
Towards a Technical Debt Management Framework
based on Cost-Benefit Analysis

Muhammad Firdaus Harun, Horst Lichter
RWTH Aachen University, Research Group Software Construction

Aachen, Germany
e-mail: {firdaus.harun, horst.lichter}@swc.rwth-aachen.de

Abstract—Technical debt (TD) is a metaphor of bad software
design or immature artifacts of a software system. The metaphor
has been quite intensively researched especially on how to
identify the TD symptoms, (e.g., system deficiencies or archi-
tecture violations) explicitly. Although the TD identification is
quite important in the TD management process, a systematic
management of TD and how to reduce it should also be considered
important in each release of the development project. Otherwise,
the software becomes more and more unmaintainable. In this
paper, we introduce a framework to manage and reduce the TD
of software systems. As it is based on quantification and a cost-
benefit analysis, it is called Cost-Benefit based Technical Debt
Management (CoBeTDM). CoBeTDM defines explicit phases
focusing on the most important aspects of TD management:
identification, monitoring, and prioritization. Overall, CoBeTDM
should support managers to take the right decisions regarding
the software evolution and the reduction of the collected TD at
the right time.

Keywords–technical debt management; code smells; architecture
smells; refactoring; cost-benefit analysis.

I. INTRODUCTION AND MOTIVATION

It is a must to implement a payback strategy (when and
how to determine to pay it back) to reduce technical debt
for every software organization. It has been reported that TD
exists in most of the software systems [1]. If we do not
cautiously manage the debt or have no strategy to pay it
back, the system may finally go to the “bankruptcy” phase,
i.e., the software is unmaintainable and the maintenance cost
will increase continuously. In general, refactoring is one of the
strategies to pay it back. Refactoring has typically been used
as a mean to improve detailed design and code quality. In this
paper, refactoring will be referred to as an effort to improve
existing software either on code or architecture-level without
changing the behaviour of the system.

Commonly, project managers are always juggling on the
decision making either to add new features or to make changes,
(i.e., maintenance or refactoring) in a release cycle. It is
always complicated to decide, which refactoring task should
be done first or could be postponed. Therefore, quantification
of refactorings should be implemented to identify, which
effort can achieves maximum benefit and minimize risk. A
simple cost-benefit analysis is a simple approach that could
be applied to quantify it as introduced [2]. Borrowing from
economic domain, a cost is a principal that indicate effort
estimation to resolve a TD item and a benefit is an interest
that indicate less probability impact to the software system.
However, the quantification cannot answer the question “How
the refactoring effort could be paid off to the identified TD,
i.e., Return On Investment (ROI)?”. ROI is a predictor that
shows a particular refactoring may improve the design and save

the maintenance cost in the future. Besides the unanswered
question of ROI, it lacks of risk factors consideration and
misses the payback strategy over releases. Therefore, to reduce
technical debt and to sustain software quality in software
development continuously, a wise decision making should be
made based on a cost-benefit analysis.

In this paper, we want to introduce an approach of technical
debt management based on cost-benefit analysis. The remain-
der of this paper is organized as follows: Section II presents the
research goals. Section III describes our approach to Technical
Debt Management and its phases. Section IV discusses relevant
related work and Section V concludes the paper.

II. GOALS

In order to support software development organizations
to systematically manage the TD of their software systems,
we propose an approach called Cost-Benefit based Technical
Debt Management (CoBeTDM). Its overall goal is to provide
a framework to manage and reduces TD based on cost-benefit
analysis for each release. To achieve this main goal, the
following sub-goals should be fulfilled:

1) Provide a debt item model (see Table I) that com-
prises all information of code and architecture smells
and the effort needed to resolve them.

2) Quantify cost and benefit for each possible refactor-
ing of a particular debt item. This enables to select
the “best” refactoring based on the expected ROI.

3) Provide a structured process on how to strategically
pay back the TD based on quantified cost-benefit of
refactoring effort either tactically or proactively.

4) Develop a toolbox to support TD management and
to monitor the identified debt items.

CoBeTDM defines four phases as shown in Figure 1 (see
Section III for details):

1) Identification & Assessment: Here, the focus is to
identify and measure the worst smells as well as to
model them by means of debt items.

2) Monitoring: In order to know the development of TD
and its trend, it has to be monitored continuously.

