
An Approach to Compare UML Class Diagrams Based on Semantical Features of

Their Elements

Oksana Nikiforova, Konstantins Gusarovs, Ludmila Kozacenko, Dace Ahilcenoka, Dainis Ungurs

Faculty of Computer Science and Information Technology

Riga Technical University

Riga, Latvia

{oksana.nikiforova, konstantins.gusarovs, ludmila.kozacenko, dace.ahilcenoka, dainis.ungurs}@rtu.lv

Abstract —Models are widely used in software engineering,

where the Unified Modelling Language (UML) class diagrams

are the top notation to present the core system structure and

serves as the main artefact for analysis, design and

implementation of the software system. As far as the UML class

diagram is created at the different levels of abstraction, fluently

modified and used to present different aspects of the system, the

software development project may need to manage different

versions of the system model presented in that notation.

Therefore, it is very important to have an ability to compare

different versions of the UML class diagram created for the

same system to avoid duplicates, missings and contradictions in

the whole system model. In this paper an approach to do such a

comparison is being described and tested on a simple example

in comparison with some other similar methods. We analyze

some of the existing methods and algorithms used for the UML

class diagram comparison and offer the new approach on a

subject. The approach offered in this paper is based on the

evaluation of semantical features of the UML class diagram

elements.

Keywords – semi-automatic diagram comparison; conformity

verification; UML class diagram.

I. INTRODUCTION

Nowadays, system development starts with a modeling of
a problem domain and then of a software domain. The benefit
of using the models is that it helps to solve the complexity of
systems by showing only required information and
representing it in a graphical manner comprehensible to a
human. Since modeling is used from the early software
development phases, the system engineers can have a large
amount of the model’s versions representing the system from
the different aspects, in different development stages and
versions. In order to evaluate the differences between these
model versions, one needs to compare them. These
differences allow detecting the incomplete functionality,
errors or lack of correspondence. For example, when it is
necessary to find out if the model specified in documentation
complies with the actual system model, which can be
generated automatically from the code.

In addition, the comparison of the model versions can be
used to analyze the differences between the implemented
systems and systems under development, thus identifying the
reusable components [1].

One more task where model comparison is of high
importance is evaluation of model transformation itself.

During the software development, the models can be created
manually [2], generated from the code [3] or transformed
from the other models, e.g., using the transformation
approaches presented in [4]-[6]. The model comparison can
be used to evaluate the models obtained automatically
(generated from the code or via transformation) so that the
model generation or transformation method can be validated
[7][8]. In this case, a formal approach to the model
comparison can serve to evaluate the method proposed and
used for automatic generation of some diagram or model
transformation. The manual model comparison is a time
consuming and complicated task. Therefore, the automatic
comparison is preferred.

Commonly, different graphical notations are used to
describe the system or its part in different levels of
abstraction. There are many notations that can be used to
model system [9]. It can delay an evolution of the comparison
methods used for the model conformity verification, because
we would need many comparison methods specific to the
certain modeling language. Still, it is possible to try to
introduce the method for evaluation of the most popular
modeling language. One of these notations is the UML,
which is recognized as an industry standard proposed by the
Object Management Group [10]. The UML is designed to
model and visualize the system from the different point of
views, such as the system structure and behavior. The most
widely used UML diagram is the class diagram, therefore the
main focus of this paper is turned to the UML class diagrams
and their comparison abilities. The goal of this paper is to
propose an approach for the comparison of the UML class
diagrams adoptable also for the other modeling languages,
which have the similar infrastructure as UML.

 The rest of the paper is structured as follows. The second
section describes related work on existing model comparison
methods and techniques. The third section explains the
comparison approach offered by the authors. The proposed
approach is demonstrated on an abstract example in the fourth
section, where the defined calculations are applied to compare
two class diagrams containing all the possible features to
show the essence of the approach. The conclusions are made
in the fifth section.

II. RELATED WORK

 In order to cover the state of the art in the existing
methods for UML class diagram comparison, the authors
conducted a research using online libraries, such as IEEE,

147Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

EBSCO and Springer Link. Several methods exist in the area
and approaches proposed differ in the results obtained from
an UML-model comparison process (e.g [1][11]-[13]).
Analyzing those methods we have searched for the ones that
are providing the numerical metrics that describe model
differences in order to compare those to our proposed
approach. As a result two similar methods were selected for
evaluation.

