPEL processes usevari-
ables to temporarily store data. Variables are, therefore,
declared on a process or on a scope within that process.
In our case, there will be a single scope (root); so, no
nesting is considered here. Besides, for simplicity again,
we will only deal with integer variables.

An orchestrator consists of a main activity, representing
the normal behaviour of this participant. There are also
event and fault activities, which are executed upon the
occurrence of some events, or due to some execution
failures, respectively. BPEL activities can bebasic or
structured. Basic activitiesare those which describe the
elemental steps of the process behaviour, such as the
assignment of variables (assign), empty action (empty),
time delay (wait), invoke a service (invoke) and receive a
message (receive), reply to a client (reply), and throw an
exception (throw). We also have an action toterminate
the process execution at any moment (exit). For technical
reasons, we have also included a barred form ofreply
action, which is used when a service invocation expects
a reply, in order to implement the synchronization with
the reply action from the server.Structured activities
encode control-flow logic in a nested way. The considered
structured activities are the following: asequenceof
activities, separated by a semicolon, the parallel composi-
tion, represented by two parallel bars (‖), the conditional
repetitive behaviour (while), and a timed extension of the

325Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

receive activity, which allows to receive different types of
messages with a time-out associated (pick).

The main motivation of this work is to provide a for-
mal semantics for WS-BPEL+WSRF to manage stateful
Web services workflows by using the existing machinery
in distributed systems, and specifically a well-known
formalism, such as prioritised-timed coloured Petri nets
(PTCPN), which are a graphical model that also provide
us with the ability to simulate and analyse the modelled
system. In order to deal with the integration of BPEL plus
WSRF in a proper way, we have realised that it is more
convenient to introduce a specific semantic model, which
covers properly all the relevant aspects of WSRF such
as notifications and resource time-outs. The integration
of both standards is not new; in the literature, there are
a bundle of works defining this integration, but none of
these works define a formal semantics in terms of Petri
nets.

In [16], the integration of BPEL in Grid environments
is considered, and the author discusses the benefits and
challenges of extensibility in the particular case of OGSI
workflows combined with WSRF-based Grids. Other two
works centred around Grid environments are [8] and
[11]. The first one justifies the use of BPEL extensibility
to allow the combination of different GRIDs, whereas
Ezenwoye et al. [8] share their experience on BPEL to
create and manage WS-Resources that implement the
factory/instance pattern in bioinformatics. On the other
hand, Ouyang et al. [15] define the necessary elements
for translating BPEL processes into Petri nets. Thus, they
cover all the important aspects in the standard such as
exception handling, dead path elimination, and so on. The
model they consider differs from ours in that we formalise
the whole system as a composition of orchestrators with
resources associated, whereas they describe the system
as a general scope with nested sub-scopes leaving aside
the possibility of administering resources. Besides, we
have also formalized the event handling and notification
mechanisms. Following this translation, in [14], Ouyang
et al present the tool WofBPEL and a companion tool,
BPEL2PNML. The idea behind is to provide tool support
for the analysis of BPEL processes. Related toπ-calculus
semantics, Dragoni and Mazzara [6] propose a theoretical
scheme focused on dependable composition for the WS-
BPEL recovery framework. In this approach, the recovery
framework is simplified and analysed via a conserva-
tive extension ofπ-calculus. The aim of this approach
clearly differs from ours, but it helps us to have a better
understanding of the WS-BPEL recovery framework. In
addition, we also consider time constraints. Moreover, we
would like to highlight the work of Farahbod et al. [9]
and Busi et al. [4]. In the first one, the authors extract an
abstract operational semantics for BPEL based on abstract
state machines (ASM) defining the framework BPELAM

to manage the agents who perform the workflow activi-
ties. In this approach, time constraints are considered, but
they do not formalize the timed model. In the second one,
they also define aπ-calculus operational semantics for
BPEL and describe a conformance notion. They present
all the machinery to model web service compositions

(choreographies and orchestrations). The main difference
with our work is that we deal with distributed resources.

