
Performance Engineering Using Performance Antipatterns
in Distributed Systems

Chia-En Lin and Krishna Kavi
Department of Computer Science and Engineering

Unitersity of North Texas
Denton, TX USA

chiaen@unt.edu, Krishna.Kavi@unt.edu

Abstract—Performance analysis of software systems is complex
due to the number of components and the interactions among
them. Without the knowledge of experienced experts, it is futile
to diagnose the performance anomaly and attempt to pinpoint
the root causes in the system. Design patterns are a formal way of
documenting best practice approaches in software development
and system architecture design. Software performance antipat-
terns are similar to design patterns in that they indicate what to
avoid and how to fix performance problems when they appear.
Although the idea of applying antipatterns is promising, there
are gaps in matching the symptoms and generating feedback
solutions for redesign. In this work, we analyze performance
antipatterns to extract detectable features, influential factors,
and resource involvements so that we can lay the foundation to
detect their presence. We propose a system abstraction layering
model and suggestive profiling methods as the infrastructure in
building the framework for performance antipattern detection
with solution suggestions. It is used in the refactoring phase of
the performance modeling process, and is synchronized with the
software development life cycles. Proposed tools and utilities are
implemented and have been used on real production servers with
RUBiS benchmark.

Keywords–Performance Engineering; Anomaly Detection; Per-
formance Antipattern; Profiling.

I. INTRODUCTION
Developing a software system that meets its specifications

demands continuous verification and validation efforts in it-
erative development cycles running from analysis and design,
to implementation and deployment. During these processes,
engineers build the system by creating design plans, and main-
taining expected functional and non-functional properties of
the specifications. Testing and debugging activities take place
alongside the development. Similar to conventional functional
debugging, non-functional properties must also be tested and
appropriate fixes be made to meet the requirements. The com-
plexity of modern software systems makes it difficult for the
designer to assure compliance of non-functional requirements.

Design patterns are a formal way of documenting best
practices in software development and system architecture
design. The documented solutions are represented in a pattern
language, which addresses a description of the solution to the
problem, and the benefit gained from applying the process [1].

Since the usability of design patterns is still fairly abstract
in terms of pattern matching, they are not easily adapted and
applied in practice. Computing environment or context can
be thought of as a multidimensional attribute set which has
great impact on the execution of applications and systems.
To better match the problem description, a design pattern has
to provide specific context information for which the design

pattern is intended. In most cases, the context provides detailed
descriptions in a natural language to identify the scenario
where the pattern is applicable and not applicable. Designers
can look up the patterns and see if the scenario matches. Once
found, they can apply the solution as a best practice to assure
the result of the design is in fact the best possible.

Although patterns are promising and of great help in system
development, some gaps between practice and application
still exist. One of the obstacles results from the process of
identifying the exact context and matching the scenario to
the system under design. The context description of a design
pattern is usually described informally in natural language;
it is usually the responsibility of experienced domain experts
to decide if the match is effective. For a relatively large-
scale system, the complexity increases quickly making design
patterns unusable.

Software design patterns can be thorough in treating
functional design problems, but they do not address other
aspects of the design. This leads to another gap in applying
design patterns. Although the solutions to the design problems
optimize the components of the system while building, they do
not give clues to the quality of the design. In other words, only
functional enhancements are ensured, whereas non-functional
properties such as availability and reliability are not fully
covered.

Smith et el. [2] are among the early proponents of per-
formance design patterns. Principles of performance-oriented
design are used as strategies in the development life cycle.
They are embedded during the fundamental design practice
which is later documented as performance patterns. Although
performance patterns proposed are to address the performance
issues, they are presented at higher levels, while the context
can only be determined after the implementation of the pattern
has been chosen.

Instead of following the same format of design patterns,
the performance patterns are published from a different per-
spective, documenting potential bad practices that lead to
poor performance. They tell us what not to do and how
to fix a problem when it appears. Such patterns are called
antipatterns. Performance antipatterns are similar to design
patterns in that they document recurring problems, but state
the scenarios from the opposite side of best practices. If the
scenarios match with a performance antipattern, the predictive
outcome of performance can be poor. The solutions of how
to avoid the pitfalls are documented as solution descriptions
analogous to best practices. The advantage of adapting per-
formance antipatterns over performance patterns in practice
is that they are easier to apply and are clearly guided due

627Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

to the explicit coverage of the scenario description space.
However, antipatterns inherit one obstacle that is common
with design patterns. It is still not straightforward to apply
and gain the benefits from the solution. In this work, the
focus is on targeting performance antipatterns in software
development, and proposing approaches and tools to make the
pattern application process more performance aware.

A novel framework that assists in performance debugging
of distributed software systems is described in this work. To
alleviate the obstacles of applying performance antipatterns
during the software development life cycles, real performance
indices are made available in our framework. Real performance
baselines can be established so that the performance of the
designed system can be compared to discover performance
deficiencies. With the established facilities, contexts of per-
formance antipatterns can be documented with practical met-
rics. It will assist practitioners to match, detect, and apply
performance antipatterns quantitatively. For each system or
sub-component being evaluated, the framework creates profiles
in what is called suggestive profiling. When used during the
development life cycle, it provides a realistic means both for
antipattern detection and suggested solutions during the refac-
toring phase of a performance debugging process. Information
regarding the root causes of the detected performance problem
can be used to assist the redesign efforts. An effective solution
can be devised and used to eliminate the identified performance
anomaly.

The main contributions of our work are (a) an analysis
of performance antipattern for detectable features, influential
factors, and resource involvements (b) the proposition of a
system abstraction layering model and suggestive profiling
methods as foundations for performance antipattern detec-
tions, root cause analysis, and redesign suggestions, and (c)
a performance antipattern detection and solution suggestion
framework to be used in the refactoring phase of a performance
modeling process, synchronized with the software development
life cycles.