The first method similar to proposed by the authors is
described by Mojeeb Al-Rhman Al-Khiaty and Moataz
Ahmed [1]. The method is based upon several similarity
metrics described as follows:

 Shallow Lexical Name Similarity Metric (NS) –
describes the difference between two semantically similar
class names.

 Attribute Similarity Metric (ASim) – describes the
difference between two sets of class attributes.

 Operations’ Similarity Metric (OSim) – describes the
difference between two sets of operations (methods).

 Internal Similarity Metric (IS) – utilizes two previously
defined ASim and OSim metrics in order to estimate the
difference between two classes.

 Neighborhood Similarity Metric (NHS) – describes the
difference of class neighborhoods (i.e., related classes) using
special relation type comparison table.

All metrics defined above are being used to produce a
similarity score for pairs of elements in the compared class
diagrams.

The second method described in this paper is proposed by
D. H. Qiu, H. Li, and J. L. Sun [11]. The authors of this paper
propose not to compare class names while estimating the
difference between two class models since it may result in a
rather big impact to the comparison results. Similarly to [1],
this method uses attribute and operation sets to define
difference between compared class structure, however,
relation similarity estimation is different – focusing on three
types of class relations defined by the authors:

 Inheritance – which includes both inheritance and

realization.

 Method coupling – when class A uses methods of class B

that is commonly referred as a dependency.

 Data coupling – when class A uses publicly available

data of class B, as well as cases of aggregation and

composition.
As a result, a single number describing two class diagram

similarity is obtained.

III. PROPOSED COMPARISON METHOD

 In order to successfully compare two different UML class
diagrams, it is necessary to take into account its elements,
relations between them, as well as semantical information of
those. Since the UML class diagrams are usually produced by
the human system analysts, it is possible that two elements
that are equal by their semantics have different names, which
makes the naive approach not applicable. The authors state
that the UML class diagram comparison should also be done
by a human (however, it is possible to introduce some kind of

automation) after the semantically equal element pairs are
identified.

The proposed method compares the following of the UML
class diagram elements [3]:

 Classes (and interfaces).

 Class attributes.

 Methods.

 Relations between elements.
For each of those elements the following comparison

algorithm is defined:
1. Pair the elements from two diagrams according to their

semantical meaning. This step of the algorithm requires

human involvement.

2. Calculate distance between the elements of each pair.

3. Add the calculated distance to a model difference vector

that is used to estimate the final difference.
After these steps are done, a vector containing distances

between appropriate element pairs is constructed, and its
length is being estimated to receive the resulting difference.

The distances between the classes and interfaces are
calculated using Table I.

TABLE I. CLASS AND INTERFACE DISTANCES

Criteria Distance

In both models semantically equal elements

with same names are present

0

In both models semantically equal elements

are present, however, their names differ

0.5

One of the model doesn’t contain semantically

equal class from another model

1

In order to calculate the distances between the class

attributes, it is necessary to construct the temporary vector
shown in formula 1 and estimate its length (described in
details in Table II).

 (1)

TABLE II. ELEMENTS OF COMPARISON VECTOR FOR CLASS

ATTRIBUTES

Element Criteria Value

a Difference between

access modifiers of

appropriate class

attributes

0 for the same, 1 for

different

s Static modifier flag 0 if both attributes

share the same static

modifier, 1 otherwise

n Name difference 0 for the same attribute

names, 1 for different

t Attribute type

difference

0 for the same type, 1

for different

In case one of the attributes is present only in one of the

compared class diagrams (or when the enclosing class is not
present), all the elements of attribute difference vector are set

148Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

to 1. After the construction of the vector, its length is being
calculated providing distance value between attributes.

