
Aiming towards Modernization: Visualization to Assist Structural Understanding of Oracle
Forms Applications

Kelly Garcés, Edgar Sandoval,
Rubby Casallas, Camilo Álvarez

Los Andes University
School of Engineering

Department of Systems and Computing Engineering
Bogotá, Colombia

email:{kj.garces971,ed.sandoval1644,rcasalla,c.alvarez956}
@uniandes.edu.co

Alejandro Salamanca, Sandra Pinto, Fabian Melo
Asesoftware

Bogotá, Colombia
email:{asalaman, spinto, fmelo}@asesoftware.com

Abstract—Oracle Forms is a tool for creating screens that
interact with an Oracle database. It appeared in the eighties and
its use spread to many IT sectors today. There are pressures that
push software engineers to modernize Oracle Forms applications:
obsolescence of technology, requirements of users, etc. For a
straightforward modernization, it is necessary to comprehend the
applications from a prior step. This paper reports the preliminary
results of the ”Forms Modernization” project, in particular, of the
understanding step. In most cases, the understanding of Forms
applications is a complex and time-consuming task due to several
reasons: large size of applications, lack of design documentation,
lack of software organization. This paper proposes a visualization
process to alleviate these issues. The process takes static Oracle
Forms code as input and produces a set of domain specific
diagrams/views, that ranges from high to low abstraction levels,
as output. The gist of diagrams and views is to assist engineers
in a structural understanding of the Oracle Forms software. The
process includes algorithms for element discovery and clustering,
and is instrumented by means of a tool running on Eclipse
Modeling technologies. We take advantage of four real Oracle
Forms applications to illustrate the benefits of this approach.
These applications have been provided by Asesoftware, which is
the Colombian industrial partner of the project.

Keywords—program comprehension; reverse engineering; tools;
clustering algorithms; model-driven engineering; graphical editors.

I. INTRODUCTION

Software is constantly evolving; this evolution is motivated
by different reasons such as the obsolescence of a technology,
the pressure of users, or the need to build a single coherent
information system when companies merge [1]. Our research
lies in the field of software modernization, a kind of evolution,
that refers to the understanding and evolving of existing
software assets to maintain a large part of their business value
[2].

This paper presents the preliminary results of the ”Forms
Modernization” project, which involves academic and indus-
trial partners. The project arose as a result of some problems
faced by Asesoftware, a Colombian software company that
offers modernization services to its clients, regarding the desire
to migrate Oracle Forms applications to modern platforms (in
particular Java).

Oracle Forms appeared towards the end of the 1980s.

It comprises a rapid database application development en-
vironment and a runtime environment, where the database
applications run. Oracle Forms applications are present in
many sectors. Such is the case in Colombia as well as in
other countries. Results of a tool usage survey [3], carried out
by the Oracle User Group Community Focused On Education
(ODTUG) in 2009, indicate that 40 percent of 581 respondents
(application developers) use Oracle Forms.

The migration of Oracle Forms applications to new tech-
nologies is mainly caused by three factors: the fear that Oracle
desupports Forms, the difficulty to find Forms programmers,
and Forms no longer meeting business requirements.

Furthermore, the company, Asesoftware, complains about
the following three problems of manual modernization: i)
Difficulty to understand the Oracle Forms application, ii) Time-
consuming and repetitive migration, and iii) Poor testing. The
”Forms Modernization” project addresses these problems in
three phases. Here, we report the results of the phase that aims
to solve the first problem.

According to Lethbridge and Anquetil [4], the main dif-
ficulties when trying to understand legacy applications are
the following: i) lack of a directory hierarchy and of design
information, ii) original designers’ lack of knowledge of soft-
ware architecture, and iii) undermining of the original design
decisions as many additions and alterations were made. An
Oracle Forms system is not the exception to Lethbridge and
Anquetil’s claim about legacy software organization: it lacks
a directory hierarchy and the file names are not necessarily
meaningful. As a result, an inspection of this code, aimed at
understanding, is time consuming and error-prone.

To cope with this, Asesoftware organizes meetings with
the clients, where the latter transfer their knowledge regarding
application functionalities to the engineers in charge of the
modernization process. The purpose of these meetings is to
obtain a global understanding of the application’s functional
requirements, in order to ease the subsequent inspection of
the code as well as the migration process. Nevertheless, this
understanding remains in the mind of the engineers and it
is not reported in any formal document in a way that the
learning curve could be shortened for new people that enter
the modernization process.

This paper presents the proposed approach as a solution to

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the understanding issue. The approach consists of a process
that takes a given Oracle Forms application as input and
produces a set of diagrams and views that give an insight into
the application’s structural organization as output. The pro-
cess includes algorithms for element discovery and clustering,
and is instrumented by means of a tool running on Model-
Driven engineering technologies. The resulting diagrams and
views are designed to satisfy three concrete understanding
challenges. When comparing our approach to related work
—either research work [5][6][7] or commercial tools (i.e.,
Oracle2Java [8], Evo [9], Jheadstart [10], Pitss [11], Ormit
[12])— we found that they only provide views with a low
level of abstraction, whereas our approach proposes diagrams
and views that range from high to low abstraction levels, thus,
contributing to the acceleration of the understanding of the
Oracle Forms program and aiming at modernization.

The paper is structured as follows: Section II describes
the main building blocks of Oracle Forms applications and
introduces four real Oracle Forms applications that serve as
illustrating examples. Through an example, Section III elabo-
rates on the understanding challenges that guide our research.
Section IV establishes certain criteria, classifies related work
according to it, and compares these works to our proposal.
Sections V and VI present our approach and the tool used
for instrumentation, respectively. Section VII describes how
the user interacts with the visualizations in order to achieve
an understanding. Section VIII elaborates on the results of
applying our proposal to the illustrating examples. Finally,
Section IX concludes the paper and outlines future work.