3) Quantification & Prioritization: Based on a cost-
benefit analysis of each possible refactoring associ-
ated with a debt item, the quantified refactorings are
prioritized based on their ROI.

4) Repayment: Selected refactorings will be inserted
into backlog for current or later releases in order to
reduce the TD.

70Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

III. COST-BENEFIT BASED TECHNICAL DEBT
MANAGEMENT (COBETDM)

Relevant and accurate data is needed to quantify TD related
cost and benefit for a software system. It is to support managers
to take the right decisions. To provide this data, a collection
of metrics that characterize code and architecture smells could
be applied.

Figure 1. CoBeTDM Process

Modeling Debt Items. We propose a data structure (called
debt item) to store all relevant and accurate information of
all detected code and architecture smells. It will be stored in
Release History Database (RHDB) - a database that stores data
model that link between bug tracking system and versioning
system. The data structure is depicted in Table I.

TABLE I. DEBT ITEM DATA STRUCTURE

Field Description
Id Unique identifier of debt item
Issue\Case Task IDs or Case IDs, which represent a critical artifact

(hotspot)
Dependency Case IDs that depends on this debt item
Frequent Change How many modifications have been made for one release?
Class Class name
Code Smells List of detected smells and its metrics values
Architecture-level Architecture elements such as class, package, module or

layer name
Architecture Smells List of detected architecture smells and its metric values
Worst Smells Sum of frequent change + code smells value + architecture

smells value
Principal Effort estimation to resolve this debt item
Interest Extra effort estimation to resolve this debt item
Impact Other artifacts that are impacted
When-to-Release Release number
Responsible A person or unit responsible for this debt item

A. TD Identification and Assessment
The identification of deficiencies of a software system is a

must in the early phase of TD management. In CoBeTDM, the
detection of bad smells is done in the following two steps: 1)
Hotspot detection: Here, the goal is to find frequent changes,
(i.e., unstable) software artifacts, which might be critical for
the evolution of the system; 2) Code and architecture bad
smells detection: For all identified hotspots, the worst code
and architecture smells will be detected.

Hotspots detection. Hotspot detection is an approach to
find the most critical artifacts of a software system. In this

paper, the critical artifact means the module becomes unstable
for certain releases, (i.e., frequent change over releases) and
indicates strong increase in size and complexity (using metrics
such as Lines of Code and McCabe Cyclomatic Complexity).
It is important to detect the hotspot due to the symptom cost
more than other code deficiencies. It is because we consistently
have to pay back to tame it for every release. The hotspots
detection can be supported by a dedicated mining repository
approach where data from bug tracking and versioning tools
are extracted, filtered and classified by tracking any frequent
changes of contained artifacts. Currently, we manually map
their IDs between Bugzilla and the Git repository. Then, we
examine these artifacts by analyzing its size and complexity
trend over releases. As a result, the artifacts that have many
changes, (i.e., high maintenance activities) within the release
could be detected as potential hotspots. We quantify criticality
of an artifact by the number of changes that have been made,
(i.e., Git log entries) performed for fixing bugs, (i.e., different
severity levels of bugs) that were reported for specific releases.
E.g., up to release 1, CriticalPackage of Application X
got 200 modification from 130 bugs rated critical. Besides
that, the identified artifact has a significant increase in size
and complexity. From 4,000 LOC in release 0.9. increases to
10,000 LOC in release 1.0. Furthermore, the complexity of the
package increases from 30 in release 0.9 to 50 in release 1.0.
This symptom can be called as a critical artifact or hotspots.

Code Smells Detection. To detect code smells of the
identified hotspots, we use a tool called iPlasma introduced
by [3]. The tool shows a list of smells and its metric values.
The highest metric values for each smell will be selected
and prioritized. This data is recorded into a debt item to be
used in the next phase. For instance, the CriticalPackage
as detected as critical artifact previously will be assessed by
iPlasma. The tool will detect any possible bad code smells.
E.g., CriticalPackage contains GodClass, which has
been detected as God class. The class has for example, 453
methods, defines 114 attributes and is more than 3500 lines
long. It may also contain other smells, e.g., code duplication,
data class etc., in this particular case, we focus on God class
due to its refactor effort is quite high [4] compared to other
smells. The tool will show relevant metrics for God class such
as Access to Foreign Data (ATFD), Weighted Method Count
(WMC) and Tight Class Cohesion (TCC). Each metrics value
will be shown, e.g., as WMC (107), TCC (0.0) and ATFD (28).
The metric values then will be recorded into Code Smells field
in a debt item as shown in Table II.