Finally, in the literature one can find several tools per-
forming the opposite translation, i.e., from Petri nets into
BPEL. In [2], van der Aalst and Lassen present the theory
and implementation of a translation between WF-nets
and BPEL. The implementation is performed via the tool
WorkflowNet2BPEL4WS. This tool automatically trans-
lates coloured Petri nets, CPNs, into BPEL code. These
CPNs are specified using CPN Tools [5]. Other similar
proposal, WoPeD [7], is a Java-based tool that provides
an easy-to-use software for modelling, simulating and
analysing workflow processes and resource descriptions.
WoPeD supports the CPN notation and the standard file
format of WoPeD is PNML, allowing model exchange
with other Petri net tools. After this introduction, Section
II shows briefly the language BPEL-RF, whereas Section
III presents indeed the tool. Section IV contains a case
study so as to illustrate how the tool works. Finally,
Section V finishes the paper with some conclusions and
possible future work.

II. BPEL-RF LANGUAGE

In this section, we are going to present briefly the
main characteristics of the language called BPEL-RF
(Business Process Execution language for the Resource
Framework). An operational semantics for this language
was presented in our previous work [12], and the cor-
responding translation to prioritised-timed coloured Petri
nets in [13]. Due to the lack of space, we omit here these
transformations, so the interested reader can refer to [12],
[13] for them.
We use the following notation:ORCH is the set of
orchestrators in the system,Var is the set of integer
variable names,PL is the set of necessary partnerlinks,
OPSis the set of operations names that can be performed,
EPRSis the set of resource identifiers, andA is the set of
basic or structured activities that can form the body of a
process. Note that each orchestrator uses its own variables
despite we have not separatedVar in its corresponding
subsets.

The specific algebraic language, then, that we use for
the activities is defined by the following BNF-notation:

A ::= throw | receive(pl, op, v) | invoke(pl, op, v1) | exit |

reply(pl, v) | reply(pl , op, v2) | assign(expr, v1) | empty |
A ;A | A ‖A |while(cond,A) | wait(timeout)|
pick({(pli, opi, vi, Ai)}

n
i=1

, A, timeout) |
createResource(EPR, val, timeout,O,A) |
getProp(EPR, v)| setProp(EPR, expr) |
setTimeout(EPR, timeout) |
subscribe(O,EPR, cond′, A)

whereO ∈ ORCH ,EPR ∈ EPRS , pl , pli ∈ PL, op,

opi ∈ OPS , timeout ∈ IN,expr is an arithmetic
expression constructed by using the variables in
Var and integers;v , v1 , v2 , vi range over Var, and
val ∈ Z. A condition cond is a predicate constructed
by using conjunctions, disjunctions, and negations over
the set of variablesVar and integers, whereascond ′

is a predicate constructed by using the corresponding
EPR (as the resource value) and integers. Notice that

326Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

setPropand getProp do not contain the property name
since, for simplicity, we are only considering a single
property for each resource. We therefore use its EPR as
representative of this property, as we already observed
in the introduction. Note that we do not take into
consideration correlation sets, dynamic partnerlinks or
instance creation, since we only deal with the static
aspects of WS-BPEL. We plan as part of our future
work an extension of this operational semantics enriched
with these additional constructions, as well as with
the inclusion of structured variables, instead of just
considering all variables as integers. An orchestration
is now defined as a tupleO = (PL,Var ,A,Af ,Ae),
whereA and Af are activities defined by the previous
syntax andAe is a set of activities. Specifically,A
represents the normal workflow,Af is the orchestrator
fault handling activity andAe = {Aei}

m
i=0

are the event
handling activities.

III. BPEL-RF TOOL

As WS-BPEL and WSRF are XML-based languages,
and the PTCPNs supported by CPNTools are also rep-
resented by XML files, we have used XSLT stylesheets
to transform the BPEL-RF document into another XML
document representing the PTCPN in a format supported
by CPNTools. These XSL stylesheets are created us-
ing a XSLT editor. The obtained XML document can
be visualized, simulated and verified with CPNTools.
As the tool has been developed in Java, it is multi-
platform, i.e., runs on Windows/Linux/Mac systems under
the Java virtual machineR© (the tool is available at [1]).
The XSLT transformation sheets (eXtensible Stylesheets
Language/Transform) are a W3C declarative language to
transform XML documents into other XML documents or
to some other kind of documents. The XSLT stylesheets
are widely used, as an easy way to apply transformation
rules to a source document in order to obtain the corre-
sponding output documents. Nowadays, XSLT is widely
recommended in web edition area, due to its ability to
generate HTML or XHTML sheets.