II. ORACLE FORMS OVERVIEW AND ILLUSTRATING
EXAMPLES

We present the main concepts of an Oracle Forms appli-
cation below:

• Form: A Form is a collection of objects and code,
including windows, items, triggers, etc.

• Blocks: Represent logical containers for grouping re-
lated items into a function unit to store, display and
manipulate records of database tables. Programmers
configure the blocks depending on the number of
tables from which they want to manipulate the form:
◦ The way to display a single database table in

a form is to create a block. This results in a
single table relationship between the form and
the table.

◦ The way to display two tables that share a
master-detail relationship (i.e., ”One to Many”
relationship) is through two blocks. Oracle
Forms guarantees that the detail block will
display only records that are associated with
the current record in the master block. This
results in a master/detail relationship between
the form and the two tables.

• Item: Items display information to users and enable
them to interact with the application. Item objects
include the following types: button, check box, display
item, image, list item, radio group, text item and/or
user area, among others.

• Trigger: A trigger object is associated to an event.
It represents a named PL/SQL function or procedure
that is written in a form, block or item. PL/SQL
is the Oracle procedural extension of SQL. PL/SQL
allows programmers to declare constants, variables,
control program flows, SQL statements and APIs. A
useful Oracle Forms API written in PL/SQL is the
one offering procedures for form displaying, i.e., the
OPEN/CALL statements.

• Menu: Is displayed as a collection of menu names
appearing horizontally under the application window
title. There is a drop-down list of commands under
each menu name. Each command can represent a
submenu or an action.

These concepts are found in the examples that will be used
throughout the paper. These examples are aligned with four
real applications related to treasury, banking and insurance
sectors. These applications will be referred to as Conciso,
Servibanca, Maestro, and Sitri. The following information is
useful in order to give an idea about the application’s size:
the number of forms ranges from 83 to 178, referenced tables
from 101 to 200, blocks from 361 to 765 and triggers from
2140 to 4406.

III. CHALLENGES ILLUSTRATED BY AN EXAMPLE

Using a concrete example, this section presents the chal-
lenges we face. Suppose a form of Conciso has to be modern-
ized in two senses: i) evolution towards a new technology,
and ii) introduction of a small modification to the initial
functionality. The form allows manipulating deductions from
an Employee’s withholding tax. The modification consists in
taking into account the deductions to which an employee has
the right after making donations to institutions that promote
culture, sports and art at a municipal level. Specifically, this
modification should ensure that the user indicates a city, de-
partment and country in the form when the option of deduction
by donations to local institutions has been chosen.

We face the following challenges as we try to understand
the scope of the modernization at an application level:

A. Challenge 1: Functional modules and their relationships

This challenge concerns the following questions: What
is the functional module that contains the form subject to
modernization? Is this module related to another modules?

The fact of knowing the module that contains the form
subject matter of modernization helps engineers to delimit
the modernization scope. As we said in the introduction
Section,the Oracle Forms software often lacks documentation,
directory hierarchy and meaningful naming conventions; as a
consequence, the functional modules are hard to infer. This
is the case in the scenario where the client provides a folder
that contains 144 forms on the root, with no subfolders nor
documentation. Each form has a name that is the concatenation
of a prefix (e.g., CBF) and a 5-digit number. In addition, the
Oracle forms IDE only shows one form at a time, so that there
is no a notion of a forms container.

Furthermore, it is important to know the dependency
relationships between modules. A dependency relationship

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

between modules results when forms a1, a2, .., an call forms
b1, b2, .., bn, and the forms are contained in two different
modules A and B. Engineers can use this kind of relationship
as an indication about the potential impact that a modification
in the deduction form has on forms that belong to different
modules. As for the modules, it is also hard to derive the
relationships between modules in Oracle Forms. To do so,
it is necessary to inspect the form PL/SQL code and look
for CALL/OPEN statements directed towards another form.
Note that these statements are spread along the form elements,
which makes it difficult to discover the relationships between
modules.

B. Challenge 2: Relationships between forms and tables

When addressing this challenge one should be able to
answer the following questions: Which are the tables related
to the form that will be modernized? What is the type of
relationship between the form and the tables?

The relationships between forms and tables are important
because they suggest to engineers that they have to review,
more in detail, how changes in tables (for example, adding
a foreign key from the deduction table towards the city table
) impact form elements and their embedded PL/SQL code.
The amount of effort to find out the tables related to a form
depends on the type of relationship. Whereas single table and
master/detail relationships are relatively easy to discover, by
regarding the form navigation tree available on the Oracle
Forms IDE, relationships resulting from references to tables
embedded into the PL/SQL code are more time demanding
because the code is scattered throughout the form elements
(i.e. forms, blocks, items).

C. Challenge 3: Relationships between forms

This challenge includes providing an answer to the ques-
tion: Is there any form related to the form that will be
modernized? The purpose of this question is twofold: i) to
know if related forms have to be changed in order to fully
satisfy the functionality of the form after its modernization,
and ii) to figure out if changes to the form subject matter of
modernization impact the capabilities of the related forms. The
example mentioned at the beginning of this section illustrates
the first part of the purpose: it is important to know if there is
any form —currently calling the deduction form— that needs
to be modified in order to specify the different options of
deductions and display the deduction form in an appropriate
manner by taking into account the selection made by the user.
This challenge is related to the first one in the sense that the
relationship between two modules depends on the relationships
between the forms that are contained in the modules. The
mechanism to infer the relationships between forms is to
review the PL/SQL code seeking for CALL/OPEN statements.
Because this task has to be performed regardless of whether
the forms are in the same module or in two different modules,
it is very time consuming.

The challenges above are valid for multiple scenarios; they
motivate the approach we propose in Section V. However,
before elaborating on the approach, we present related work
that helps us establish a background regarding visualization
processes.

IV. RELATED WORK

In this Section, we establish criteria that help us classify
related research. For each criterion, we give a definition,
variations on how the criterion can be satisfied —which results
in categories—, and the position of each related work within
these categories. The Section ends by comparing our approach
to those found in related work.