The structure of the remainder of this article is as follows.
Analysis of performance antipatterns and how they are used in
the design processes are introduced in Section II. The frame-
work to adapt performance antipatterns in system and software
development is presented in Section III, with the description of
innovative fundamental architectures and suggestive profiling
tools. Section IV describes the proposed process of perfor-
mance antipattern detection and solution refactoring using the
framework. Section V illustrates implementations and setup
of the framework with examples. Section VI describes works
that are closely related to ours. Finally, Section VII provides
conclusions about this work and future extensions.

II. PERFORMANCE ANTIPATTERN
A. Performance Antipattern Analysis

Performance antipatterns were originally described by
Smith and Williams [3][4][5]. Similar to the format of design
patterns, documentation of an antipattern consists of the name
of the pattern, the problem it addresses, and the best solution
to solve the problem.

The first step in applying antipatterns in the design pro-
cess is to extract the problem description and the feasibility
for detecting the pattern in real systems. Since the research
community frequently refers to these as fundamental antipat-
terns, there are additional attributes that highlight their usage

features. For example, to be able to detect the existence of
performance antipatterns, values of performance indicators
have to be acquired to decide whether a specific symptom
exists. Some of these can be determined by just a single value,
while others require multiple samples over time. The former
can be categorized as Single Value (SV), and the latter as
Multiple Value (MV) antipatterns. These annotated attributes
of a performance antipattern are summarized as Detectable
Features (DF). A detectable feature is the extraction derived
from the problem description statements, which serve as the
essential indicators of existence of the pattern.

To apply solutions to overcome performance antipattens,
the problem description is interpreted to extract the forces
seen in the pattern description. Associated forces are defined
as Influential Factors (IF) extracted from each antipattern will
be used as the clues to the root causes. Forces can be extended
when new forces are discovered from new archives. In a
general system and software development context, the factors
include:
Design Design factor is concerned with software objects and

how well they are established in the design and imple-
mentation. It often relates to the policy in the design of
resource sharing and recycling, as well as the arrange-
ments of processing steps. Different design approaches
result in different computing behaviors, and performance
outcomes.

Algorithm Algorithm factor is distinct from Design in the
way that software components can apply different strate-
gies to achieve the same computation goal. The designer
can adapt a strategic approach for computing and use
different structures to manage data. Different complexities
of the algorithms lead to different execution times.

Configuration Software development usually leaves options
for configurations to let the user fine tune the behavior of
the application to fit the usage expectation. While systems
are ready to run, different management policies with
corresponding configuration options can lead to different
performance behaviors.

Threading Multitasking has been one of the frequent models
used in software systems to cope with the complexity
of parallel and distributed environments. Thread, as an
abstract execution unit, plays a key role in carrying out
a task along with other peer threads. Individual thread
behavior, thread coordination, and management policies
play a significant role in the overall system performance.

B. Design Processes with Performance Antipatterns
In most systems, the debugging activities are continuous

along with an iterative software development life cycle. Anal-
ogous to general debugging activities, the performance debug-
ging activity should also be embedded in the development
process and run concurrently with the development processes
to ensure the expected performance is on the right track. Taken
from a generic modeling process, life cycle phases are put in
order from requirement analysis and design to implementation
and deployment testing. The life cycle is always iterative to
make incremental improvements for each round. During the
development process, engineers extract the required informa-
tion to create models that assist in analyzing the design and
planning for further verification and testing. These models
are related to functionality of the system, and are used for
validation and verification debugging purposes. Performance

628Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Performance

Interpreter

Performance

Model

Software

Model

Transformation

Extraction

Performance

Indices

Modeling Analysis Refactoring

Feedback Generation

Figure 1. Performance Modeling Life Cycle with Performance Antipattern
Refactoring

debugging, on the other hand, requires further information
to facilitate performance analysis and evaluation. In software
performance engineering [6], a model-based performance anal-
ysis approach is adopted to generate performance data. They
are created with the information about the architecture of
the system, the capacity of its components, and the expected
behavior of the system. Additional estimations such as re-
quest types and potential workloads are also needed for the
modeling. The derived performance models are then used to
produce quantitative numbers such as time duration, system
utilization, and throughput. These values serve as indicators
formally known as performance indices. The combination of
these indices is used to predict the performance of the system.

The performance modeling process is depicted in Figure 1.
The process is split into three phases. The modeling phase is
the main stage of the system and software life span. Regular
software models are built by following the life cycle phases.
This software modeling phase is overlapped with performance
modeling, because the updated performance attributes are
gathered from the modeling activity as soon as the latest design
revision is available. The second phase is analysis, and its goal
is to create corresponding models for performance analysis
and prediction. In this phase, model-to-model transformation
is taking place. System and software models are transformed
into performance models with information such as designated
architecture, its topological layout, and available resources.
In the analysis process, performance indices are obtained by
solving the performance models using queueing network tools.
These indices are used as indicators to forecast performance.
Performance indices are interpreted in the third phase called
refactoring. The goal of refactoring is to reflect the latest per-
formance attributes and determine the satisfaction of the design
in terms of performance qualification. If the performance does
not meet the requirement, feedback can be generated to initiate
design changes according to the interpreted results to resolve
the performance issues. Engineers are obliged to check the
predictive performance indices, and respond accordingly with
changes to ensure the performance is acceptable. Analogous to
software life cycles, the performance modeling process should
proceed iteratively in an incremental order to synchronize with
the original software model, create and analyze performance
models to generate up-to-date performance indices, and give
feedback with design changes for better performance.

In the performance engineering process, the goal is to
detect a performance anomaly in the design and resolve the
issue effectively and precisely. However, performance indices
can only provide the location of the problematic components

 Performance

Model and Solver

Feedback Generator

Interpreter and

Software

Model

AntiPattern
Performance

Transformation

Extraction

Modeling Analysis Refactoring

Indices

Output

Performance Baseline

Feedback and Redesign

Synchronization Detection and Solution

Figure 2. Refined Performance Modeling Life Cycle with Performance
Antipattern Refactoring

anomaly. To be able to come up with a change of plan, the
practitioner must look into the design of the system to find
the cause and estimate the performance penalties accordingly.
It is difficult for performance experts to reason using only
performance indices if the system being built is relatively new.
This is where performance antipattern can help; especially
in the refactoring phase. Running parallel with interpretation
steps, an antipattern detection engine can be installed to
assist performance antipattern identification. Once detected,
the known solutions can be provided as feedback suggestions
to remodel the system.

