
An Approach for Reusing Software Process Elements based on Reusable Asset
Specification:

a Software Product Line Case Study

Karen D. R. Pacini
and Rosana T. V. Braga

Institute of Mathematics and Computer Sciences
University of São Paulo
São Carlos, SP, Brazil

Email: karenr@icmc.usp.br, rtvb@icmc.usp.br

Abstract—Software reuse is becoming an important focus of both
academic and industrial research since the rising demand for new
software products and technologies is constantly growing. The
short time to market, limited resources and lack of specialists
are the main reasons for this investment on software reuse. As
long as customers demand speed to deliver, there is a increasing
special concern about software quality. In this context, we propose
an approach to support both better time to market and software
quality from reusing software process elements using the Reusable
Asset Specification (RAS). This approach presents a mapping
structure to represent process elements as reusable assets. The
sharing of process elements among several projects aims to
decrease time spent on defining the process model, as well as
reducing the space used to store processes and their elements.
Documenting these processes will also be facilitated, since it is
possible to reuse a whole process or process’s sub-trees that
have already been documented or even certified. To illustrate
our approach, we present a case study where a Software Product
Line (SPL) process is mapped to RAS, highlighting the issues
raised during the mapping and how we proposed to solve them.

Keywords–Software Process; Process Reuse; Software Product
Line; RAS; Reusable Asset Specification.

I. INTRODUCTION

The software industry has been adapting to the large
increase of demand arising from the constant evolution of
technology. The concept of software reuse gets an important
role on this new way of software manufacturing, in which
development time is reduced, while quality is improved [1].
Software product lines (SPL) emerged in this context, to
support reuse by building systems tailored specifically for
the needs of particular customers or groups of customers [1].
Reuse in SPL is systematic – it is planned and executed for
each artifact resulting from the development process.

The most common SPL development approaches, such
as Product Line UML-Based Software Engineering (PLUS)
[2], Product Line Practice (PLP) [1], etc., are focused on
the process to support the domain engineering and/or the
application engineering, without considering the computational
tools that support the process. Indeed, the choice and use
of tools are made apart from the process and are strongly
associated to variability management, i.e., dealing with the
definition of the feature model and its mapping to the artifacts
that implement each feature. Some examples of these tools
include Pure::Variants [3], Gears [4], and GenArch [5].

To support a uniform representation of reusable assets, in
2005 the Object Management Group (OMG) has proposed the
Reusable Asset Specification (RAS), which allows a common
approach to be used by developers when storing reusable
assets [6]. RAS offers a basic structure (CORE), but allows
the creation of extension modules in order to adequate to the
particular needs of each project. The specification is available
via XML Schema Definition (XSD) and XML Metadata Inter-
change (XMI) files and its usage is defined by profiles. In the
particular case of SPL, the use of RAS to model repositories
contributes to make assets compatible to each other.

Several extensions to the original RAS profile have been
presented, however their focus is on improving the represen-
tation of specific types of reusable assets [7][8][9]. However,
we have not found any works showing how RAS could be
used to represent the elements of a process, in particular in
the SPL domain. This is not a trivial task, as there are several
decisions to be made, for example, how process elements that
are compositions of other elements should be stored using
RAS. This also motivated this work, as we are interested in
extending reuse to the process level, i.e., to facilitate the reuse
of process phases, activities, or any other assets related to the
process itself. In the particular case of SPL, it is important to
consider approaches successfully applied in practice and well
documented, such as the approaches proposed by Gomaa [2]
and by Clements [1], for creating the case study to apply our
approach. The use of these approaches is supported by their
wide documentation and can illustrate scenarios for a variety
of real applications.

So, the main motivation for this work is that, although
SPL development approaches focus on establishing the process
itself, only SPL artifacts are considered as reusable assets,
rather than the process elements that could bring a number
of benefits if appropriately reused. Indeed, current approaches
do not motivate process reuse, which causes rework each
time a process needs to be instantiated from the general
processes. Additionally, experience gained from successful
projects executed in the past are not taken into account when
new similar projects arise, because they were not adequately
stored for reuse.