For making that transformation, XSLT allows to con-
vert the input in two ways: On the one hand, the pro-
grammer can manipulate the contents of the document
to organize them without changing the document format,
whereas, on the other hand, the programmer can use
XSLT sheets to transform the contents into other different
formats.

We have then defined a number of rules to extract
the PTCPN elements from the choreography defined as
a composition of WS-BPEL documents. Thus, our tool,
BPEL-RF, is used to achieve this transformation in an
automatic way, presenting to the user a.cpn file, which
can be opened with CPNTools. After doing this, the user
can analyse and verify the model by using the features of
CPNTools.

The XSLT stylesheet document starts with the instruc-
tion 〈 ?xml version =′ 1.0′?〉. The element root is a
stylesheet, which contains all other elements. In an XSLT
stylesheet, the name of reserved elements by the specifi-
cation comes from the same namespace, so they must be
written preceded by the appropriate alias that must point

to the URL: http://www.w3c.org/1999/XSL/Transform.
In Fig. 1, we show a piece of the structure of the XSLT
document.
Once we have located the initial and final mark of the root
element “xsl:stylesheet”, we define the transformation
rules:

• Each rule is defined by an “xsl:template”.
• In the rules, we indicate those elements of the XML

document that will be transformed.
• The rules also indicate how each element must be

transformed.
• Each rule is applied to all elements of the XML

document.
• In the XSLT rules, between their initial and final

marks, one can include:

– Text to be written literally in the output docu-
ment.

– Marks that are added to the XML output docu-
ment.

– Reserved elements to perform an action such as
retrieving the value of an item, sorting results,
calling other rules of the stylesheet, etc.

<?xml version="1.0" ?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform

version="1.0">
<xsl:output indent="yes" />
<xsl:template match="/">
<workspaceElements>
<generator tool="CPN Tools" version="3.2.2" format="6" />
<cpnet>
...
<page id="ID6">
<template>
<xsl:for-each select="//process">
<xsl:for-each select="child::*">
<xsl:if test="(name()=’pick’)">
<xsl:call-template name="pick" />
<xsl:call-template name="picktrans" />
</xsl:if>
....
</template>
</page>
...
</cpnet>
</workspaceElements>
</template>
</stylesheet>

Figure 1. Illustration of an XSLT template

For the sake of simplicity, BPEL-RF Tool has a very
simple and intuitive interface shown in Fig. 2. It consists
of a main frame with separated elements such as a file
menu and the transformation panel. The file menu has
three different submenus, namely:File, CPN Toolsand
Help. TheFile submenu offers two options. The first one,
Open WS-BPEL WSRF File, opens a BPEL-RF document
previously edited and saved with the tool; whereas the
second one,Exit, exits the program. TheCPN Tools
submenu only offers one option,Save Coloured Petri
Net, which saves the translated XML code to a .cpn file.
Finally, the last submenu,Help, consists of two options
Help and About. The optionAbout only informs users
about the tool version, the optionHelp offers users a wide
user manual with the possibility of searching through the
information using either a table of contents or a search
option.

327Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 2. Main screen of the tool.

The main elements of the interface are:

• The WS-BPEL / WSRF Textbox permits users
to introduce XML code following the specification
given by WS-BPEL and WSRF. This XML is used
as the source code to be translated into PTCPN.
This code can be introduced in two ways; either
by writing the XML code by hand or by loading
a previously saved document using theOpen WS-
BPEL WSRF Filesubmenu mentioned above. A
dialog window will be shown to the user asking him
to select the document to be opened. If the file is
not valid, an error message will be displayed on the
screen.

• In theCPNTools Textbox, after clicking on the but-
ton “Transform”, the corresponding Petri Net XML
specification is shown. To save this specification, the
user must click on theSave Colored Petri Net File
option in the CPN Tools menu. A dialog window
will be shown to the user to choose the destination
folder.

Moreover, we have another two buttons on the screen:

• The Transform button generates the corresponding
PTCPN. The result will be automatically displayed
in the CPN Tools Textbox after a few seconds. If
the WS-BPEL WSRF Textbox is empty, pressing the
Transform button will have no effect.