A. Software systems

Tilley [13] has conducted extensive research into the use
of views as a form of program comprehension. He found
that numerous approaches focus on three different categories
of software: i) legacy systems, ii) web applications, and iii)
application design patterns. After considering the results of
referential databases, we resolved that Tilley’s criterion to
classify view-related works is still valid, and decided to use it
in our classification.

The legacy systems category encompasses traditional sys-
tems characterized as follows: monolithic, homogeneous, and
typically written in third generation procedural programming
languages. The purpose of related work within this category
[5][6][7] is to achieve an understanding of the system, that can
serve as a basis for its maintenance or for migration to newer
languages.

The second category comprises Web applications. These
systems often share many of the negative features of traditional
legacy systems (e.g., poor structure, little or no documenta-
tion). The gist of related work in this category [14][15] is to
understand the interaction behavior of the Web application, for
further development and maintenance.

Finally, the third category covers a broader range of
systems, including the software systems mentioned above.
However, the difference is that related research within this
category [16] specializes on design pattern recognition for
better comprehension. The provided views are important to
detect the critical points of an application for maintenance
purposes.

B. Process

This criterion describes the steps that are followed to gen-
erate software systems views. Most of the reviewed approaches
[5][6][7][14][16] agree with the following three steps: i) data
injection, ii) querying, and iii) visualization. The first step con-
sists in obtaining an in-memory representation from the input
software artifacts. The second step aims at building blocks
through the representation. Finally, the third step includes the
generation of views for the groupings of blocks that result from
the second step.

C. Input

This criterion indicates which kinds of inputs can be used
by the process mentioned above. Literature reports mainly
two kinds of inputs: i) Static input, and ii) Dynamic input.
A static input only refers to source code [5][6][7]. Dynamic
inputs, in contrast, are related to run-time information. Authors
[14][15][16] obtain the second kind of input by executing
scenarios that help them identify the invocation of a specific
software feature (e.g., field, method, web page). Commonly,
dynamic inputs are complemented by static inputs.

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

D. Source code language

This criterion points out the languages in which the source
code is written; there are two categories: i) language specific,
and ii) language independent. While the first category classifies
the works whose implementations can be applied to source
code written in a particular programming language, the second
category encompasses the tools that can be applied to a variety
of languages. Most of works [5][6][7][14][16] fall in the first
category, they reverse engineer applications written in PHP,
COBOL, Smalltak, C++, Oracle Forms. In contrast, there are
few approaches in the second category [17]. The strategy of
the latter is to develop bridges (i.e., programs, compilers,
grammars, transformations) that allow the authors to go from
the source code to an intermediate format on top of which the
views are built up.

E. Notation

This criterion determines whether the notation used in the
view is: i) standard, or ii) domain specific. The second option
is suggested over the first one in cases where the reverse
engineering task includes experts/users for which a customized
graphical notation results in straightforward comprehension
and communication. However, the second option implies a
higher development effort when compared with the first one:
while the first option can reuse existing viewers, the second
option often requires the construction of viewers from scratch.
The most disseminated standard notation among the articles
[5][14][17][18] is the Unified Modeling Language (UML),
in particular, class and sequence diagrams. Another popular
standard notation is the graph theory, where nodes and edges
are generic enough to represent any kind of software element
and relationship between elements. An example of an articles
that uses graph notation is [16]. In turn, the following are
articles that propose domain specific notations: [6][7].

F. Views

In this criterion, we take advantage of Lowe’s taxonomy
[19] to classify the proposed views according to related work.
Lowe et al. arrange the views in two categories: i) high
level, and ii) low level. The high level category covers the
views suitable to directly support program comprehension.
Examples of such representations are class interaction graphs,
lists of possible components/modules/subsystems, and archi-
tectural diagrams. On the other hand, low level views are
much too complex to provide any understanding of any non-
trivial program. Examples of low level representations are
basic block graphs, single static assignment representations,
call graphs, and control flow graphs. The following are some
related works that provide high level views: [5][6][14][16][18].
In turn, [7][18] fall on the low level view category.

G. Comparison

Taking into account the criteria mentioned above, we
compared our approach to related work —research work and
commercial tools included— and we reached the following
conclusions:

• Software systems: Similarly to [5][6][7], our approach
falls on the legacy system category.

Figure 1. View-generation process overview

• Process: Our solution overlaps all previously cited
solutions in the three steps of the view-generation
process.

• Input: In similar fashion to [5][6][7], our approxima-
tion takes only source code as input.

• Source code language: Our approach takes source
code written in Oracle Forms as input. That is, it
belongs to the language specific category as well as
[5][6][7].

• Notation: Like [6][7], our solution proposes a domain
specific notation.

• Views: There is a noticeable difference between our
approach and related work with respect to this cri-
terion. Our literature review points out [7] as the
sole scientific approach that provides views for Or-
acle Forms program understanding. The review also
includes a set of commercial tools (i.e., Oracle2java,
Evo, Jheadstart, Pitss, Ormit) that propose views for
the same purpose. In both cases, the views are of
two kinds: i) layout view and ii) application naviga-
tion tree. The layout view reflects how the graphical
elements are arranged on a form and displayed to
the user. The application navigation tree provides a
hierarchical display of all forms in an application as
well as the objects in each form —triggers, blocks,
program units, etc.—. In our opinion, these views
would be categorized as low level since they show
a high level of detail; in contrast, we provide not
only low level views but also high level ones, which
can accelerate the understanding of the Oracle Forms
program.

V. VIEW-GENERATION PROCESS

The view-generation process (see Figure 1) involves re-
verse engineering the Oracle Forms application and presenting
several different diagrams and views to the developers. These
diagrams and views can be further analyzed to determine
subsystems, the elements that compose these subsystems(e.g.,
forms, database tables), and the relationships between these
elements.