Therefore, considering this context, this paper aims at
proposing an approach that allows the storage of process
elements using RAS, in particular in the SPL domain. This

200Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

can leverage the reuse of each SPL process element across
several projects, in an independent way, potentially increasing
reuse. As process elements can be composed of other process
elements, reuse can be done both for single elements or
elements in higher levels of the hierarchy, which contain
one or more elements. So, the paper has also the objective
of describing the main problems found when trying to map
process elements to RAS and gives insights on how this has
been solved by our approach.

Software & Systems Process Engineering Meta-model
(SPEM) version 2.0 [10] was the process meta-model that
inspired our approach. This is because SPEM is being widely
employed as a software process modeling language, as indi-
cated by Garcia-Borgonon [11]. It was used as basis to define
our own structure, which represents several types of processes,
as presented in the paper. It is important to notice that, although
this paper presents a SPL process to exemplify the approach,
any software processes that matches the model proposed in
this paper could be used.

The remainder of this paper is organized as follows.
Section II presents some background on SPL development and
RAS. Section III presents our approach to store SPL process
elements as reusable assets using RAS. Section IV presents
a case study to illustrate our approach. Section V discusses
related work and, finally, Section VI presents conclusions and
future work.

II. BACKGROUND

In this section, we describe a SPL technique (PLUS) and
a reuse standard (RAS) that have been used as a foundation
for the proposed approach, so they are important to allow its
understanding.

A. SPL Development Process: the PLUS approach
PLUS [2] is the SPL process chosen as a case study to

illustrate the approach presented in this paper. However, any
other SPL process could have been used, since the main idea
is to illustrate how a SPL process can be represented using
RAS.

PLUS employs methods based on the Unified Modeling
Language (UML) [12] to develop and manage SPLs. Its main
goal is to model features and variabilities of an SPL. The
approach is based on the Rational Unified Process (RUP) [13]
and each phase corresponds to a RUP work-flow with the same
name.

The process used by PLUS is evolutionary and has two
main activities: the product line engineering (or Domain En-
gineering) and the Application Engineering (configuration of
the target system that results in a new product). For each
activity, either in Domain or Application Engineering, there is
a corresponding evolutionary process (Evolutionary Software
Product Line Engineering Process - ESPLEP).

According to Gomaa [2], ESPLEP life cycle for Domain
Engineering is composed of five activities with the three
most important: requirements modeling, analysis modeling and
design modeling, as can be observed in Figure 1. During
requirements modeling, the SPL scope is defined, resulting
in use cases and feature models. The analysis modeling in-
cludes static modeling, dynamic modeling, finite state machine
modeling, as well as the construction of objects and analysis

of dependencies between features and/or classes. The design
modeling involves the definition of the SPL architecture.

Figure 1. Process for applying the PLUS approach to SPL Engineering
Phase - Adapted from Gomaa [2]

These are the basic activities, but variations can be added to
the process. A characteristic of this approach is that stereotypes
are used in the diagrams to identify different types of use cases,
class diagrams or object diagrams (e.g., to denote mandatory
or optional features).

B. Reusable Asset Specification
There is an increasing demand to ease software reuse,

as it involves high costs associated to creating, searching,
understanding, and using the assets found in a specific context.
So, the creation of standards to organize and package assets is
necessary. In this context, the OMG has proposed the Reusable
Assets Specification (RAS) [6], which is a group of object
management standards to allow the packaging of digital assets
to improve their reusability.

RAS supplies, through a consistent standard, a set of
guidelines that help to structure reusable assets. This can
reduce conflicts that would arise when trying to reuse them.
RAS models are based on UML [12] and Extensible Markup
Language (XML).