Antipattern detection mechanisms largely depend on the
problem description to discover instances of a performance
anomaly in the system, while feedback adjustments depend on
the solution description. Ideally, the performance antipattern
mechanism should be easy to adapt and build an engine
for detection and find a solution. Figure 2 depicts the in-
tegrated process of the software development modeling and
performance modeling processes. Both of the processes are
synchronized in the modeling phase. In the refactoring phase,
mechanisms of antipattern detection are integrated to assist
in identifying performance problems and generate solutions
accordingly as feedback for redesign. The integrated process
is synchronized incrementally and iteratively with the software
modeling.

Although the promises of performance antipatterns, or
design patterns in general, are great, the intricate nature of
documenting a scenario and its environment in a comput-
ing system makes direct application of antipatterns difficult.
If the goal is to put it into automatic practice, there are
many gaps and challenges. One example of deficiency is the
difficulty in recognizing the context where the performance
antipattern exists. For instance, in unbalanced processing-
extensive processing antipattern, the problem description states
“the extensive processing impedes overall response time.” It is
left to the discretion of engineers to realize what exactly the
response time change is and how it should be modeled in the
specific application. Another example in the ramp antipattern,
the statement like “processing time increases” in the problem
description, has to be determined by the engineers as to what
is the significance of time indices in modeling so as to detect
the symptom in the specific application.

Another noticeable hurdle in applying performance an-
tipatterns is getting the solutions as feedback. Inherited from
generic design patterns, solution descriptions are essential parts
in pattern documentation that carry key expert knowledge.
The secret to completing the performance modeling process

629Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

TABLE I. SYSTEM ABSTRACTION LAYERS

Division Layer Design Abstraction

Software System

Sub-System Integration

Component Composition

Task Configuration

Thread Execution

Platform Layer Abstraction

Middleware Resource Management

Operating System Scheduling Policy

Hardware Layer Abstraction

Execution Unit Processing Element

largely depends on the precision of solutions, which enables
debugging processes to tweak the design to overcome the
performance pitfalls mentioned in the antipattern. The problem
with context ambiguity, similar to the counterparts of per-
formance antipatterns in detection the mechanism mentioned
above, appears in the solution description as well. For ex-
ample, in more is less antipattern, to determine whether the
architecture can meet its performance goals by staying below
the thresholds, one has to decide the appropriate value for
the threshold. The threshold value is not only affected by the
underlying architecture attributes; it can also be affected by the
degree of discretion which in turn depends on the context of
the application. Another example, in Traffic Jam antipattern,
one of the solutions is to provide sufficient processing power to
handle the worst-case load. The processing power adjustment
is an open issue to be determined to remedy the bottleneck.
These examples show that applying performance antipatterns
in the refactoring phase would need reasoning tools to assist
the feedback generation. In other words, once an instance
of antipattern has been identified, applying the solution de-
scription to generate feedback for system improvement is not
straightforward. Tools that can reason about the context for the
specific system should be available to enable the reasoning
process. This is where profiling approaches can be useful,
which are described in the next sections.

III. PERFORMANCE EVALUATION FRAMEWORK
A. System Abstraction Layers

Since performance results derive from the integration and
cooperation of software and system architecture, an abstract
structure is proposed to help us identify essential elements of
the performance forces and express how they organize and
play different roles in computing. A system and all its entities
is modeled in a structure called System Abstraction Layers
(SAL). The modeled layers consist of three divisions from top
to bottom: software, platform, and hardware. Table I depicts
the contents of each layer and their design abstraction. Each
design abstraction represents orthogonal forces from a system
development activity that affect the behavior of the elements
in the layer.

In the software layer, systems are realized by the integration
of sub-systems, each of which is responsible for a specific
functionality. For each subsystem at the software layer, entities
of software in terms of components and libraries are composed
to create the sub-system. Each component in this setting is
executing the tasks designated. The abstraction of task control
can be related to configuration if the tuning mechanism is
available for the software entity. The real execution in the

software layer to carry out the tasks of a component is given
to the elementary execution entity known as the thread. The
abstraction is also compatible with the implementation using
only the processes, where each process is treated as a special
main thread.

Many software systems need to take advantage of using
services from middleware to ease the complexity of developing
and deploying applications. Middleware is used to manage
the communication resources and hide the interaction details
from the users, especially for distributed systems. In a broader
sense, it also manages the server resources by regulating
how control and information flow is distributed under the
designated architecture topology. Below the middleware, it
is the operating system that provides services for resource
management and process scheduling. The platform layer is
about resource management where the system and its software
entities reside and access the computing resources.

The bottom layer of the server under the platform layer
is related to hardware component organization. It is where
the actual performance is measured. Performance revealed
from the hardware layer depends on the grade of components
installed. Utilization of hardware components can be acquired
from this layer which includes processors, memory, network,
and disks among others.

With the defined conceptual layers in SAL, each of them
relating to a specific design abstraction, we can describe a
performance scenario flexibly both at higher and lower layers.
A high level scenario expression can be refined and mapped
to its corresponding lower level counterparts. Through the
process of mapping, we can identify the related elements
in each layer and reason about the forces associated with
them. This lays out the foundation to detect the case of a
performance anomaly, when the root cause elements can be
identified in the hierarchical approach. To accommodate the
context information, the structure of layers can be represented
with a description language. The performance context of a
system or application can likewise be expressed.