A. Data injection step

This step corresponds to data injection, which is the first
step of a classical view-generation process (see Section IV-B).

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 2. Module metamodel

As mentioned before, the purpose of this step is to obtain an
in-memory representation from the input software artifacts. In
our approach, we obtain an Abstract Semantic Graph (ASG)
from Forms files (.fmb, .mmb). While a .fmb file describes
a particular form, a .mmb file describes the menu from
which all the application forms are displayed. This ASG is
navigated to create model elements that conform to the Form
metamodel. The main concepts of this metamodel have already
been mentioned in Section II, namely forms, menus, blocks,
items, triggers, relationships and tables. It is worth noting that
we manage to extract not only the tables that are directly
referenced by blocks, but also table references embedded into
PL/SQL code. The reason to use models instead of the ASG
is that we use tools that easily build editors for diagrams and
views on top of models (see SectionVI).

B. Data querying step

This step corresponds to the second step of the view-
generation process, whose gist is to search for building blocks
through the representation. In our case, the representation is
the Form model mentioned in the previous step and we search
for elements such as modules, forms, tables, and relationships.
Then, the elements resulting from this search are represented in
another model, referred to as Module model. In contrast to the
former model —which is verbose—, the latter model contains
only the elements that matter in the visualization step. We
describe the main concepts of the module model below and,
then, the algorithms used to obtain it.

1) Module model: This model conforms to a metamodel
(see Figure 2) and its concepts are explained below:

• Application is the root element of the metamodel. It
describes the Oracle Forms application under study.

An application consists of a set of modules that are
related to each other.

• Module is a necessary concept because it works as a
container of Oracle Forms elements and their relation-
ships.

• ModuleRelationship represents the relationship be-
tween a pair of modules. A relationship going from
module A to module B means that A contains a form
that calls a form from B.

• Element describes Oracle Forms elements, i.e., forms
and tables.

• Form specifies an Oracle form.

• Table indicates a table referenced from a form.

• ElementRelationship represents a relationship between
a pair of Oracle Forms elements. An ElementRelation-
ship can be classified into one of the following four
sub-kinds.

• SingleTableRelationship is established between a form
and a table, when the form has a block that references
that table.

• MasterDetailRelationship is established between a
form and two tables, when the form has two blocks —
related via properties—, the tables are those referenced
by the blocks, and one of them has the master role and
the other one the detail role.

• PLSQLRelationship is established between a form
and a table, if the form has PL/SQL that contains
occurrences of the table name. A classic example
of this is the relationship created from a form with
a lookup field. The form contains a block with the
addition of one field that displays data from another
table. Such data is ”looked up” via PL/SQL code when
the form runs.

• FormCallRelationship is established between two
forms C and D, if form C contains CALL/OPEN
statements parametrized with the name of form D.

2) Algorithms: Two kinds of algorithms are necessary to
obtain a given module model:

1) Element discovery algorithm: This algorithm creates
appropriate model elements depending on the forms,
tables, and relationships found in the Forms model.

2) Clustering algorithms: One of the main concepts
in the metamodel is the Module. Having modules
makes the software easy to understand and, therefore,
to change. However, it is not always easy to get
the modules because legacy software organization is
often quite poor. To cope with this, previous works in
software comprehension[20][21] have used clustering
algorithms. A clustering algorithm arranges software
components into modules, by evaluating the rela-
tionships among these components. We have imple-
mented the following two clustering algorithms that
arrange the forms, tables and relationships discovered
by the Element discovery algorithm, into modules:

90Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

a) Menu-based clustering algorithm: This algorithm
takes a Forms model and its corresponding Module model
—which results from the Element discovery algorithm— as
inputs. From these two inputs, the menu-based clustering
algorithm is in charge of producing a new Module model
where the model elements (i.e., forms, tables, and relation-
ships) are arranged into modules. For each menu in the Forms
model, the algorithm inspects the commands in the respective
drop-down list until it reaches the commands that are calls
to forms. Then, the algorithm creates a module element —
whose name is the corresponding menu name— and groups
each form element within the module, according to the form
name indicated by the corresponding call. In addition, the
algorithm arranges the tables into the modules, following the
relationships existing between forms and tables. Asesoftware
Oracle Forms experts argue that there is good accuracy in
the resulting modules diagrams when looking at the menus;
however, they also point out that there is a lack of .mmb files
because Oracle Forms programmers prefer to create menus by
manually adding buttons through a .fmb file. We propose the
following algorithm to tackle this lack of .mmb files.

b) Table betweenness clustering algorithm: This algo-
rithm has four phases:

1) In the first phase, it takes a Module model —which
results from the Element discovery algorithm— as
input and produces a graph as output. In the graph,
the nodes represent forms, and an edge is established
between each pair of nodes (or forms) if they have
several tables in common.

2) In the second phase, the algorithm determines the
modules, that is, the subgraphs of the graph obtained
in the first phase. This algorithm identifies a subgraph
because its inner connections are dense, and the
outer connections among subgraphs are sparser. There
are several ways of identifying subgraphs, however,
due to the delivery dates of the project being so
close, we decided to use an existing method: the
Girvan-Newman algorithm [22]. Therefore, in the
second phase, our algorithm delegates the subgraph
construction to the Girvan-Newman algorithm. The
latter progressively finds and removes edges with the
highest betweenness, until the graph breaks up into
subgraphs. The betweenness of an edge is defined
as the number of shortest paths between all pairs
of nodes in the graph passing through that edge. If
there is more than one shortest path between a pair
of nodes, then each path is assigned equal weight
such that the total weight of all of the paths is
equal to unity; nonetheless, the betweenness value
for an edge is not necessarily an integer. Because
the edges that lie between subgraphs are expected
to be those with the highest betweenness values, a
good separation of the graph into subgraphs can be
achieved by removing them recursively.