The specification describes the reusable assets based on
a model called Core RAS, which represent the fundamental
elements of an asset. This core model can be adapted if
necessary, by creating Profiles. RAS Profiles are a formal
extension of core structure, which allows to add or improve in-
formation according to a specific context. They can be created
to introduce more rigid semantics or constraints, however they
must not change core definition or semantics. OMG supplies
the default profile, based only in Core RAS, and also two
customized profiles to be used in specific situations: the default
component profile to support the principles and concepts of
software components, and the default Web Service Profile that
describes the client portion of a web service. Other extensions
exist as well [7].

Core RAS packaging structure is split in five major sections
(or entities): Classification, Usage, Solution, Related Assets
and Profile, as shown in Figure 2.

201Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 2. Core RAS Major Sections, Adapted from OMG [6]

Classification is a container entity used to allow the classi-
fication of assets to ease their further retrieval. It can contain
descriptors, tags, and values, besides the context (domain,
development, test, deployment, etc.). Usage contains usage
instructions that improve the understanding of the asset before
its usage, as well as how to perform the customization of the
variation points. Solution contains the artifacts of the asset,
which can be requirements, models, code, tests, documents,
among others; Related Assets - describes other assets related to
this one, together with the relationship type (e.g., aggregated,
similar, dependent). Profile defines the version of the profile
to which the asset refers to (e.g., the default profile, or any
other extensions).

III. THE PROPOSAL

Although different SPL development processes share a
common basis, they also contain variabilities. This motivates
representing them as reusable assets. Therefore, in this paper,
we propose to store process elements regarding SPL develop-
ment as reusable assets using RAS (see Section II-B). In order
to accomplish that, it has been defined a process modeling
structure to represent processes.

A. Process Modeling Structure

The process modeling structure used in our approach is
shown in Figure 3. It contains several elements: process model,
phase, activity, artifact, etc. This structure was inspired on
OMG SPEM 2.0 [10] concepts, and aims to represent all
process elements for a software development process, i.e.,
it must be capable of representing processes from different
development approaches existing in the literature (in the SPL
domain we can mention ESPLEP - see Section II-A).

It is important to notice that this model is used to represent
both the process template (i.e., the process model as defined
by its authors) and the process instance, which is derived
by instantiating the process template for particular purposes.
A process instance refers to a template but has its own
elements, according to the process execution. This is important
because we may want to reuse not only the templates, but
also the instances that were successful in a particular context
and thus can be recommended when similar situations occur.
For example, PLUS is a process model (template) that can
be reused in a concrete SPL project, resulting in a process
instance. Later, when a new project begins in a similar context,
instead of reusing PLUS, we might want to reuse the instance
instead, because it is already customized to the new context.

Figure 3. Process Model derived from SPEM

B. Modeling Structure Applied to Process Template and In-
stance

To illustrate the usage of the model proposed in Figure
3 we show, in Figure 4, the example of a random software
development enterprise that is developing a SPL to ease
the development of applications for hotel management (this
example was chosen as the business is simple and it helps
to understand the difference between process template and
process instance). The development process was instantiated
from ESPLEP (Figure 1) and here we focus only on the domain
engineering phase. The domain engineer starts by creating
a specific Project (Hotel SPL Project) and, associated to it,
a Process instance (Hotel SPL Process), which in turn is
associated to ESPLEP. In the figure, we use stereotypes to
identify the roles played by each class in the example and [...]
to express that other analogous instantiations can take place.

Figure 4. Example of ESPLEP instantiation on the proposed Process Model.

For each ESPLEP process element, we have to analyse
whether it is adequate to our Hotel SPL process and, if so, cre-
ate the respective instance. Additionally, the Hotel SPL process
can be adapted to the particular context of the enterprise, for
example adding new activities or artifacts, skipping optional
activities, etc., as long as ESPLEP allows these adaptations.
This is possible because, during the definition of ESPLEP
modeling, it has been defined which elements are mandatory or
optional. Mandatory elements need to have an instance, while

202Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

optional elements can be omitted.

C. Mapping Process Elements to RAS
We propose to map each process element to an independent

RAS Asset, as shown in Figure 5. We discuss the rationale
for that later in Section III-D. In the figure, this mapping
is done considering the example of a template process and
its associated elements. At the left-hand side of the figure,
we have the process template, in the middle we have RAS,
and at the right-hand side, examples of values assumed by the
properties.