B. Performance Suggestive Profiling
The purpose of profiling in our framework is to identify

the performance anomaly and to locate the root causes. Once
performance antipatterns appear in the performance modeling,
the practitioner should be able to detect and get the suggestive
solutions depending on the current context of the system to
remedy the problem. To gain the causality reasoning capability,
the proposed profiling mechanism is set to conform to the
system abstract layers. The profiling mechanism can also serve
as the toolkit to access the performance baselines in the SAL
structure. For the assistance role, the profiling mechanism
should be compatible to both software development and the
performance modeling process, making it easy to adapt in
all phases in the process. The profiling mechanism should be
easy to setup for performance testing and evaluation. Since
profiling is also applied to the baseline, profiling can aid in
detecting antipatterns and suggest solutions. With these design
requirements in mind, the following discussion provides the
design rationale and discusses the components of the profiling
mechanism, the context where they can be applied, and how
they can be utilized in the system development.

Conventional software profilers usually focus on the source
code or its corresponding executable binaries to get statistical
measurements of the software package or library. The infor-

630Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

TABLE II. SUGGESTIVE PROFILING METHOD IN THE SYSTEM
ABSTRACT LAYER CONTEXT

SAL Context Profiling Method Suggestive Profiling Method
Subsystem,
component

Path-Oriented Alternative Path options

Thread Thread Behavior Thread Behavior comparisons
Middleware Networking Profiling Request traces and communication

protocol verification
Hardware System Resource Pro-

filing
Physical and Abstract resource sum-
marization

mation includes frequency and duration of routines such as
function calls. The goal of a conventional profiler is program
optimization. System profilers focus on resource usages of the
server. They monitor the state of hardware resources such as
processors, and report consumption summaries. All of these
profiling mechanisms are essential to our purpose. However,
more precision and reasoning structures are needed to achieve
our goal. We need the following:

• Specific timeline information that can identify not only
spatial hot spots but also the temporal features.

• Profiling information from one layered aspect that can
relate to another, such that a reasonable mapping can be
inferred.

• Profiling information that can be summarized and com-
pared with the associated computing context.

• Inter and intra communication should be integrated in the
profiling mechanism.

To this end, we put together the profiling mechanism
needed to fulfill the requirements of our purpose. In particular,
our goal is to assist in performance antipattern detection, as
well as feedback generation. In addition, software systems
often run in networked environments; the profiling mechanism
needs to flexibly accommodate and adapt to distributed settings
as well. In Table II, the profiling mechanisms are categorized
into contexts that are matched to SALs. Each of the profiling
methods is given a brief description followed by its suggestive
profiling method. The purpose of the method is to explore other
available options in the same context level of the system to give
leeway in enhancing the performance result or avoiding bad
practices. The practitioner can take advantage of the suggestive
profiling approach to explore design options to achieve better
performance. In the performance refactoring phase for antipat-
tern detection, exploring the suggestive solution methods may
provide a clue to a final solution.

1) Path Profiling: The framework adapted the terminology
of Path Profiling from data flow analysis [7], and the pathwise
decomposition concept from path-oriented analysis [8]. The
concept of path-oriented profiling is based on the measurement
of different execution paths. If we can make the most common
path execute faster, the response time may be shorter. Path
profiling also provides insights on improving performance by
revising the chances of executing certain paths, or improving
the efficiency of the path. If the frequency of execution of
a path is relatively high, the savings in execution time can
become significant. The dependency of paths and associated
components can be identified.

Path profiling can be seen mostly at the level of software
components and libraries, and in the programs. In the software
layer, execution path is the lowest unit of refinement for
the software system. For each thread, path profiling is also
essential to discover performance problems. Software elements
can be explored along the execution path.

The concept of execution path can be extended to accom-
modate information flows. Information flow tracking in the
program is done to understand the pattern of execution paths as
certain requests are being executed. It can also be extended to
include communication routes that connect the execution path
between server nodes. The high level view of path profiling
can be observed at the subsystem level where interactions
between clients and servers use different routes. Alternative
routes between them may be the result of dispatching policy
or adapting flexible algorithms to react to traffic congestions.

2) Thread Behavior Profiling: A thread is a sequence of
instructions and the representation of a logical computational
unit, which can be scheduled to run by the operating system.
A pool of working threads can be initialized before the
real workload picks up and be ready to respond without
delay. Adapting this thread model also has the benefit of
executing true concurrency in a multicore environment. Thread
Behavior profiling is about the observation of thread creation,
execution, destruction, and management of threads. At the
system architecture level, processor affinity can be monitored
as multithreaded programming specifies the arrangements. The
combination of resource distribution and the management pol-
icy such as the number of threads and their running priorities
affect the overall performance. Threads can also be viewed as
another form of dynamic path, because every thread runs on
its own copy of instructions. The observation and summary of
individual threads can be performance indicators of how well
they coordinate and cooperate.

The context of thread profiling is at the task level where
the system adapts a multithreaded programming model to carry
out designated services. Depending on the features of the
application, a threading system usually provides facilities to
adjust the behavior of threads to improve their performance.
A thread is the lowest logical task unit that we can monitor
in the profiling. It provides the flexibility of measurement in
both higher and lower levels of the system. At the higher
level, an end-to-end performance scenario can be profiled by
integrating thread behavior profiling in each subsystem with
the information flows. At the lower level, each task and its
resource usage by a specific thread can be analyzed. The
flexibility of thread monitoring facilitates the whole system
profiling at a fine-grained level.

3) Network Profiling: Networked systems have become the
infrastructure for every computing system no matter where it
resides, either in enterprise clusters, virtual hosts, or Clouds.
The complexity of interaction patterns among servers increases
exponentially. As the network becomes the computing plat-
form, it isnecessary to profile and monitor network traffic. Our
model classified the networking in the context of middleware
and includes proxy, router, programming middleware, and
other network topologies such as multi-tier and clustering. Net-
work profiling focuses on getting information about requests
and responses, and the underlying communication protocols.
Measurement information can be about the number of requests
at the higher level, and the number of network packets at a
lower level. It can also look into the data that packets carry, and
profile the characteristics of the request message. Performance
of the network activities can contribute to either the network
interface capacity such as queueing buffers, or the processing
speed of the server.