Architecture Smells Detection. Next, the identified smells
will be analyzed to detect architecture smells. The metrics
introduced by [5] can be applied at class-, package- or
subsystem-level. These smells can be detected by using exist-
ing tools such as Sonargraph-Architect [6]. The metric values
produced by the architecture analysis tool will be stored as
well into their respective debt items. In previous example,
CriticalPackage was detected as critical artifact and con-
tains GodClass. The class might contain cyclic dependency
with other classes both within or outside the package. To detect
the smells, the aforementioned tool can be used. For example,
Sonargraph-Architect can detect it between classes or packages
visually. It also displays the information regarding number of
cycles and artifacts name. Then, cyclic value will be recorded
into Architecture Smells field in the debt item.

71Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE II. DEBT ITEM EXAMPLE

Field Description
Id DI001
Issue\Case #1234, #1235, #1236: Critical bugs of Application X
Dependency #4321 #4322: Other critical bugs of Application X
Frequent Change 200 modification
Class GodClass
Code Smells God Class: WMC(107), TCC(0.0), ATDF(28)
Architecture-level CriticalPackage
Architecture Smells Cycle Dependency: Cyclic(10)
Worst Smells 200 + (107+0.0+28) + 10 = 345
Principal 16 hours (code smells) + 4 hours (cyclic dependency) =

20 hours: 1) cost to split a class = 8 hours. At least 2
classes will be partitioned for refactoring; It means 8×2; 2)
cost to cut an edge between two files = 4 hours. At least
2 files will be cut for refactoring. Both estimation based on
[7]

Interest 2 hours, i.e., estimation extra work
Impact 15 classes and 2 packages
When-to-Release Current: 1; Next: 1.1
Responsible Mr. X

Assessing Bad Smells. After collecting the data from
both code and architecture smells detection, we can analyze
the obtained metric values to detect, which artifacts contain
worst smells (i.e., highest in identified smells). For this means,
we propose to apply the following formula Worst Smells
of Detected Critical Artifact = Most Frequent Changes +
Highest Metrics of particular Code Smells + Highest Metrics
of particular Architecture Smells. See Worst Smells field in
Table II. The worst smells value, then, will be compared with
other debt items. The high value will be prioritized first instead
of the low value. Besides that, the value could be used for TD
monitoring as we explain in the next section.

B. TD Monitoring
To answer important questions such as: 1) How much TD

do we have right now or in the current release?; 2) Is the TD
at an acceptable level or not? 3) Does the TD continuously
grows for each release?; 3) What is an acceptable threshold
value of TD of each release? What is a maximum TD (debt
ceiling) or minimum TD (debt baseline) for each release?;
4) How to react when the TD reaches the ceiling?; the TD
has to be monitored continuously. Therefore, the TD data and
its trend has to be visualized appropriately. The first idea is
shown in Figure 2. Currently we are developing ideas and
solutions for a systematic TD monitoring approach. Examples
are: 1) A dedicated dashboard used to visualize TD data based
on the managers’ information needs. For example, the worst
smells for certain release, high or low impact of debt item
etc.; 2) A process to conduct semi-structured interview with
managers or lead developers in order to gain information such
as acceptable and minimum vs. maximum TD; 3) Development
of a risk mitigation strategy framework that could be applied
if TD reaches debt ceiling.

C. TD Quantification and Prioritization
In this phase, the debt items are quantified to perform a

cost-benefit analysis. By cost, we mean the estimated effort and
extra effort, (i.e., principal + interest) of a particular possible
refactoring for a debt item. The cost value is stored together
with the estimation risk, (i.e., judgment by experts) that may
resulted from the refactoring. Then, it should be cataloged and
stored in the database, (e.g., RDBMS) in order to be referred
in the future. Then, the benefit is estimated, i.e., the less
effort of refactoring, which gives positive impact. Currently,
the benefits values are estimated based on the impact analysis

Figure 2. TD Trend over Releases

in particular dependency analysis. In addition, we also add
defect and change likelihood as properties, while calculating
benefits. The less value of both likelihood are potentially has
less frequent of the same symptoms in the future. It means
that the refactoring effort for maintenance and correction will
decline.