Figure 5. Example of a Mapping Structure from Process Template to RAS.

As presented in the figure, the attributes name and id have
a direct relationship in both structures (Process Template and
Asset). The description attribute is mapped to the Description
RAS attribute, but is limited to the first 50 characters of
the short-description attribute from the RAS Asset. The type
attribute is mapped to the Classification element in RAS. The
other process elements are treated as independent Assets, so
they are created separately in the RAS structure and then
related to each other through the RelatedAsset RAS element.

After doing this mapping, all the process information is
stored in a RAS structure, however, according to RAS, some
mandatory elements still need to be filled in. For example,
the Asset has attributes: date, state, version and access-rights,
which can be completed with default values as shown in Figure
5. The Profile element is mandatory and identifies which
profile is being used to represent the Asset. In this case, we are
using the DefaultProfile, version 2.1, as shown later in Section
IV-A.

Another important mandatory element in the RAS structure
is the Solution, which has to be filled in with information and
related documents corresponding to the process element being
stored. For example, in the Process Template the representation
could be a file containing the complete structure of the process
in an XML document. There are other optional elements
exemplified in the case study.

D. Increasing the Potential Reuse
An important goal of the proposed approach is to enhance

the potential reuse of processes, as well as decreasing time,

effort, and storage space when creating and instantiating pro-
cesses. By storing each element independently as a reusable
asset, it is possible to share it among different processes
and process instances, as illustrated in Figure 6. When an
element is shared among processes, the whole tree with related
elements associated to the root element is shared as well.

Figure 6. Example of Potential Reuse

As can be observed in Figure 6, the process element
identified by ExpAct 3 represents an expected process activity,
which is being referenced by three different expected phases.
These phases are referenced by two different processes. The
reuse of process elements as suggested by our approach allows
we to share elements both in the process template and in the
process instances, although the example in Figure 6 illustrates
reuse only in template elements. This leads to a greater reuse
potential, besides the fact that any repository or tool based on
RAS can be easily used.

IV. CASE STUDY

As described in the previous section, our approach allows
the representation of process elements according to RAS, both
for the process template and its execution. ESPLEP is com-
posed of five expected phases (see Section II-A): Requirements
Modeling, Analysis Modeling, Design Modeling, Components
Incremental Implementation, and Software Testing. Each phase
is composed of expected activities and their expected artifacts.

RAS is flexible regarding the possible ways to use, extend,
and represent assets according to each project needs. Our ap-
proach is one of many possible ways to use it. We recommend
to follow this usage pattern to ease the retrieval of assets later,
i.e., client applications for searching assets will be easier to
implement if they know that the underlying structure is based
on RAS. However, it is important to observe that there is a
minimum set of information required for a reusable asset to
be considered in conformance with RAS: it has to indicate
the used profile, at least one artifact and the basic information
about the asset, as shown in Figure 5. Additionally, there are
other information that can also be stored, so this case study
aims at showing a possible way of using RAS elements to store
process elements. This is shown in the following subsections.

A. Profile
The Profile element (Figure 7) refers to the asset represen-

tation structure that is being currently used. The RAS (Core)

203Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

is abstract, thus only profiles are instantiated and all of them
are derived from the core. The derived profile that is closest
to the core, and was chosen to be used in this work, is called
Default Profile. More specifically, we adopted version 2.1, as
it is compatible to any profile extending it.

Figure 7. Example of use of Profile RAS Element.

B. Solution
The Solution element refers to the artifacts that compose

the reusable asset. An asset can be seen as a set of artifacts
(at least one artifact is required). The artifacts are the main
reuse goal, and they can be classified into several types, like
documents (doc, pdf, txt), code (java, sql, php, C#), descriptors
(XML, XSD, HTML), and others.

Figure 8. Example of use of Solution RAS Element.