Network profiling information can be referenced by its
connected systems and software components to make more

631Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

informed design decisions. It can also contribute to the con-
struction of analytical models such as queueing networks with
more realistic estimation of queue lengths and arrival rates.
Finally, for information flow analysis, networking profiling
facilitates visualization of the activities in detail, and provides
the overall picture of the networked components and systems.

4) Resource Profiling: Conventional resource profiling is
about profiling physical resource usage. The resource here
refers to the hardware components of the server architecture.
The higher capacity the server has, the higher the performance.
In practice, cost, overhead, and other limitations can affect the
choices and ability to obtain more capacity. Resource profiling
gives information about resource characterization of the server
and its computational capacity. It usually hints at the potential
performance outcome of the system.

One puzzle of resource profiling is in the context of
the software abstraction layer, where engineers often want
to know precisely the resource consumption of a specific
software entity. For example, if the load a working thread
contributed to a processor load can be calculated, then the total
resource requirements can be estimated given the number of
threads. Physical resource monitoring alone cannot fulfill the
job because it is hard to get a clear view of workload of a
working thread without being affected by other programs and
the operating system management policies.

To estimate the resource consumption of a software entity,
instead of applying measurement and estimation using a sys-
tem utility, we turn to resource consumption estimation using
the number of instructions executed. Resource profiling in a
software entity can be abstracted to the lowest level of com-
putation using instructions before putting them into operation.
These instructions are the ones that are consuming resources.
Therefore, the system resources that need to accommodate
these executions can be estimated. Depending on the type
of resource, a processor’s workload can be approximated by
the number of instructions running on it. The instructions
can be further categorized by the type of memory access
that can have different number of cycles. For a storage disk,
the number of I/O accesses resulting from the execution
can also be counted toward resource consumption. Advanced
resource modeling such as register and cache behavior can be
devised to extract the measurements. We name this type of
resource profiling as abstract resource profiling in contrast to
the physical resource profiling method discussed above. The
mapping between software entity and the abstract resource
can be clearly identified and the resource consumption can
be reasonably estimated.

The application of resource profiling can be applied to
most of the system. Software systems usually adapt monitoring
mechanisms to extract the information from system hardware
components. Abstract resource profiling will need the other
profiling mechanisms in the suggestive profiling to supply the
measurement. All the conventional resources in the antipattern
domain, such as CPU, Memory, Network, and Disk, can
participate in resource profiling.

5) Request and Workload Profiling: Workload plays an
influential role on the performance. Although the profiling
method is not categorized into any system abstract layer, it
affects every part of the system. Depending on request patterns,
one subsystem or component may have a larger workload then
that of the others. If the workload exceeds the planned capacity
of components, a bottleneck would occur. Similar considera-

tions apply to the performance impact of threads, in that they
may spend more time processing requests, and the throughput
may suffer. In the context of middleware, interactions between
servers may take longer under heavy workload due to waiting
for responses. In the system architecture layer, the computing
workload coming from the above layers has a direct impact
on resources and overheads when switching between tasks to
meet the services.

The request and workload profiling provides information
about the impact on each context of the system. Engineers can
evaluate the scenario of request pattern in each focused context
independently. The profile relating only to an individual con-
text can be used as a specific source of information to focus
on that particular design improvement. On the other hand, the
profiler can characterize the workload, so that the design of
the system can be adjusted flexibly if it is possible to increase
the performance. For example, if the profile of the request
is CPU bound, engineers may consider distributing them as
evenly as possible to available servers. Another alternative
solution occurs when CPU bound requests prefer to be sent to a
CPU with higher performance. We also note that both physical
and abstract resource profiling information can be used to
characterize workloads. This information can help engineers
understand the impact of requests.

In practice, request types and their temporal patterns are
dynamic, and the workload characteristic is not known a priori.
The suggestive profiling mechanism can be used at deployment
to selectively monitor requests, and create the workload profile
associated with the context. The profiling can select time
periods or focus on a specific component for performance
monitoring.

IV. DETECTION AND SOLUTION SUGGESTION PROCESSES
To be able to use suggestive profiling in performance

antipattern detection and solution feedback, one has to un-
derstand performance baseline. Performance baseline is the
summary of current performance of the system. It can be
used for performance debugging to check against requirements.
Preliminary performance evaluation can be obtained by estab-
lishing the baseline of the target system or components. The
content structure of the baseline is compatible with the system
abstraction layer, in which path-oriented, threading, network-
ing, and resource profiles are recorded. In each context of
the profiling, performance metrics such as execution time and
process utilization are available for verification. Performance
baseline can be created for every element in each context of
suggestive profiling method including subsystem, component,
thread, network, and hardware component. Depending on
the needs of debugging activity, engineers can zoom in on
targeted components and their interactions when high level
information is not enough. In short, performance baseline is
an agile performance filtering and debugging tool used in the
software development process to collect targeted performance
snapshots.

With performance baseline as the debugging framework
used in the system development process, activities in per-
formance modeling processes can share the data it collects.
Since both of the processes are synchronized, the performance
metrics collected are reflected in the latest status of the system.
In the refactoring phase, performance antipattern detection
and solution suggestion feedback mechanism can be executed
with the help of suggestive profiling. Performance baseline

632Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

is accessed to extract the metrics of the detectable features
needed with each antipattern. The value of detectable features
can be checked to see if the symptom appears. If not detected
then the antipattern does not exit, and no action is needed. If
detected, the solution may be applied to solve the performance
anomaly in the system. Antipattern solution can point to
problem spots and give approaches to resolve the problem.
As discussed in previous sections, refactoring dilemma exists
because we need more clues to generate detailed feedback
for redesign and eliminate the anomaly. To close the gap,
suggestive profiling can be used to narrow down the root
causes.