3) In the third phase, our algorithm creates a module
element for each subgraph indicated in the Girvan-
Newman algorithm output. For each node in a sub-
graph, the algorithm groups into the module the
corresponding form element. To do so, the algorithm
follows two rules: i) If a subgraph has more than
one node (i.e., a form), the algorithm arranges the

Figure 3. Legacy modules diagram for Conciso (result of the Menu-
Based clustering algorithm)

forms (and referenced tables) within a new module
—whose name is the concatenation of a keyword and
a counter—; ii) If a subgraph has only one node, then
it is arranged into the isolated form module.

4) Finally, in the fourth phase, the algorithm arranges
the tables into the modules, by following the existing
relationships between forms and tables.

It is worth noting that the number of database tables in
common and the number of iterations of the Girvan-Newman
algorithm, that is, the parameters used in the first and second
phases, respectively, are given by the user and impact the
number of resulting modules as follows: A highest number of
database tables in common or a highest number of iterations
result in the following: i) a highest number of modules, which
are small in size because each of them contains few forms,
and ii) an big-sized isolated form module that contains a lot
of forms.

C. Visualization step

This step involves techniques that are of use to present the
gathered information via diagrams and views. These diagrams
and views are high-level or low-level representations that allow
developers to obtain a structural understanding of the system.
Basically, the diagrams have nodes and edges, and the views
look like tables. We describe the different aspects of diagrams
below: category (either low or high), purpose, notation, layout
and filters that ease their navigation. The Section ends by
presenting the information displayed in the table-like views.

1) Functional modules and their relationships: This dia-
gram belongs to the high-level category. Its main purpose is to
show how a legacy system is organized in terms of modules
or subsystems, and which are the relationships between the
modules of a system. A secondary purpose of the legacy
module diagram is to serve as an entry point for the Forms and
tables diagram. Figure 3 shows the diagram for Conciso, after
applying the menu-based clustering algorithm (the notation is

91Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the same as in the table betweenness algorithm). The notation
used in both diagrams is explained below:

• An orange circle represents a Module. The circle label
is the module name, which can be changed by the user
into a more meaningful name. The size of the circle is
proportional to the number of form elements contained
within the module.

• A red arrow represents a ModuleRelationship.

The modules are radially arranged in descending order by
size. The module with the biggest size is positioned at three-
o’clock and the remaining modules are organized proceeding
clockwise. In addition, the diagram provides a filter that hides
ModuleRelationships.

2) Forms and tables diagram: This diagram falls into the
low-level category. It is available when one selects a module
from the legacy modules diagram. Its purpose is to show the
forms and tables contained in the module and the relationships
between them. Figure 4 shows excerpts from the Forms and
tables diagram of a module of the illustrating example (i.e.,
General Parameters). The notation that was used is explained
below:

• A green square represents a Form. The square label
is the form name (if present) or the file name that
corresponds to the form.

• A blue square depicts a Table. The label is the table
name.

• A red arrow indicates a SingleTableRelationship (see
Figure 4(a)).

• A pair of purple and black arrows indicates a Mas-
terDetailRelationship. In particular, the purple arrow
points to the master table and the black arrow to the
detail table (see Figure 4(b)).

• A green dotted arrow represents a PLSQLRelationship
(see Figure 4(c)).

The diagram layout is in charge of placing all the elements
in a way that the relationships intercept as little as possible.
Furthermore, the diagram offers filters that allow us to leave
all the relationships of a certain type visible in the diagram.

3) Forms call dependency diagram: This diagram belongs
to the low-level category. This diagram presents the call-graph
of the forms of an Oracle Forms application. Figure 5 shows
an excerpt from the Forms call dependency diagram of the
General Parameters module. The notation that was used is
explained below:

• A green circle represents a Form. The circle label is
a concatenation of the form name (if present) and the
file name that corresponds to the form.

• The arrows describe FormCallRelationships between
forms. In particular, a green arrow indicates an OPEN
statement and a red arrow a CALL statement.

The forms are arranged following a tree layout. In addition,
there are two kinds of filters: i) A filter that removes all
unconnected Forms from the diagram, and ii) A filter that,
if disabled, hides all FormCallRelationships.

(a) Single table relationship

(b) Master/detail relationship

(c) PLSQL relationship

Figure 4. Excerpt of Forms and tables diagram for Conciso.

Figure 5. Forms call dependency diagram for Conciso.

4) Migration views: This view falls into the low-level
category. It displays detailed information about an element,
when it is selected by the user from one of the aforementioned
diagrams.

• The Module migration view is displayed when a
module is selected from the legacy module diagram. It
shows the module’s weight and the forms and tables it
contains. Due to page restrictions, a figure illustrating
this view is not included. It is worth noting that
this view looks like the views below, but it displays
different information.

• The Form migration view is shown when a form
is chosen from the forms and tables diagram. It
demonstrates the detailed form name, the number of
canvases, and the blocks and program units declared
in the form (see Figure 6(a)).

• The Relationship migration view is offered when a
relationship is selected from the forms and tables
diagram. The view shows the relationship details ac-
cording to its type:
◦ In case of a MasterDetailRelationship, it points

out the master and detail tables, the Oracle
Form relationship, and the block.

◦ In case of a SingleTableRelationship, it shows
the table and the corresponding block.

◦ In case of a PLSQLRelationship, it shows the
table, the respective block, and the trigger
where the PL/SQL is embedded (see Figure

92Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

(a) Form migration view (b) PLSQL relationship migration
view

Figure 6. Migration view examples for Conciso.

6(b) that contains the most complex migration
view for relationships).

VI. TOOLING

We have built a tool that instruments our approach. The
components that comprise the tool architecture are described
below. Components 1 to 4 are part of an existing open
source infrastructure[23] that we used to build the tool, but
components 5 to 10 are built by us.

1) Eclipse: includes a basic platform (i.e. workbench,
workspace and team facilities) that is useful for the
development of extensions.