Figure 8 presents an instance of the Solution element.
Considering the hotel SPL introduced on Section III-B, the
solution contains the Feature Model, defined during the Define
Hotel Feature Model activity of the Hotel Requirements phase.

The main artifact stores (in fact it is a reference to where
the real object is) the model itself, and has attributes such
as name, identifier, type (file type, e.g., .astah), version, and
access rights of the artifact, which we have defined as 775,

following the Unix model, i.e., the artifact owner and the group
to which he belongs to have total rights, while other users
can only read and execute. RAS also recommends the use of
Universally Unique IDentifiers (UUIDs).

The ArtifactType represents the artifact logical type, indi-
cating what the artifact represents in the model (in the example,
it is a SPL Feature Model). The ArtifactContext represents the
context in which this artifact is useful. In the example, as the
feature model is essential for the asset, it is classified with the
Core type, as shown in the figure.

The VariabilityPoint element describes artifact variabilities.
In the example, the artifact has a feature called Payment-
Method, which has several different alternatives. In this case,
the feature that has variability is presented in this element,
while the corresponding alternative features and variability
rules are defined in the Usage element described later. Also,
this artifact has other dependent artifacts representing each
feature of the feature model. This allows the reuse of the
feature model itself and the corresponding artifacts that imple-
ment them, not only during application engineering, but also
in the domain engineering of other SPLS of the same domain
(for example, PaymentMethod could be used in many different
SPLs).

C. Classification
The Classification element refers to the asset descriptors

or classifiers. It can include more than one descriptor or even
schemas to describe the asset. It is also possible to define the
contexts that will be referenced by artifacts and by the Usage
and its activities.

Figure 9. Example of use of Classification RAS Element.

Figure 9 presents an instance of the Classification element.
Assume that we want to classify the SPL Process Template
process element. So, the “SPL Process Template” is a Type
of Process kind of classification. To map this information into
RAS, first we need to define a group of classifiers that represent
what kind of classification we are making, in this case, we are
classifying as TypeOfProcess, so this will be the name of our
DescriptorGroup RAS element. Defined that, we can define
the value for this type, each value is defined as an instance of
Descriptor RAS element, which in this case is SPL Process
Template. An asset may have many classifiers, for example this
same asset could be classified by DescriptorGroup ProcessE-
lement and Descriptor ProcessTemplate.

204Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In an analogous way, all the other process elements can
be classified using this structure, for instance SPL Process
Instance which is also part of TypeOfProcess DescriptorGroup;
Expected Phase, Expected Phase and Expected Artifact, which
are also part of ProcessElement DescriptorGroup; and so on.

The Context element is used to refer to artifacts and
activities in the Asset context. As shown in the figure, the Core
context represent that the related artifact/activity is essential to
the asset.

D. Usage
The Usage element is used to keep information about how

to use the asset (manuals for example), as well as which tasks
have to be executed in order to that asset works correctly. This
information can be relative to the context, to a specific artifact,
or to the whole asset.

Figure 10. Example of use of Usage RAS Element.

Figure 10 presents an instance of the Usage element, in
which the reference attribute refers to an artifact contained
in another asset, identified by UUID HowTo artifact. This
artifact represents a document with instructions on how to
use and interpret the components of the Usage element. Even
though this artifact is not mandatory, it can be useful to
improve reuse. Schemas and other types of artifacts can also
be referenced.

In the hotel SPL example, as mentioned before, there is
a feature named PaymentMethod that represents a variability.
Figure 10 presents the rules for using this variability from in-
stances of the VariabilityPointBinding element. These instances
are contained in an Activity element, which itself is contained
in an ArtifactActivity element. This means that the activity is
relevant only in the context of the referenced artifact. The
activity (VariabilitiesBindingActivity) describes the rules to be
followed for binding variabilities of the Feature Model artifact.

In the example, the artifact identified by
UUID feature artifact has a variability called
AlternativePaymentMethods. According to the rule defined
in VariabilityPointBinding, the dependent artifacts (children)
refer to alternative features of the Feature Model as defined
in the bindingRule attribute.