We recall that the suggestive profiling method consists of
profiling path, thread behavior, networking, and resources in
the layered context defined in SAL, and each profile can be
evaluated independently. In order to converge on to the root
cause, we examine the suspicious context revealed by profil-
ing. Within the root cause, performance metrics gathered by
the profiling mechanism are verified against the performance
antipattern symptoms to discover corresponding solutions.
For example, if the root cause specifies a component is the
bottleneck in the system, we can further analyze execution
time profiles of paths, and make a specific solution suggestion
in refactoring. Although we reason at the specific component
level, levels higher and lower than the root cause context can
also be inferred for potential redesign options. For example,
if the root cause is a thread’s performance, execution paths at
a higher level or resources at a lower level can be inferred as
the relevant factors. Solution suggestions can therefore provide
more relevant information.

V. CASE STUDY
A. Framework and Tools Implementations

The suggestive profiling was implemented using Pin tool
[9]. An associated data analytic framework for performance
debugging, antipattern detection, and solution suggestions were
created to work with the tool. Together they can trace each
executed instruction of an application for path-oriented anal-
ysis. It also provides other instrumentation points including
basic blocks, routines, images, and complete application. These
abstractions can be used to identify call graphs, accesses to
libraries, and inter and intra component communication, which
can easily fit in the system models.

In the framework, our tool includes following utilities to
facilitate suggestive profiling:

• Data collection, processing, and management for different
profiling methods.

• Communication between software components and sys-
tems is profiled with the help of protocol plugins. Each
plugin specifies the pattern of interactions.

• System resource monitoring, logging, and analysis.

B. Experimental Setup in Production Systems
RUBiS [10] was setup on Xen 3.1.2 virtual machines

hosted on Dell Optiplex 960 with 4 CPU and 4GB RAM. Each
virtual machine runs on one virtual CPU and 512MB RAM.
Each virtual server is connected to a virtual network interface
with a unique network address. The virtual network connection
is created by an ethernet bridge, and a DHCP server is setup
to assign unique network address to each virtual server.

RUBiS was installed with Apache2 httpd [11], JBoss AS
4.3.2 [12], and MySQL [13] as the web server, application

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10
Worker1/Worker2 ratio of lbfactor

0

2000

4000

6000

8000

10000

Di
sp

at
ch

in
g

Co
un

ts

4736

4712

7897

3888

8603

2822

7285

1749

8403

1749

9186

1628

8001

1243

9090

1150

8366

1000

8617

969

Worker1

Worker2

Figure 3. Number of Requests Dispatched to worker1 and worker2 of JBoss

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10
Worker1/Worker2 ratio of lbfactor

0

5

10

15

20

Se
co

nd
s

8.123315

2.350059

12.887895

0.220794

17.827325

9.338566
7.698771

0.443234

15.782923

0.007625

12.409006

0.00636

7.409484

0.007834

15.588295

0.008298

18.105297

0.006028

7.685043

0.005853

Worker1

Worker2

Figure 4. Average Execution Time of Requests Dispatched to worker1 and
worker2 of JBoss

server, and database respectively. The suggestive profiling
Pin tool was installed on the web server to generate the
performance baseline for the web server, and to demonstrate
performance antipattern detection and solution feedback sug-
gestions. On each server virtual machine, we measure the
load with sysstat utility to collect CPU, memory, network,
and disk usage every one second. All the traces and logs
generated from the suggestive profiling Pin tool, and the
system utility measurement logs are collected afterward to
avoid interferences with the workload of the server.

C. Performance Antipattern Detection and Solution Sugges-
tion

The proposed framework is applied to detect root causes
using the exemplified performance antipatterns in this study.
Once a performance antipattern is documented and relevant
context-dependent solution suggestions are recorded, they can
be supplied directly as possible solutions. Practitioners have
the option to choose between applying documented solutions,
or creating a new antipattern instance that is specific to the
scenario of the system under review. A short discussion for
each antipattern studied in our case study are described below.
• Unbalanced Processing Antipattern

Description Problem occurs when processing connot
make use of available processors.

Application Best practices of dispatching between an
Apache Web Server(WS) and multiple JBoss Appli-
cation Servers(ASs).

Detection Unbalanced processor utilization or service

633Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

time duration observed between ASs.
Solution Adjust dispatching configurations by making

changes to the proportion of load sent to different
wrokers, using lbfactor in mod jk.

Experiment Experiment using default transition work-
load with 500 users whose requests are served by two
JBoss ASs and one Apache WS is presented with dif-
ferent ratios of lbfactors. Figure 3 depicts the number of
requests dispatched from WS to either worker1 of AS1
or worker2 of AS2. The load balance ratios are marked
as the ticks on x-axis. We observed that the number
of requests to worker1 and worker2 are approximately
proportional to the weight of the lbfactor. Figure 4
depicts the execution times of requests dispatched from
WS to worker1 or worker2 with different dispatching
ratios. The represenation is not liner, but it reflects
the scenario in which the preferred node spends more
time processing because of the improper load setting.
Both the dispatching number and the time duration with
different ratio are interrelated.

• More is Less Antipattern

Description Problem occurs when a system spends more
time trashing than accomplishing real work because
there are too many processes relative to available
resources.

Application Best practices of deciding what is the ap-
propriate number of working threads needed to serve
in an Apache Web Server.

Detection Comparison of throughputs between settings
using different number of threads.

Solution Adjust the number of threads based on pefor-
mance.

Experiment In this experiment, the RUBiS benchmark
with different sets of configurations was run, and the
outcome of the performance baselines and their differ-
ences were observed. Figure 5 depicts a test run with
800 users using various sets of worker configuration
shown in the legend. The numbers in the legend corre-
spond to the order of Apache httpd server’s configura-
tion variables: StartServers, MinSpareThreads, MaxS-
pareThreads, ThreadsPerChild, MaxRequestWorkers,
and MaxConnectionPerChild. For each request types
from the benchmark, the corresponding average re-
sponse time in seconds is shown.