The distance calculation between the class methods also
requires the construction of temporary vector (formula 2) and
its length estimation (described in details in Table III):

 (2)

TABLE III. ELEMENTS OF COMPARISON VECTOR FOR CLASS METHODS

Element Criteria Value

o Owning class

difference

If a method is defined in

a semantically equal

classes (interfaces) – 0, 1

otherwise

a Difference between

access modifiers

0 for the same, 1 for

different

s Static modifier flag 0 if both methods share

the same static modifier,

1 otherwise

n Name difference 0 for the same method

names, 1 for different

p Difference between

method arguments

0.2 for each mismatching

attribute type, 0.5 for

missing argument (see

explanation below)

r Difference between

return type

0 when return type is

semantically equal, 1

otherwise.

The difference between the method arguments is

calculated basing on the types of arguments. In order to
calculate this difference, the arguments of the compared
methods are paired by their semantical meaning, and then for
the each pair the types of the arguments are being compared.
If the types mismatch, 0.2 is being added to the difference. In
case when the argument is present only in one of the
compared methods, the difference is increased by 0.5 thus
giving the formula 3.

 (3)

Where:

at – number of the method arguments with mismatching

types.

am – number of the cases when the method argument is

present only in the one of compared UML class diagrams.

The argument order is not being taken into account, since the

argument pairing by their semantical meaning is performed

before the actual difference calculation.
The relation comparison is also done using the difference

vector shown in formula 4 that is described as follows with
the detailed explanation given in the Table IV.

 (4)

After the comparison of the identified element pairs, set of
distances between those is received. This set of values is then
converted into n-dimension model difference vector, where n
is a number of the identified element pairs. The final model
difference estimation is equal to the length of the model
difference vector and is represented by a single number.

TABLE IV. RELATION COMPARISON VECTOR ELEMENTS

Element Criteria Value

s Relation source difference –

denotes if relation is

outgoing from the

semantically equal class in

both models

0 for the same

class, 1 for

different

t Relation target difference –

denotes if relation is

incoming into the

semantically equal class in

both models

0 for the same

class, 1 for

different

y Relation type difference 0 if both

relations are of

the same type, 1

otherwise

m Multiplicity difference 0 if relations

have the same

multiplicity, 1

otherwise

In all the cases above, when the n-dimensional vector

length is mentioned, it is calculated by the following formula
5 (Euclidian distance).

 (5)

Thus, the final output of the proposed UML class diagram

comparison method is the number which defines the distance
between the diagrams that are compared. The larger is the
resulting number, the more differences are noted. Such
information is useful when developing model transformations
with the target of the UML class diagram or code – thus
generated model/code can be compared to the ones produced
by a human in order to define the quality of transformation.
The shorter is the distance from the generated class diagram
to the etalon, the higher is a quality of the defined
transformation.

It is also possible to use the model difference vector in
order to detect changes when working with several versions
of the same UML class diagram. In such case each element of
this vector determines the amount of changes for each of the
UML class diagram elements that are being compared. It is
also possible to apply different weights to the different
elements of the model difference vector however there is no
universal solution for the weighting in this case.

149Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

IV. APROBATION OF THE METHOD

In order to test the proposed UML class diagram
comparison method, three simple UML class diagrams were
created. The diagrams contain 2 classes: Point and Line, and
describe the abstract geometrical domain. The class Line
consists of two points – the start and the end. The first class
diagram is shown in Figure 1 and is used as a reference
diagram in the comparison. It means that two other diagrams
are compared vice versa of this.

Figure 1. Reference UML class model (Diagram 1).

The second class diagram shown in Figure 2 is different
from the first one in two aspects:

1) the class name –Point is renamed to Coordinates

2) the difference in arguments of the method

Coordinates.distanceFrom().

Figure 2. Class model with renamed class (Diagram 2).

The third diagram is shown in Figure 3, while it shares the

same class names it has different return types for methods

that are used to calculate distance between two points – the

methods Point.distance() and the Line.length()

respectively. Also, the arguments of the method

Point.distanceFrom()are different in the same way as in

the diagram in Figure 2.

Figure 3. Class model with different return type (Diagram 3).

A. Comparison of Diagram 1 and Diagram 2

Comparison of the UML class diagrams using the
approach offered in this paper requires the identification of
the element pairs and calculation of the distance between
them. In this paper the accessor and mutator methods are
being omitted since the distance between them is equal to 0
due to equality of the names, access modifiers, return types
and signatures. The details in comparison of the element pairs
and the distance are shown in Table V.