E. Related Assets
The Related Asset element specifies the relationships

among reusable assets. From these relationships, it is possible
to assemble a dependency tree with all related assets.

Figure 11. Example of use of Related Asset RAS Element.

Figure 11 presents an instance of Related Asset. It has a
name attribute that corresponds to the name of the asset being
related with, as well as assetID and and assetVersion repre-
senting the ID and version of the related asset, respectively.
RAS defines some types of relationship (e.g., an aggregation
in the figure) and allows other types to be created.

In this example, there is a relationship between <<Activi-
tyInstance>> Define Hotel Feature Model and <<Artifact>>
Hotel Feature Model. In this scenario, only the activity is
related to the artifact, not the opposite way. This means that
only the activity has visibility of the artifact. If the visibility
was supposed to be both ways the artifact should have a
relationship with the activity as parent type.

Navegability on relationships is very important on the reuse
context. For example, when selecting an element for reuse, all
the dependencies of this element will be loaded as well. In
this case, if someone wishes to reuse the activity of Figure
11, the artifact would be loaded with it. But if they want to
reuse just the artifact, it is possible because the artifact has
no relationships (dependencies). Thus, if an element depends
on another element and they must be loaded together, the
relationship must be defined in both elements.

V. RELATED WORK

While searching for RAS related studies on the literature,
we could not find any descriptions or examples of how they
use RAS to represent and to pack their reusable assets. Most
of the studies focus on presenting how to identify and use the
assets, rather than on how to map them into the RAS structure.

Part of the studies found on our research proposes RAS
extensions to fit to several different purposes. The application
of RAS in these studies are usually very specific to each
case, for example to store components, or services, or process
generated artifacts and so on. One of proposed extensions is
presented by Mikyeong Moon et al. [8]. They propose an
extension of the RAS Default Profile to store, manage, and
trace variabilities on a Software Product Line.

Another example of using RAS to represent reusable assets
is proposed by Islam Elgedawy et al. [14]. They propose to
use the specification to represent Component Business Maps
(CBMs) to allow the early identification of reusable assets in
a project. They do not specify which RAS Profile they use or
if they created their own extension to represent their assets.

205Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

An example of RAS application that does not use new
extensions is proposed by Nianjun Zhou et al. [15]. In their
approach, they present a legacy reuse analysis and integration
method to support modeling legacy assets in a SOA context. To
store the assets extracted by their approach they use the IBM
Rational Asset Manager Repository (RAM), which is typically
used for storage of unstructured assets (jar, war and ear) and
documents specified using RAS.

There are other online repositories based on RAS in
the web, one example is LAVOI created by Moura [7] and
OpenCom created by Ren Hong-min1 et al. [9]. Both extended
the RAS profile to adapt it to a wide range of types of assets
and to facilitate assets classification, search and use.

Although there is a number of works related to RAS, none
of them brings explicit examples of how to use RAS and to
map the attributes as this work does. In addition, no studies
were found that suggest process elements reuse based on RAS.

VI. CONCLUSIONS AND FUTURE WORK

This work presented an approach to represent process
elements as reusable assets using the RAS. For this, a mapping
of these elements into the RAS structure was presented. The
mapping not only represents the main information of process
elements into RAS mandatory structure but also guides the user
on how to use several other structures that are available at the
RAS Default Profile. This representation makes possible the
creation of a repository of process elements, which may highly
increase the potential of reuse. Reusing processes and process
elements has lots of benefits, such as improving time to market,
decreasing time spent and staff effort, increasing quality.
Besides that, a repository may be built with mechanisms to
recommend process and process elements according to the user
type and application context.

The contribution of this paper is applicable not only in the
SPL context, but in any software processes in other contexts, as
long as they follow our proposed meta-model structure derived
from SPEM. For processes with different structures, a mapping
analogous to that provided here can be done.

Another advantage of using the proposed approach is that
process elements can also be shared among different project
contexts, both for template and instance applications. An ad-
ditional contribution of this paper is to serve as a documented
example of how to use RAS in a practical way, since no
example of usage details was found on our research in the
literature.