• God Class Antipattern

Description Problem occurs when a single class either
performs all of the work or holds all of the data of the
application.

Application Checking both design and implementations
for better object-oriented paradigms.

Detection The number of control or data flow in a pro-
gramming class that is higher than predefined threshold.

Solution Refactor the design and implementations of the
detected class.

Experiment Developer documentation of
httpd states that, all requests pass through
ap process request internal() in request.c of the
web server. We want to observe the information
flow and its frequencies when a real workload is
used. Before checking the flow of information to

1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 19 20 21 23 24 25 26
Request Types

0

1

2

3

4

5

6

Se
co

nd
s

1,1,1.1,1,0

1,2,4.2,4,0

1,3,9.3,9,0

1,4,16.4,16,0

1,5,25.5,25,0

1,6,36.6,36,0

1,7,49.7,49,0

1,8,64.8,64,0

1,9,81.9,81,0

1,10,100.10,100,0

1,11,121.11,121,0

1,12,144.12,144,0

1,75,250.25,250,0

Figure 5. RUBiS Benchmark with 800 Users Using Various Sets of MPM
Configuration

the targeted function from suggestive profiling tool,
symbol table of the ap process request internal()
function is extracted from the Executable and Linkable
Format (ELF) of httpd to find the static address of
the function. This information is used to acquire the
structure of instructions in execution order. Request
flow information collected from suggestive profiling
tool is checked with the static structure of the function
to produce the request flow graph at run time. It
should be noted that this type of analysis is possible
only when source code is available.

VI. RELATED WORKS
In the following subsections, approaches related to perfor-

mance antipattern detection, diagnosis, and solutions that are
closely related to our work are discussed.

A. Performance Antipattern Detection
Performance antipattern detection has been addressed in

different systems and models. Performance detection in com-
ponent based enterprise systems was proposed in [14], where a
rule-based performance diagnostic tool is presented. The tool
can work with EJB applications, in which data from runtime
systems is extracted and applied with rules for antipattern
detection. The method is limited to EJB systems. Another
performance detection and solution approach presented in [15]
discusses the performance antipattern in the context of the
Palladio Component Model (PCM) [16] software architecture
modeling language. A queueing model is derived from the
software model in PCM, and is solved to generate perfor-
mance indicators. The predictive values are matched against
performance antipattern rules in PCM to determine whether
an antipattern exists. Once detected, solutions can be applied.
It uses iterative processes to solve antipattern one by one. A
similar approach but using Architecture Description Language
(ADL) can be found in [17]. In [18], performance antipatterns
are presented using logical predicates. The problem description
for an antipattern is interpreted and presented using first
order logic equations. The approach focused on antipattern
presentation and detection. In [19], Performance Problem
Diagnostics (PPD) approach combines search techniques with
systematic experiments for performance antipatterns detec-
tions. The search is based on a decision tree technique to locate
possible root causes, while the detection strategies are based
on goal-oriented experiments. All these techniques described

634Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

above are based on models and heuristics, and do not describe
how to understand baseline performance or setting threshold
values at which system configurations should be changed. Our
framework relies on runtime data collection to understand
performance bottlenecks and how to tune system parameters.

B. Automatic Diagnosis and Feedback Generation
In [20], a rule-based automatic software performance di-

agnosis framework is proposed for detecting performance
bottlenecks. Layered queueing models are used to generate
performance predictions. The generated performance indices
are checked against predefined rules to detect performance
bottlenecks. The rules will also suggest mitigation approaches
to reduce operations or add resources. The solution feedback
is largely dependent on the definition of the rules. The success
of the system depends on the extensibility of the rules. The
feedback solution depends on translating performance model
attributes in design, which are not provided. A similar ap-
proach is presented in [21], which extracts software and system
architecture and creates a queueing model for performance
anomaly detection. In the feedback process, the architecture
model is used for redesign considerations. Our framework
does not use queueing modules, but relies on profiling. An
approach is proposed to address these concerns regarding
detection and solution feedback with real system thresholds so
that performance antipatterns can be applied in real practice. In
[22], a special detection approach for finding the most guilty
performance antipattern is proposed. The process checks per-
formance antipattern symptoms against system requirements,
and filters out the ones that do not violate them. The final list
of performance antipatterns are ranked using scores calculated
from equations defined for specific performance criteria. In our
current framework, we do not rank the antipatterns. However,
the use of baseline will eliminate some antipatterns from
consideration, if the performance is acceptable.

C. Solution Suggestions
There are many published approaches suggesting solutions

to overcome performance bottlenecks. Our discussion here
focuses on the ones that are related to performance anomaly
detection and root cause analysis. In [23], the performance
anomaly clustering method is used to narrow suspicious com-
ponents in distributed systems. Clusters are used to chain
components together when they are affected by the same
root causes. The clustering is based on the similarity of the
performance indices. To identify the problematic performance
spots, relationships between groups of clusters are compared.
Thus performance anomalies are identified at higher levels:
such as the server level. Further diagnosis steps will need to
rely on the practitioner’s system knowledge. A framework for
controlling system configuration parameters to adjust perfor-
mance was proposed by Stewart et al. [24]. The coverage of the
approach depends on the number of controlled configuration
used. In practice, it is not feasible that every configuration
and manifestation can be covered. Our approach collects data
on the software and the system, and establishes the perfor-
mance measurement specifically reflecting the real scenarios
of the system under performance debugging. To discover the
root causes, systematic processes are proposed which provide
suggestive performance anomaly solutions.