• The Clear button is used to clean the contents of
both text boxes. If both are empty, pressing on this
button will have no effect.

IV. CASE STUDY: AUTOMATIC MANAGEMENT

SYSTEM FOR STOCK MARKET INVESTMENTS

The case study concerns a typical automatic
management system for stock market investments,
which consists ofn+1 participants: the online stock
market system andn investors, Ai, i = 1, . . . , n. Here,
the resource will be the stocks of a company that the
investors want to buy just in case the price falls below
an established limit, which the investors fix previously
by means of subscriptions, i.e., an investor subscribes
to the resource (the stocks) with a certain guard (the

value of the stocks he/she want to pay for it). The
lifetime lft will be determined by the stock market
system and the resource price will be fluctuating to
simulate the rises/drops of the stock. Notice that we
do not take into account the stock buy process since
our aim is to model an investors’ information system.
Thus, the participants will be notified when their bids
hold or the resource lifetime expires. Let us consider
the choreography C = (Osys ,O1 , . . . ,On), where
Ok = (PLk ,Vark ,Ak ,Af k

,Aek
), k=sys, 1,..., n;Varsys =

{at , vEPR},Vari = {vi}, Af k
= exit . Variable vEPR

serves to temporarily store the value of the resource
property before being sent;vi is the variable used for the
interaction among participants, and, finally,at controls
the period of time in which the auction is active. Note
that the valuex indicates the resource value at the
beginning,at0 is the time that the “auction” is active,
and, finally, xi is the value of the stocks that he/she
wants to pay for. Suppose that all the variables are
initially 0:

Asys = assign(x + 1 , vEPR); assign(at0 , at);
CreateResource(EPR, lft , x , empty);
while(actualTime() <= at ,Abid)

Abid = getProp(EPR, vEPR); assign(vEPR + bid(), vEPR);
setProp(EPR, vEPR);wait(1 , 2)

Ai = wait(1 , 2); subscribe(Oi ,EPR,EPR < xi ,Acondi);
pick((pli , buy , vi , empty), empty , at0)

Acondi = getProp(EPR, vEPR); invoke(pli , buy , vEPR)

Here, the functionbid is used to increase/decrease the
stocks value simulating the fluctuation of the stocks price.

0

0

0

0

0

0

0

0

0

0

0

0

0

(EPR,max)

0

0

t1

0

0

at

at

at

at

0

vEPR

vEPR

0

[not(actualTime()<=at)]

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

(EPR,max,value)

INTxINTxINT

(EPR,max)

INT

0

(EPR,max)

vEPR

vEPR-p1

at

0

(EPR,max)

(EPR,max,value)

1001

@+discrete(1,2)

0

INT

PingetProperty0

INT

getProperty10

[actualTime()<=at]

INT

value1

0

at

0

0

at

0

0@+max

INT

0

condfalsewhileini0

getProperty20

Assign3

(EPR,max,value)

INT

Pinassign1

Assign1

Assign2PincreateResource0 Pinassign2createResource0

createResource10

at

0

0

(EPR,max)

PergetProperty0

(EPR,max)

PricreateResource0

(EPR,max,1040)

PracreateResource0

Pokwait0

[actualTime()<=at]

PinsetProperty0

pt1

(EPR,max,value)

(EPR,max,vEPR)valuePinassign3

pvEPR

Pinwhile0

0

condtruewhileini0

Pinwait0

Pinassign0

Assign0

setProperty20

t0

2

at[not(actualTime()<=at)]

INTxINT

wait0

condtruewhileend0

vEPR

setProperty0

PersetProperty0

pat

condfalsewhileend0Pokwhile0

Figure 3. PTCPN of the online stock market.

In Figs. 3 and 4, the PTCPNs for one buyer and for
the system are depicted. These figures have been obtained
automatically by using our tool.

328Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

0

0

z0

0

0

0@+1

0

0

x

x

x-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

PLOW

INT

INT
UINT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

wait1

INT

@+discrete(1,2)

subscribe10 Persubscribe0

INT

Pinsubscribe0

Pinpick0Psub0 pick20

[x=0]

0

x

INT

Subscribe0

0

STRINGxSTRINGxINT

PingetProperty1 getProperty21

invoke31

invoke21

getProperty11

PergetProperty1

Subscribe20

[value<1000]

timeout+1

[x>0]

Pinempty2

empty2 Pokempty2

Pininvoke1

invoke1
("pl1","buy1",value)

("pl1","buy1",value)

Precpick0

Papick0

tr0

ta0

pick30

Pickbuy1pl10

empty1

[x>0]

PLrinvoke1

PLsinvoke1

Pokpick0

pick100 Pokempty1

Pinempty1

Pinwait1

Pokinvoke1

Figure 4. PTCPN of one buyer.

A. Analysis

CPNTools offers us two forms to check the correct-
ness of our system: formal verification and simulation.
First, the simulation helps designers to understand how
the system exactly works and it is a mean to detect
possible errors in early stages of the development pro-
cess in order to refine the model according the clients’
requirements. Besides, formal verification through state
space analysis could be done in order to ensure that our
system achieves some formal properties such as liveness,
deadlock-freeness, and so on. In this way, Table I shows
the results obtained considering 1, 2, 3, 4 or 5 investors.
Note that we have considered the following assumptions:

• The “auction” timeat0 is limited to 10 time units.
• The resource is active during 15 time units (lft=15).
• The resource valuex is 100 money units.
• The value of subscription of each investori, xi, is

x−(9+i), that is, if the system has only one investor
its subscription guard will bex < 90, whereas with
5 investors, the last investor will have a subscription
guard ofx < 86.

• The function bid will fluctuate the stocks price
between -2 and 1 in order to simulate that the price
only can rise 1 and drop 2 at most each time unit.

We will focus on deadlock-freeness to ensure that the
system never gets stuck while the participants have
activities to do in their workflow. We have leveraged
the functions offered by CPNTools to demonstrate that
in all dead markings of the system the final place
is marked, which leads us to conclude the system
has finished correctly. This final place,Pokfinal0,
is marked by a transition when all the participants
have finished their workflow. For the sake of clarity,
we have not drawn this place in each figure. Thus,

the next SML code checks when this situation occurs:
fun DesiredTerminal n =((Mark.PetriNet’Pokfinal0 1 n) == 1’true),
which returnstrue if the placePokfinal0 is marked. In
addition, it is needed to evaluate the following predicate:
PredAllNodes DesiredTerminal=ListDeadMarkings(), to

check
that the list of dead marking contains the marking of the
Pokfinal0place.

Number of investors
Properties 1 2 3 4 5

State Space Nodes 3561 7569 16983 50350 89879
State Space Arcs 5203 12843 33271 112101 262215

Time (s) 2 7 23 146 1140
Dead Markings 124 244 454 1108 874

Table I
STATE SPACE ANALYSIS RESULTS

In Fig. 5, we show the results offered by CPNTools to
our queries for the case ofthree investors. Here, it can
be appreciated that all dead markings hold the predicate
DesiredTerminal, and, therefore, when the system reaches
a dead marking is because system has terminated, which
demonstrates the absence of deadlocks in our case study.

Figure 5. Result of the queries in CPNTools.

V. CONCLUSIONS ANDFUTURE WORKS

In this paper, a tool which permits the automatic
translation between BPEL-RF specifications and PTCPNs
supported by CPNTools has been presented. This is a
great advantage with respect to our previous works in
such a way the user only needs to provide the XML code
for the orchestration and the tool will extract automati-
cally the corresponding translation in order to effectuate
the formal analysis of the system. This analysis can be
done by simulation or by formal verification. In the case
study, we have centred on formal verification looking for
the absence of deadlocks in the model. Finally, as future
work, we plan to extend our work with additional features
of both WS-BPEL and WSRF, as the discovery of existing
resources. We are also working on the demonstration of
the equivalence between the operational semantics of [12]
and the Petri nets semantics of [13].

ACKNOWLEDGMENT

This work has been partially supported by CI-
CYT project TIN2009-14312-C02-02, and JCCM project
PEII09-0232-7745.

REFERENCES

[1] [retrieved:September,2012] BPEL-RF tool web site,
http://www.dsi.uclm.es/retics/BPELRF/

[2] W. M. P van der Aalst and K. B. Lassen. Translating
unstructured workflow processes to readable BPEL:
Theory and implementation, Journal of Information
Software Technology, vol. 50, number 3, pp. 131-159,
2008.