Firstly, analyzing the changes that could be affected by
the dependency of artifacts, (e.g., classes or packages) on
particular refactoring candidate - impact analysis. The changes
might alter and create new artifacts for e.g., operations, classes
or packages, which require a cost to do that. Therefore, the
more dependencies the artifacts are, the more cost should be
spent. For e.g., see DI001 in Table III, GodClass depends
on the other five classes and two external packages. Two points
or weight will give to the fifteen classes and five points to
2 packages, (i.e., (2×15) + (5×2) = 40 points) as shown in
Refactoring Impact column in Table III. Secondly, the defect
likelihood could be analyzed by computing on how many
defect fixes affected by the detected smells. The likelihood
could be computed by detecting the smells, (e.g., specifically
the god class) from certain periods, (e.g., from April to July).
Then, count the number of defects that lead to fix in the god
class in this time period and divide by the number of all defects
that were fixed in the same time period. The higher the value
the more likely a defect will be indicated in the god class. For
instance, see column Defect Likelihood for DI001, it has been
detected that the GodClass was god class from particular
period. Assume the likelihood of 0.5, it means every second
fixed defect will lead to changes in this god class. Thirdly,
the change likelihood could be analyzed by computing on
how likely a class is to be modified when a change to the
software is executed. The same computation method will be
used as defect likelihood for this purpose. It means the higher
the value, the more likely that maintainability effort is higher
for the god class [4]. For example, if change likelihood of
0.1 shows that the class was, on overage, modified with every
10th change to the software. By computing the impact analysis,
defect and change likelihood represent as a weight, it will,
then, multiply by raw benefit. The raw benefit is an effort
estimation that can be saved in terms of maintenance work in
the next release. An expert will give this raw estimation. Then,
the total benefit will be calculated. Based on the estimated cost
and benefit values, the ROI value is calculated by (adopted
from [8] where ROI = (Saving Effort and Less Impact of
Proposed Refactoring/Effort of Proposed Refactoring)), i.e.,
ratio of total Benefit to the total Cost. If the ROI value is
greater than or equal to one, the refactoring is cost effective,

72Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE III. COST-BENEFIT ANALYSIS EXAMPLE

No.
Debt
Item
ID

Refactoring

Cost
(Principal
+
Interest)

Risk (R)
in Hour

Total
Cost
(Cost + R)

Refactor-
ing
Impact
(RI)

Change
Like.
(CL)

Defect
Like.
(DL)

Weight
(RI X
CL X DL)

Raw
Benefit
(RB)
in Hour

Total
Benefit
(Weight
X EB)

ROI
(TB / TC) Rank

1.

DI001
-God Class
-Cyclic
Dependency

-Extract Class
-Cut Dependency 22

-Regression
bugs (2)
-Testing (2)

26 40 0.5 0.1 2 5 10 0.4 1

2.

DI002
-Long Method
Class
-Inheritance too
Deep

-Extract Method
-Delegation 10

-Merge
conflict (3)
-Testing (2)

15 15 0.1 0.3 0.45 5 2.25 0.3 2

3.
DI003
-Duplicate Code
-Cyclic Dependency

-Extract Method
-Cut Dependency 8

-Build
breaks(2)
-Testing

12 10 0.25 0.11 0.28 3 0.84 0.06 3

i.e., the debt is paid off. Finally, the ROI values are prioritized.
Based on the example (see Table III), DI001 seems promising
to be paid first instead of DI002 and DI003. The ROI DI001
value is bigger than the latter, (i.e., the refactoring effort could
reach ROI) and it may give positive impact to the system.

D. TD Repayment
In the last phase, refactorings, which has been prioritized

in the previous phase are added to the current backlog of the
software system. By implementing the refactoring, the gap
between the software as “it is” and the hypothesized “ideal”
state could be closed. Although, there is no general agreement
that refactoring could realize the idea, [9] claimed that by
applying Test-Driven Development and continuous refactoring,
the TD could be reduced systematically by releases. But,
the questions “Which refactoring should be implemented first
or later?” and “Should pay or not to pay?” are still open.
Currently, we are still investigating how to strategically pay
back based on TD metrics as introduced by [10].