VII. CONCLUSION AND FUTURE WORK
In this paper, we address a critical need in detecting

peformance bottlenecks, relating them to known antipatterns
and utilizing appropriate soultions. Our approach is based on
suggestive profiling methods for different levels of abstrac-
tions. Common profiling include path-oriented profiling, thread
behavior profiling, networking profiling, and system resource
profiling. For each of these profiling methods, we include a
suggestive profiling method, and we suggest alternatives for re-
engineering the software system to achieve better performance.
Request and workload profiles can also be generated through
the suggestive profiling tool. This technique is used in the
solution suggestion during refactoring phase of performance
engieering, and is synchronized with software development
cycles. The suggestive profiling tool and the framework utility
tools have been implemented and demonstrated using RUBiS
benchmark to evaluate performance bottlenecks.

There are limitations in matching some performance an-
tipatterns with detectable features, and thus they cannot be
detected directly. Most of these undetectable antipatterns are
due to design decisions. Thus, an intimate knowledge of
the designs can help in the detection and elimination of
those performance antipatterns. If the design decisions can be
systematically codified, then it will be possible to extend our
framework to other performance antipatterns.

In the future, we plan to further analyze factors influencing
antipatterns in different domains including high-performance
computing, e-commerce or workflow data management, and
extend the framework with appropriate tools. We also plan to
make the framework Cloud-ready, so that general performance
antipatterns in the computation of distributed systems can be
categorized, detected, and resolved systematically.

ACKNOWLEDGMENT
This work is supported in part by the NSF Net-Centric and

Cloud Software and Systems Industry/University Cooperative
Research Center and award 1128344. The authors would also
like to thank Dr. Shih-Kun Huang of National Chiao Tung
University, Taiwan for his assistance with this project, and
valuable comments and suggestions to improve the quality of
the paper. We also acknowledge David Struble for his help in
proofreading.

REFERENCES

[1] R. Johnson, R. Helm, J. Vlissides, and E. Gamma, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1995.

[2] C. U. Smith and L. G. Williams, Performance solutions: a practical
guide to creating responsive, scalable software. Addison-Wesley
Reading, 2002, vol. 1.

[3] C. U. Smith and L. G. Williams, “Software performance antipatterns.”
in Workshop on Software and Performance, 2000, pp. 127–136.

[4] C. U. Smith and L. G. Williams, “New software performance antipat-
terns: More ways to shoot yourself in the foot,” in Int. CMG Conference,
2002, pp. 667–674.

[5] C. U. Smith and L. G. Williams, “More new software performance
antipatterns: Even more ways to shoot yourself in the foot,” in Computer
Measurement Group Conference, 2003, pp. 717–725.

[6] C. U. Smith, “Introduction to software performance engineering: Ori-
gins and outstanding problems,” in Formal Methods for Performance
Evaluation. Springer, 2007, pp. 395–428.

[7] T. Ball and J. R. Larus, “Efficient path profiling,” in Proceedings of the
29th annual ACM/IEEE international symposium on Microarchitecture.
IEEE Computer Society, 1996, pp. 46–57.

635Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

[8] J. Huang, “State constraints and pathwise decomposition of programs,”
Software Engineering, IEEE Transactions on, vol. 16, no. 8, 1990, pp.
880–896.

[9] C.-K. Luk et al., “Pin: building customized program analysis tools
with dynamic instrumentation,” in Acm Sigplan Notices, vol. 40, no. 6.
ACM, 2005, pp. 190–200.

[10] Rubis web site. [Online]. Available: http://rubis.ow2.org/ [retrieved:
August 2014]

[11] Apache http server project web site. [Online]. Available:
http://httpd.apache.org/ [retrieved: August 2014]

[12] Jboss application server web site. [Online]. Available:
http://jbossas.jboss.org/ [retrieved: August 2014]

[13] Mysql community server web site. [Online]. Available:
http://dev.mysql.com/ [retrieved: August 2014]

[14] T. Parsons, “Automatic detection of performance design and deployment
antipatterns in component based enterprise systems,” Ph.D. dissertation,
Citeseer, 2007.

[15] C. Trubiani and A. Koziolek, “Detection and solution of software
performance antipatterns in palladio architectural models.” in ICPE,
2011, pp. 19–30.

[16] F. Brosig, S. Kounev, and K. Krogmann, “Automated extraction of
palladio component models from running enterprise java applications,”
in Proceedings of the Fourth International ICST Conference on Per-
formance Evaluation Methodologies and Tools. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engi-
neering), 2009, p. 10.

[17] V. Cortellessa, M. De Sanctis, A. Di Marco, and C. Trubiani, “Enabling
performance antipatterns to arise from an adl-based software architec-
ture,” in Software Architecture (WICSA) and European Conference
on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP
Conference on. IEEE, 2012, pp. 310–314.

[18] V. Cortellessa, A. Di Marco, and C. Trubiani, “Performance antipatterns
as logical predicates,” in Engineering of Complex Computer Systems
(ICECCS), 2010 15th IEEE International Conference on. IEEE, 2010,
pp. 146–156.

[19] A. Wert, J. Happe, and L. Happe, “Supporting swift reaction: Automat-
ically uncovering performance problems by systematic experiments,”
in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 552–561.

[20] J. Xu, “Rule-based automatic software performance diagnosis and
improvement,” Performance Evaluation, vol. 67, no. 8, 2010, pp. 585–
611.

[21] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
analytical model for multi-tier internet services and its applications,” in
ACM SIGMETRICS Performance Evaluation Review, vol. 33, no. 1.
ACM, 2005, pp. 291–302.

[22] V. Cortellessa, A. Martens, R. Reussner, and C. Trubiani, “A process
to effectively identify guilty performance antipatterns,” in Fundamental
Approaches to Software Engineering. Springer, 2010, pp. 368–382.

[23] S. Iwata and K. Kono, “Clustering performance anomalies based on
similarity in processing time changes,” IPSJ Online Transactions, vol. 5,
no. 0, 2012, pp. 1–12.

[24] C. Stewart, K. Shen, A. Iyengar, and J. Yin, “Entomomodel: Un-
derstanding and avoiding performance anomaly manifestations,” in
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2010 IEEE International Symposium on. IEEE,
2010, pp. 3–13.

636Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