As future work, we will implement a Service Based Tool
for representing process elements into RAS Structure. This
tool will be able to get input parameters relative to each
element information (attributes) and generate its RAS mapping
to store them into any repository that can read RAS files as
input. In addition to process elements, this tool will be able
to map any reusable artifact generated from the development
process to RAS Structure. Thus, this tool will provide to the
users, services to support the management of assets of SPL
development, from process to maintenance.

ACKNOWLEDGEMENTS

Our thanks to Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior (CAPES) and University of São Paulo (USP)
for financial support.

REFERENCES
[1] P. Clements and L. Northrop, Software Product Lines: Practices and

Patterns. Addison Wesley Professional, 2002, the SEI series in software
engineering.

[2] H. Gomaa, “Designing software product lines with uml 2.0: From use
cases to pattern-based software architectures,” in Reuse of Off-the-Shelf
Components. Springer, 2006, pp. 440–440.

[3] D. Beuche, “Modeling and building software product lines with
pure::variants,” in 16th International Software Product Line Conference-
Volume 2. ACM, 2012, pp. 255–255.

[4] R. Flores, C. Krueger, and P. Clements, “Mega-scale product line
engineering at general motors,” in Proceedings of the 16th International
Software Product Line Conference-Volume 1. ACM, 2012, pp. 259–
268.

[5] E. Cirilo, U. Kulesza, and C. J. P. de Lucena, “A product derivation
tool based on model-driven techniques and annotations.” Journal of
Universal Computer Science (JUCS), vol. 14, no. 8, 2008, pp. 1344–
1367.

[6] O. M. Group, “Reusable asset specification,” OMG, 2005. [Online].
Available: http://www.omg.org/spec/RAS/2.2/ [Retrieved: Sep, 2015]

[7] D. d. S. Moura, “Software profile ras: extending ras and building
an asset repository,” Master’s thesis, 2013. [Online]. Available:
http://www.lume.ufrgs.br/handle/10183/87582

[8] M. Moon, H. S. Chae, T. Nam, and K. Yeom, “A metamodeling
approach to tracing variability between requirements and architecture
in software product lines,” in 7th IEEE International Conference on
Computer and Information Technology (CIT). IEEE, 2007, pp. 927–
933.

[9] R. Hong-min, Y. Zhi-ying, and Z. Jing-zhou, “Design and implementa-
tion of ras-based open source software repository,” in 6th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
vol. 2. IEEE, 2009, pp. 219–223.

[10] O. M. Group, “Software & systems process engineering
metamodel specification,” OMG, 2008. [Online]. Available:
http://www.omg.org/spec/SPEM/2.0/ [Retrieved: Sep, 2015]

[11] L. Garcı́a-Borgoñón, M. A. Barcelona, J. A. Garcı́a-Garcı́a, M. Alba,
and M. J. Escalona, “Software process modeling languages: A system-
atic literature review,” Inf. Softw. Technol., vol. 56, no. 2, Feb. 2014,
pp. 103–116.

[12] O. M. Group., “Unified modeling language,” OMG, 2011. [Online].
Available: http://www.omg.org/spec/UML/2.4.1/ [Retrieved: Sep, 2015]

[13] R. S. Corporation, “Rational unified pro-
cess,” IBM, 1998. [Online]. Available:
http://www.ibm.com/developerworks/rational/library/content/03July/
1000/1251/1251 bestpractices TP026B.pdf [Retrieved: Sep, 2015]

[14] I. Elgedawy and L. Ramaswamy, “Rapid identification approach for
reusable soa assets using component business maps,” in IEEE Interna-
tional Conference on Web Services (ICWS). IEEE, 2009, pp. 599–606.

[15] N. Zhou, L.-J. Zhang, Y.-M. Chee, and L. Chen, “Legacy asset analysis
and integration in model-driven soa solution,” in IEEE International
Conference on Services Computing (SCC). IEEE, 2010, pp. 554–561.

206Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