The estimation of the model difference vector for those
two models gives the final model difference equal to 1.5811
(formula 6).

(6)

B. Comparison of Diagram 1 and Diagram 3

The elements of the diagram difference vector for the
UML class diagrams 2 and 3 as well, as appropriate diagram
element pairs (those that are responsible for these element
values) are shown in Table VI.

The estimation of the diagram difference vector for those
two models gives the final model difference equal to 2.0616
(formula 7).

(7)

150Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE V. ELEMENT PAIR COMPARISON FOR DIAGRAM 1 AND DIAGRAM 2

Diagram 1 Element Diagram 2 Element Distance
Point Coordinates 0.5
Point.x Coordinates.x
Point.y Coordinates.y
Point.distance() Coordinates.distance()
Point.distanceFrom() Coordinates.distanceFrom()
Line Line 0
Line.start Line.start
Line.end Line.end
Line.length() Line.length()
Aggregation (Line -> Point) Aggregation (Line -> Coordinates)

TABLE VI. ELEMENT PAIR COMPARISON FOR MODELS 1 AND DIAGRAM 3

Diagram 1 Element Diagram 3 Element Distance
Point Point 0
Point.x Point.x
Point.y Point.y
Point.distance() Point.distance()
Point.distanceFrom() Point.distanceFrom()
Line Line 0
Line.start Line.start
Line.end Line.end
Line.length() Line.length()
Aggregation (Line -> Point) Aggregation (Line -> Point)

C. Result Analysis

The analysis of the results achieved proves to be as
expected: Diagram 1 and Diagram 2 are actually less different
then Diagram 1 and Diagram 3 despite the fact that in
Diagram 2 the class Point has the different name. This is due
to the class Point/Coordinates itself is semantically the same
in both Diagrams 1 and 2, i.e., with the same attributes and
methods. Therefore, the impact on the class difference is
much slighter.

Such results seem to be relevant in case of studying the
output of the human-produced class diagrams that are
commonly used in the first stages of a software development
process. Since the human system analysts may (and usually
will) use different names for the similar concepts when
modeling the problem domain class, the name difference
should affect comparison results in a slightly lower way than
the structural difference of compared models.

In comparison to the proposed approach method described
by Mojeeb Al-Rhman Al-Khiaty and Moataz Ahmed [1]
tends to define more differences between models in example
case – due to use of Longest Common Subsequence (LCS)
algorithm when comparing the names of the model elements.
Exact numbers aren’t provided in the paper due to different
scales of the numbers.

D. H. Qiu’s, H. Li’s, and J. L. Sun’s method [11] was also
compared to the proposed one. In this case name differences
aren’t taken into account thus method shows less differences

between compared class models – only ones that are result of
inner structure mismatch.

Thus we can conclude that proposed method is
somewhere between those two eliminating the drawbacks of
former.

V. CONCLUSION

One of the recent trends used in the iterative software
development is a model presenting the system at the different
levels of abstraction. As the system model is created at the
different stages of the system development and in the
different manner – manually or generating from some text
information or other model, there is a need to evaluate the
current version of some diagram and compare it to the other
diagrams created at the previous stages of the project or in the
different way of the modelling.

The most widely used notation in the modern software
development projects is the UML, and its class diagram is
applicable at the different abstraction levels of the software
system development. Therefore, the most important task of
the comparison of two models is exactly the UML class
diagram comparison and evaluation. An effort to find a
suitable approach to compare two UML class diagrams in
advanced scientific databases gave the authors very pure
results. Namely, there are a very few methods how to
compare the UML class diagrams and they don’t provide a
valuable result.

151Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

The authors of this paper are working on the development
of the model transformation method for the generation of the
UML class diagram from the so-called two-hemisphere
model [5]. There is a need to compare the received UML
class diagram with the diagram created manually during the
software development process to approve the quality of the
transformation offered. This is one more reason to turn the
attention to searching for existing approach to the UML
diagram comparison or inventing a new one.

The comparison approach offered in this paper is based on
the semantical features of the elements presented in the UML
class diagram and takes into consideration the structural
facilities of the diagram as they are more essential than, e.g.,
the name differences. The essence of the approach is based on
the identification of the semantically same or similar pairs of
the diagram elements and further evaluation of the distance
between them.