2) EMF: is a framework for building tools based on a
metamodel.

3) Acceleo: includes a feature that interprets the Object
Constraint Language (OCL). OCL is a language that
provides query expressions on any model.

4) Sirius: is a plug-in to create graphical editors that
allow edition and visualization of models. Sirius can
be classified into the approaches provided with DSL
constructs that serve to specify the graphical notation
of a view, e.g., rules to determine color/size of nodes
or edges, layout, etc. Sirius is applicable to any
domain, for example, a Sirius node can represent
a software system entity but also the member of a
family.

5) Domain metamodels: contains the Forms and Module
metamodels presented in Section V.

6) Forms injector: its purpose is twofold: i) to obtain a
form model from Forms files, and ii) to enrich the
Module model with PL/SQL relationships. In order
to meet the first purpose, we take advantage of the
JDAPI [24], which is an API to manipulate Forms
files. Thus, we navigate the ASG —resulting from
the JDAPI— and create model elements according
to the Forms metamodel classes. To attain the sec-
ond purpose, we adapt an existing PL/SQL ANTLR
parser.

7) Clustering algorithms: these algorithms have been
implemented as Java programs. In particular, the table

betweenness clustering algorithm takes advantages of
the betweenness centrality algorithm that comes with
the JUNG API [25].

8) Diagrams and views specification: A model that, con-
forming to Sirius constructs, specifies the graphical
notation of diagrams and views.

9) Customized layout: implements layouts beyond Sir-
ius’ default layouts (i.e., tree or composite). Cur-
rently, it contains the radial layout implementation,
useful in the legacy modules diagram.

10) Wizard: is a graphical interface that allows engineers
to configure visualization process aspects, that is, the
Form files path, the form to be processed and the
clustering algorithm.

VII. INTERACTION PATH

In this Section, we describe how the engineer, guided by a
set of questions —stated in the form of challenges— uses the
visualizations in order to achieve a progressive understanding
of the Oracle Application. Like in previous sections, Conciso
is used for illustration purposes.

A. Challenge 1: Functional modules and their relationships

The legacy modules diagram targets this challenge. Figure
3 shows the resulting diagram for Conciso. It contains seven
functional modules and zero relationships between modules.
We present below, how this diagram is obtained and how
engineers can take advantage of it and of adjacent tooling to
address Challenge 1. Given that Conciso includes .mmb files,
we selected the menu-based clustering algorithm option first,
from the visualization process wizard.

Once the process is finished, the view is derived; then, en-
gineers have two options to figure out which module contains
the deduction form —whose physical name is CBF55410—
. On the one hand, the first option consists of the following
two steps: i) To point each module displayed in the legacy
module diagram and ii) To look at the Migration properties
view of each module, until finding the deduction form in the
Contents list. On the other hand, the second option includes
the following three steps: i) To open Acceleo Interpreter, ii)
To point the root of the Module model and iii) To build an
OCL query to ask for the module tat contains the form.

Knowing that the module General Parameters contains
the deduction form, engineers go back to the diagram to see
the module properties: name, size, relationships, etc. The fact
that the module General Parameters has no ingoing/outgoing
relationships, is a signal to engineers that they only have to take
care of propagating changes inside the mentioned module (if
ever needed). There is no need to worry about other modules
when modifying the deduction form. In addition, the diagram
shows that there are no relationships between modules, which
indicates that Conciso modules are decoupled enough.

We decided to derive another legacy modules diagram for
Conciso. This time, we chose the table betweenness cluster-
ing algorithm from the visualization process wizard. When
comparing the result of this algorithm with the menu-based
clustering algorithm result, we observed no correspondences
with respect to the number of modules and their content.
This fact should not call into question the accuracy of the

93Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

algorithm. Instead, the reason for this disparity is that the
algorithm’s derive modules take into account different aspects
of software. On the one hand, the menu-based algorithm uses
the menu whose items are normally organized in terms of
user tasks. As a consequence, the resulting modules diagram
maps the final user mental model. On the other hand, the table
betweenness algorithm organizes modules taking into account
the tables common to different forms. Thus, the resulting
modules diagram maps an internal view of the software that
is potentially useful to developers. We conclude that in case
of having .mmb files, engineers can use the two clustering
algorithms results as complementary perspectives. However,
in case of lacking .mmb files, the table betweenness is a good
starting point for structural understanding.

B. Challenge 2: Relationships between forms and tables

Now, we describe how forms and the table diagram ad-
dress this challenge. When located in the General Parameters
module, engineers can navigate the forms and tables diagram
until finding the deduction form. Engineers can focus the form
following two alternative paths: manual scrolling or an Acceleo
query. At the beginning, the diagram shows the relationships
between all the forms and tables in the module (i.e. 19 single
table, 37 master/detail and 407 PL/SQL relationships), which
makes it difficult to focus on the elements that matter. Here is
where the filters gain prominence: it is suggested that engineers
firstly switch off all filters and, then, progressively turn on each
one of them, going from the simplest (i.e., the single table
filter) to the more complex (i.e., the PL/SQL filter). Every time
a new filter is activated, engineers should analyze the resulting
relationships. As an output of filtering, engineers conclude
that the deduction form has only a master/detail relationship
with two tables, where the master is CP MONEY TYPE and
the detail CP CURRENCY TYPE (see Figure 4(b)). From
this, they obtain knowledge about the tables whose change
may impact the deduction form in any way. Subsequently,
engineers should complement their knowledge with database
information, in order to get a more precise insight about the
nature of the impact. A benefit of the diagram, when compared
with the manual approach, is that it points out only the tables
that are relevant to the form —which would likely speed up
the impact study.