IV. RELATED WORKS

Technical debt management. A few researchers have
been focusing on how to manage TD. For example, [11]
proposed a TD management framework, which aids managers
to decide, which items should be implemented either first or
later. A simple cost-benefit analysis is applied and less impact
to the project is put at the top, i.e., prioritization. However,
the approach does not consider risk factors in estimating the
cost. Unlike CoBeTDM, it integrates risk factors [12] in the
analysis due to uncertainty that may always happen. [13]
introduced a tool to manage TD in terms of code violations.
It guides to select the smells that should be refactored first
based on pyramid data - the lowest part needs to be considered
first. In contrast, CoBeTDM considers not only code but also
architecture smells as the latter ones have high negative impact
on the software quality.

Hotspot, code-, architecture-smells detection. We have
adopted existing metrics [3] [5], which are quite useful to
characterize smells on code- and architecture-level. However,
these metrics do not integrate with each other. Our approach
combines both metric sets to determine worst smells and
identify very critical artifact as proposed by [14] for hotspot
detection.

V. CONCLUSION

This paper introduces a TD management framework based
on cost-benefit analysis, called CoBeTDM. It offers a system-
atic way of reducing the technical debt by quantifying cost

and benefit of refactorings. It also considers with relevant
risk factors. Until now, the CoBeTDM process is performed
manually. But, we have started to develop a toolbox to support
CoBeTDM and to monitor the TD trend in order to react early
enough if the TD becomes critical.

REFERENCES
[1] CAST, “Cast Worldwide Application Software Quality Study: Summary

of Key Findings,” 2010.
[2] C. Seaman, Y. Guo, N. Zazworka, F. Shull, C. Izurieta, Y. Cai, and

A. Vetro, “Using technical debt data in decision making: Potential
decision approaches,” in 2012 Third Int. Workshop on Managing TD
(MTD). IEEE, Jun. 2012, pp. 45–48.

[3] M. Lanza and R. Marinescu, OO Metrics in Practice - Using Software
Metrics to Characterize, Evaluate, and Improve the Design of OO
Systems. Springer, 2006, ISBN: 978-3-540-24429-5.

[4] N. Zazworka, C. Seaman, and F. Shull, “Prioritizing design debt invest-
ment opportunities,” in Proceeding of the 2nd working on Managing
technical debt - MTD ’11. New York, New York, USA: ACM Press,
May 2011, p. 39.

[5] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, 2006, ISBN:
978-0-470-85892-9.

[6] Hello2morrow, “Sonargraph Architect,” 2013, URL: https://www.
hello2morrow.com/products/sonargraph/architect [accessed: 2015-08-
09].

[7] Sonarqube, “Technical Debt Calculation,” March 09, 2011, URL:
http://docs.sonarqube.org/display/PLUG/Technical+Debt+Calculation
[accessed: 2015-09-08].

[8] R. Leitch and E. Stroulia, “Assessing the maintainability benefits of
design restructuring using dependency analysis,” in Proceedings. 5th
Int. Workshop on Enterprise Networking and Computing in Healthcare
Industry). IEEE Comput. Soc, 2003, pp. 309–322.

[9] J. Kerievsky, Refactoring to Patterns. Pearson Higher Education, 2004,
ISBN: 0321213351.

[10] N. Ramasubbu, C. Kemerer, and C. Woodard, “Managing Technical
Debt: Insights from Recent Empirical Evidence,” IEEE Software,
vol. 32, no. 2, Mar 2015, pp. 22–25.

[11] Y. Guo, R. O. Spı́nola, and C. Seaman, “Exploring the costs of technical
debt management a case study,” Empirical Software Engineering, Nov.
2014.

[12] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoring challenges and benefits at Microsoft,” IEEE Transactions on
Software Engineering, vol. 40, no. 7, 2014, pp. 633–649.

[13] J.-L. Letouzey and M. Ilkiewicz, “Managing TD with the SQALE
Method,” IEEE Software, vol. 29, no. 6, Nov. 2012, pp. 44–51.

[14] M. DAmbros, H. Gall, M. Lanza, and M. Pinzger, “Analysing Software
Repositories to Understand Software Evolution,” in Software Evolution
SE - 3. Springer Berlin Heidelberg, 2008, pp. 37–67.

73Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