The comparison approach offered in this paper is applied
to the several examples to compare the class diagrams created
in the different manner, but, due to the length limitations of
the paper, only the abstract example is demonstrated here.
The application of the comparison approach to the evaluation
of the transformations defined by the two-hemisphere model-
driven approach is stated as a direction for the future research.

ACKNOWLEDGMENT

The research presented in the paper is supported by the
Latvian Council of Science, No. 342/2012 "Development of
Models and Methods Based on Distributed Artificial
Intelligence, Knowledge Management and Advanced Web
Technologies".

REFERENCES

[1] Al-Khiaty, M.A.-R.; Ahmed, M., "Similarity assessment of
UML class diagrams using simulated annealing," Software
Engineering and Service Science (ICSESS), 2014 5th IEEE
International Conference on , vol., no., pp.19,23, 27-29 June
2014

[2] Sharifi H.R., Mohsenzadeh M., Hashemi S.M. CIM to PIM
Transformation: An Analytical Survey. International Journal
of Computer Technology & Applications. 2012, vol.3, no.2,
pp.791-796. ISSN: 2229-6093.

[3] Brambilla M., Cabot J., Wimmer M. Model-Driven Software
Engineering in Practice. 1edition. USA: Morgan & Claypool
Publishers, 2012.

[4] Al-Jamini H., Ahmed M. Transition from Analysis to Software
Design: A Review and New Perspective. The Proceeding of
International Conference on Soft Computing and Software
Engineering. 2013, vol.3, no.3, pp. 169-176.

[5] Nikiforova, O., Gusarovs, K., Gorbiks, O., Pavlova N.
BrainTool A Tool for Generation of the UML Class Diagrams.
In: Proceedings of the Seventh International Conference on
Software Engineering Advances : The Seventh International
Conference on Software Engineering Advances (ICSEA
2012), Lisbon, Portugal, 18-23 Novemer, 2012. Lisbon:
IARIA, 2012, 60-69.lpp.

[6] Rodriguez-Dominguez, C., Ruiz-Lopez, T., Benghazi, K.,
Noguera, M., u.c. A Model-Driven Approach for the
Development of Middleware In: Technologies for Ubiquitous
Systems. 9th International Conference on Intelligent
Environments (IE), Athens, Greece, 16-17 July, 2013. IEEE,
2013, pp.16-23.

[7] Kriouile A., Gadi T., Balouki Y. IM to PIM Transformation: A
criteria Based Evaluation. International Journal of Computer
Technology & Applications. 2013, vol.4, no.4, pp.616-625.

[8] Lano K., Kolahdouz-Rahimi S., Poernomo I. Comparative
Evaluation of Model Transformation Specification
Approaches. International Journal of Software and Informatics.
2012, vol.6, no.2, pp. 233-269.

[9] Harmon, P, Wolf, C. The State of Business Process
Management 2014 [online]. BPTrends, 2014 [viewed 19 April
2014]. Available from: http://www.bptrends.com/bpt/wp-
content/uploads/BPTrends-State-of-BPM-Survey-Report.pdf

[10] Unified Modeling Language: superstructure v.2.2, OMG.
Available: http://www.omg.org/spec/UML/2.2/Superstructure
[retrieved: August, 2014].

[11] Qiu, D.H.; Li, H.; Sun, J.L., "Measuring software similarity
based on structure and property of class diagram," Advanced
Computational Intelligence (ICACI), 2013 Sixth International
Conference on , vol., no., pp.75,80, 19-21 Oct. 2013

[12] Maoz, S.; Ringert, J.O.; Rumpe, B., "CDDiff: Semantic
Differencing for Class Diagrams", ECOOP 2011 – Object-
Oriented Programming, 25th European Conference, Lancaster,
Uk, pp.230-254, 25-29 July, 2011.

[13] Uhrig S., "Matching class diagrams: with estimated costs
towards the exact solution?.", 2008 international workshop on
Comparison and versioning of software models (CVSM '08),
pp. 7-12, ACM, New York, NY, USA, 2008.

152Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