C. Challenge 3: Relationships between forms

This paragraph describes how the Forms call dependency
diagram targets the third challenge. Once the diagram is
generated, engineers can observe that several forms have no
dependencies with others. At this point, it is recommended
to apply the filter Single Elements to leave only the forms
that share dependencies. After filtering, engineers obtain the
diagram shown in Figure 5. Given the call relationship between
form CBF55400 and the deduction form, engineers can infer
that changes in the former will likely impact the latter. Then,
engineers need to complement their knowledge with an exter-
nal source (e.g., the Oracle Forms navigation tree) in order to
specify the kind of impact on the related form. Like the Forms
and table diagram, the forms call diagram benefit —when
compared to a manual approximation— is that it limits the
number of forms that have to be inspected during a subsequent
impact review.

VIII. APPLYING APPROACH TO ILLUSTRATING EXAMPLES

To demonstrate the applicability of our approach, we have
obtained visualizations, not only for Conciso but for all the
applications mentioned in Section II. Below, we present a
table that summarizes what we noticed regarding the resulting
diagrams for these applications. Ultimately, we analyze the
table data by taking the challenges into account. All tests were
executed on a machine with a Windows 7 operative system,
Intel Xeon dual core processor and 12 GB of RAM.

TABLE I. Visualization statistics for all applications

Criteria Conciso Maestro Servibanca Sitri
Clustering
Algorithm

Menu
-based

Table
betweenness

Table
betweenness

Menu
-based

Modules 7 7 10 69
Module
relationships 0 6 5 1

Forms 144 155 83 178
Forms
and tables
relationships

Master 87 52 42 95
Master
Detail 47 43 23 61

PL/SQL 958 1234 462 1832
Forms
relationships 3 154 30 1

Processing
time
(seconds)

62 83 49 90

• Modules and relationships between modules: The
module row shows the application size in terms of
modules; it ranges from 7 to 69. The latter number
indicates not only that Sitri is the largest one from a
functional perspective, but also that its menu may be
complex due to the large number of options (i.e., 69).
In turn, the modules relationships row demonstrates
that the modules of Conciso and Sitri have a low
coupling. Given that the menu-based clustering was
used to derive the ”legacy modules diagrams” for
Conciso and Sitri, we conclude —from the number
of module relationships— that each menu option calls
forms that are not called from another menu option.
In addition, the modules relationships row shows that
Maestro and Servibanca have the highest coupling
when compared with the rest of the applications. The
rationale behind this result is related to the table
betweenness algorithm parameters (i.e., number of
database tables in common and number of iterations).
It is worth emphasizing that the relationships between
modules summarize the relationships between forms
contained in different modules. This is the reason why
the number of the former relationships is less than the
number of the latter relationships.

• Forms and relationships between forms and tables:
There is a correlation between these rows and the
processing time row. The processing time results show
that the time spent on the visualization process ranges
from 90-50 seconds. The value for each application
depends on the application size: the more forms
and relationships (either single table, master/detail or
PL/SQL), the longer the processing time. For example,
Sitri, with the highest processing time, contains much
more forms and relationships (i.e., 178 and 1988,
respectively) than the rest of the applications.

94Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

• Relationships between forms: As shown in this row,
Conciso and Sitri have few relationships between
forms (i.e., from 1 to 3); this occurs because, in these
applications, most forms work as independent units
accessed through a menu. In contrast, Maestro and
Servibanca have much more relationships (i.e., from
30 to 154); the reason is that these applications have
no .mmb files. Instead, menus are created manually by
adding buttons in .fmb files. As a result, many forms
are dependent on these .fmb files.

IX. CONCLUSION AND FUTURE WORK

This article proposes a visualization approach for Ora-
cle Forms applications. The diagrams and views have been
designed having the ease of modernization in mind. This
approach has two main benefits, which were discussed in Sec-
tion VIII and can be summarized as follows: i) The proposed
visualization aids engineers to obtain an understanding of the
application. This knowledge can be useful to determine the
modernization scope at different abstraction levels: At a high
abstraction level, it shows modules that could be potentially
impacted by a change made to a form. At a low abstraction
level, it points out forms and database tables that are likely
affected by the change. ii) The second benefit concerns the
productivity of engineers: when compared with the manual
inspection of Oracle Forms assets, our visualization approach
should reduce the understanding effort in terms of time. This
claim will be formally validated by means of a focus group,
before project closure.

Also, we outline the four fronts on which we are working
on below: i) As was mentioned in Section VIII, the proposed
visualization gives an initial knowledge that has to be com-
plemented with information coming from other sources. The
navigation from our tool to these sources and vice versa can be
tedious, therefore, we are currently working on the integration
of the most common source —the Oracle Forms IDE— into
our tool; ii) The possibility to reorganize the modules from
the diagrams in a way that the new organization is maintained
during the migration process; iii) A new functionality that
allows engineers to add information to the diagrams —this in-
formation could summarize the knowledge they have acquired
from the visualizations and from external sources, such as final
users—; iv) Finally, a new visualization that looks like a table
to display application statistics —such as number of forms,
blocks, trigger, etc.— would be desirable. These statistics can
be helpful for engineers to estimate modernization costs.

REFERENCES

[1] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M. Jézéquel,
“Model-driven engineering for software migration in a large industrial
context.” in MoDELS, ser. Lecture Notes in Computer Science, vol.
4735. Springer, 2007, pp. 482–497.

[2] J. Izquierdo and J. Molina, “An architecture-driven modernization tool
for calculating metrics,” Software, IEEE, vol. 27, no. 4, pp. 37–43, 2010.

[3] M. Riley. (2009) Choosing the right tool. [Online]. Available:
http://www.oracle.com/partners/campaign/o49field-084396.html.
[Accessed: April, 2015]

[4] T. C. Lethbridge and N. Anquetil, “Advances in software engineering,”
H. Erdogmus and O. Tanir, Eds. New York, NY, USA: Springer-
Verlag New York, Inc., 2002, ch. Approaches to Clustering for Program
Comprehension and Remodularization, pp. 137–157.