[3] [retrieved:September,2012] Alexandre Alves,
Assaf Arkin, Charlton Barreto, Ben Bloch,

329Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://www.dsi.uclm.es/retics/BPELRF/

Francisco Curbera, and Rania Khalaf. Web
Services Business Process Execution Language,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[4] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and
G.Zavattaro, Choreography and Orchestration: A
Synergic Approach for System Design. In Inter-
national Conference of Service Oriented Computing
(ICSOC), Lecture Notes in Computer Science, vol.
3826, pp. 228-240, 2005.

[5] [retrieved:September,2012] CPNTools official web
site, http://cpntools.org.

[6] N. Dragoni and M. Mazzara, A formal Semantics
for the WS-BPEL Recovery Framework - Thepi-
Calculus Way. In International Workshop on Web
Services and Formal Methods (WS-FM). Lecture
Notes in Computer Science, vol. 6194, pp. 92-109,
2009.

[7] A. Eckleder and T. Freytag, WoPeD 2.0 goes BPEL
2.0. In 15th German Workshop on Algorithms and
Tools for Petri Nets, Algorithmen und Werkzeuge
für Petrinetze (AWPN 2008). CEUR Workshop
Proceedings, vol. 380, pp. 75-80, 2008.

[8] O. Ezenwoye, S.M. Sadjadi, A. Cary, and M. Robin-
son, Grid Service Composition in BPEL for Scientific
Applications. In OTM Conferences, pp. 1304-1312,
2007.

[9] R. Farahbod, U. Glässer, and M. Vajihollahi, A
Formal Semantics for the Business Process Execution
Language for Web Services. In Joint Workshop on
Web Services and Model-Driven Enterprise Informa-
tion Services (WSMDEIS), pp. 122-133, 2005.

[10] [retrieved:September,2012] I. Foster, J. Frey, S. Gra-
ham, S. Tuecke, K. Czajkowski, D. Ferguson, F.
Leymann, M. Nally, T. Storey, and S. Weerawaranna,
Modeling Stateful Resources with Web Services,
http://www.globus.org/wsrf/.

[11] F. Leymann, Choreography for the Grid: towards
fitting BPEL to the resource framework. Journal of
Concurrency and Computation : Practice & Experi-
ence, vol. 18, issue 10, pp. 1201-1217, 2006.

[12] J.A. Mateo, V. Valero, and G. Diaz, An Operational
Semantics of BPEL Orchestrations Integrating Web
Services Resource Framework. In International Work-
shop on Web Services and Formal Methods (WS-
FM), 2011.

[13] [retrieved:September,2012] J.A. Mateo, V.
Valero, H. Macìa, and G. Diaz. A Coloured
Petri Net Approach to Model and Analyse
Stateful Workflows Based on WS-BPEL and
WSRF. Technical Report DIAB-12-04-2,
University of Castilla-La Mancha. Available at:
http://www.dsi.uclm.es/trep.php?codtrep=DIAB-12-04-2

[14] C. Ouyang, E. Verbeek, W. M. P. van der Aalst,
S. Breutel, M. Dumas, and A. ter Hofstede, Wof-
BPEL: A Tool for Automated Analysis of BPEL
Processes., In Third International Conference on
Service-Oriented Computing (ICSOC 2005). Lecture
Notes in Computer Science, vol. 3826, pp. 484-489,
2005.

[15] C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S.

Breutel, M. Dumas, and A.H.M. ter Hofstede. Formal
semantics and analysis of control flow in WS-BPEL.
Science of Computing Programming, vol. 67, issue
2-3, pp. 162-198, 2007.

[16] A. Slomiski. On using BPEL extensibility to imple-
ment OGSI and WSRF Grid workflows. Journal of
Concurrency and Computation : Practice & Experi-
ence, vol. 18, pp. 1229-1241, 2006.

330Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://cpntools.org
http://www.globus.org/wsrf/
http://www.dsi.uclm.es/trep.php?codtrep=DIAB-12-04-2

	Introduction
	BPEL-RF Language
	BPEL-RF Tool
	Case Study: Automatic management system for stock market investments
	Analysis

	Conclusions and Future Works