[5] G. Ramalingam and et al., “Semantics-based reverse engineering of
object-oriented data models,” in IN PROC. INTL. CONF. ON SOFT-
WARE ENG. ACM Press, 2006, pp. 192–201.

[6] R. Bril and et al., “Maintaining a legacy: Towards support at the
architectural level,” Journal of Software Maintenance, vol. 12, no. 3,
pp. 143–170, 2000.

[7] O. Sanchez Ramon, J. Sanchez Cuadrado, and J. Garcia Molina,
“Model-driven reverse engineering of legacy graphical user interfaces,”
Automated Software Engineering, vol. 21, no. 2, pp. 147–186, 2014.

[8] Composer technologies. Oracle forms to java. [On-
line]. Available: http://composertechnologies.com/migration-
solutions/oracle-forms-to-java/. [Accessed: April, 2015]

[9] VGO Software. Evo. [Online]. Available: http://www.
vgosoftware.com/products/evo/walkthrough.php. [Accessed: April, 2015]

[10] Oracle. Jheadstart. [Online]. Available:
http://www.oracle.com/technetwork/developer-tools/
jheadstart/overview/jhs11-fomrs2adf-overview-130955.pdf.
[Accessed: April, 2015]

[11] Pitss. Re-engineering edition-Pitss. [Online]. Available: http:
//pitss.com/us/products/application-re-engineering-edition/.
[Accessed: April, 2015]

[12] Renaps. Ormit. [Online]. Available: http://www.renaps.com/
ormit-java-adf.html. [Accessed: April, 2015]

[13] S. Tilley, “Documenting software systems with views vi: Lessons
learned from 15 years of research & practice,” in Proceedings of the
27th ACM International Conference on Design of Communication, ser.
SIGDOC ’09. New York, NY, USA: ACM, 2009, pp. 239–244.

[14] M. Alalfi, J. Cordy, and T. Dean, “Automated reverse engineering of uml
sequence diagrams for dynamic web applications,” in Software Testing,
Verification and Validation Workshops, 2009. ICSTW ’09. International
Conference on, 2009, pp. 287–294.

[15] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana, “Reverse en-
gineering web applications: the ware approach,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 16, no. 1-2,
pp. 71–101, 2004.

[16] T. Richner and S. Ducasse, “Recovering high-level views of object-
oriented applications from static and dynamic information,” in Software
Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International Con-
ference on, 1999, pp. 13–22.

[17] E. Duffy and B. Malloy, “A language and platform-independent ap-
proach for reverse engineering,” in Third ACIS International Conference
on Software Engineering Research, Management and Applications,
2005, 2005, pp. 415–422.

[18] C. Bennett and et al., “A survey and evaluation of tool features for
understanding reverse-engineered sequence diagrams,” J. Softw. Maint.
Evol., vol. 20, no. 4, pp. 291–315, 2008.

[19] W. Lowe, M. Ericsson, J. Lundberg, T. Panas, and N. Petersson,
“Vizzanalyzer - a software comprehension framework,” in Proc. of 3rd
Conference on Software Engineering Research and Practise in, 2003,
pp. 127–136.

[20] N. Anquetil and J. Laval, “Legacy software restructuring: Analyzing a
concrete case,” in 15th European Conference on Software Maintenance
and Reengineering, 2011, pp. 279–286.

[21] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner, “Bunch: a
clustering tool for the recovery and maintenance of software system
structures,” in IEEE International Conference on Software Maintenance,
1999, pp. 50–59.

[22] M. Girvan and M. E. Newman, “Community structure in social and
biological networks.” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[23] Eclipse Community. Eclipse. [Online]. Available: https:
//eclipse.org/. [Accessed: April, 2015]

[24] Oracle. JDAPI documentation. [Online].
Available: http://www.oracle.com/technetwork/developer-tools/
forms/documentation/10g-forms-091309.html. [Accessed: April, 2015]

[25] J. O’Madadhain. JUNG - Java Universal Network/Graph
Framework. [Online]. Available: http://jung.sourceforge.net/.
[Accessed: April, 2015]

95Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

http://www.oracle.com/partners/campaign/o49field-084396.html
http://composertechnologies.com/migration-solutions/oracle-forms-to-java/
http://composertechnologies.com/migration-solutions/oracle-forms-to-java/
http://www.vgosoftware.com/products/evo/walkthrough.php
http://www.vgosoftware.com/products/evo/walkthrough.php
http://www.oracle.com/technetwork/developer-tools/jheadstart/overview/jhs11-fomrs2adf-overview-130955.pdf
http://www.oracle.com/technetwork/developer-tools/jheadstart/overview/jhs11-fomrs2adf-overview-130955.pdf
http://pitss.com/us/products/application-re-engineering-edition/
http://pitss.com/us/products/application-re-engineering-edition/
http://www.renaps.com/ormit-java-adf.html
http://www.renaps.com/ormit-java-adf.html
https://eclipse.org/
https://eclipse.org/
http://www.oracle.com/technetwork/developer-tools/forms/documentation/10g-forms-091309.html
http://www.oracle.com/technetwork/developer-tools/forms/documentation/10g-forms-091309.html
http://jung.sourceforge.net/

	Introduction
	Oracle Forms Overview and Illustrating Examples
	Challenges illustrated by an example
	Challenge 1: Functional modules and their relationships
	Challenge 2: Relationships between forms and tables
	Challenge 3: Relationships between forms

	Related Work
	Software systems
	Process
	Input
	Source code language
	Notation
	Views
	Comparison

	View-generation process
	Data injection step
	Data querying step
	Module model
	Algorithms

	Visualization step
	Functional modules and their relationships
	Forms and tables diagram
	Forms call dependency diagram
	Migration views

	Tooling
	Interaction path
	Challenge 1: Functional modules and their relationships
	Challenge 2: Relationships between forms and tables
	Challenge 3: Relationships between forms

	Applying approach to illustrating examples
	Conclusion and future work
	References

