
Improving the Application of Agile Model-based Development:
Experiences from Case Studies

K. Lano
H. Alfraihi

S. Yassipour-Tehrani
Dept. of Informatics

King’s College London
London, UK

Email: kevin.lano@kcl.ac.uk, hessa.alfraihi@kcl.ac.uk,
s.yassipour-tehrani@kcl.ac.uk

H. Haughton
Holistic Risk Solutions Ltd

Croydon, UK

Email: howard haughton@btinternet.com

Abstract—Agile model-based development has the potential to
combine the benefits of both agile and model-based develop-
ment (MBD) approaches: rapid automated software generation,
lightweight development processes and direct customer involve-
ment. In this paper, we analyse three application case studies of
agile MBD, and we identify the factors which have contributed
to the success or failure of these applications. We propose
an improved agile MBD approach, and give guidelines on its
application, in order to increase the effectiveness and success
rate of applications of agile MBD.
Keywords — Model-based development (MBD); Model-
driven development (MDD); Agile development.

I. INTRODUCTION

Agile development and model-based development (MBD)
are two alternative software development approaches which
have been devised to address the ‘software crisis’ of soft-
ware project failures and excessive development costs. Both
approaches have been adopted by industry to a certain extent,
and with some evidence of success. But both approaches also
have drawbacks and limitations, which have restricted their
uptake.

The idea of combining the approaches into an ‘agile MBD’
approach has been explored, with the intention that such
an approach would avoid the deficiencies of the individual
methods [5][12]. In some ways, agile and MBD development
approaches are compatible and complementary. For example:

• Both agile development and MBD aim to reduce the
gap between requirements analysis and implementa-
tion, and hence the errors that arise from incorrect
interpretation or formulation of requirements. Agile
development reduces the gap by using short incremen-
tal cycles of development, and by direct involvement
of the customer during development, whilst MBD
reduces the gap by automating development steps.

• Executable models (or models from which code can
be automatically generated) of MBD potentially serve
as a good communication medium between developers
and stakeholders, supporting the collaboration which
is a key element of agile development.

• Automated code generation accelerates development,
in principle, by avoiding the need for much detailed
manual low-level coding.

• The need to produce separate documentation is re-
duced or eliminated, since the executable model is its
own documentation.

On the other hand, the culture of agile development is
heavily code-centric, and time pressures may result in fixes
and corrections being applied directly to generated code, rather
than via a reworking of the models, so that models and code
become divergent. A possible corrective to this tendency is
to view the reworking of the model to align it to the code
as a necessary ‘refactoring’ activity to be performed as soon
as time permits. We have followed this approach in several
time-critical MBD applications.

Tables I and II summarise the parallels and conflicts
between MBD and Agile development.

TABLE I. ADAPTIONS OF AGILE DEVELOPMENT PRACTICES FOR
MBD

Practice Adaption
Refactoring for Use model refactoring,
quality improvement not code refactoring
Test-based (i) Generate tests
validation from models

(ii) Correct-by-construction
code generation

Rapid iterations Rapid iterations of modeling +
of development Automated code generation
No documentation Models are both code
separate from code and documentation

TABLE II. CONFLICTS BETWEEN AGILE DEVELOPMENT AND MBD

Conflict Resolutions
Agile is oriented to (i) Models as code
source code, not (ii) Round-trip engineering
models (iii) Manual re-alignment
Agile focus on writing Models are both
software, not documentation and
documentation software
Agile’s focus on users Active involvement of
involvement in development, users in conceptual
versus MBD focus on and system
automation modelling

There are therefore different ways in which agile devel-
opment and MBD can be combined, and the current agile
MBD methods adopt different approaches for this integration.
In this paper, we examine one possible approach for combining

213Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



agile and MBD, based on the Unified Modeling Language
Rigorous Specification, Design and Synthesis (UML-RSDS)
formalism and tools [9], which we summarise in Section II.
This is compared with other agile MBD approaches in Section
III. We then report results from three case studies using the
UML-RSDS approach (Sections IV,V,VI), and in Section VII,
we summarise the lessons learnt from these applications and
give guidelines for improving the approach. Section VIII gives
conclusions.

II. UML-RSDS
UML-RSDS is based on the class diagram, use case and

Object Constraint Language (OCL) notations of UML. System
specifications can be written in these notations, and then a
design expressed using UML activities can be automatically
synthesised from the specifications. Finally, executable code
in several alternative languages (Java, C# and C++) can be
automatically synthesised from the design [8]. Both structural
and behavioural code is synthesised, and a complete executable
is produced. The aim of the approach is to automate code
production as much as possible, including code optimisation,
so that system specifications can be used as the focus of de-
velopment activities. Some configuration of the design choices
can be carried out manually. The system construction process
supported by UML-RSDS is shown in Figure 1.

Figure 1. UML-RSDS software production process

An example specification of behaviour in UML-RSDS,
from case study 2, is the following use case postcondition,
which checks the GP data for duplicated patients (task 1b):

p : PatientGP & Id < p.Id &
name1 = p.name1 & name2 = p.name2 &
dob = p.dob & isMale = p.isMale =>

("Patients " + self + " and " + p +
" seem to be duplicates")->display()

This iterates over self : PatientGP, and displays a warning
message for each other patient p that has the same name, date
of birth and gender as self , but a different id value.

The UML-RSDS approach supports agile development,
with the options (ii) (correct-by-construction code generation)
and (i) (models as code) from Tables I and II being used to
combine MBD and agile concepts.

III. RELATED WORK

A small number of other agile MBD approaches have
been formulated and applied: Executable UML (xUML) [13];

Sage [7]; MDD System Level Agile Process (MDD-SLAP)
[18]; Hybrid MDD [4]. Both xUML and UML-RSDS use
the principle that “The model is the code”, and support
incremental system changes via changes to the specification.
There is a clearly-defined process for incremental revision
in UML-RSDS, MDD-SLAP and Hybrid MDD. MDD-SLAP
and Hybrid MDD define explicit integration processes for
combining synthesised and hand-crafted code.

Explicit verification processes are omitted from Sage and
Hybrid MDD. In MDD-SLAP, simulation and test-driven
modelling is used for validation and verification [18]. Some
support for formal validation and verification is provided by
xUML and UML-RSDS: the iUML tool for xUML has support
for simulation, and UML-RSDS provides correctness analysis
via a translation to the B formal method. By automating
code generation, agile MBD approaches should improve the
reliability and correctness of code compared to manual-coding
development. All the approaches are focussed on one-way
forward engineering, and do not support round-trip engineer-
ing, which means that synchronisation of divergent code and
models is a manual process.

UML-RSDS and xUML are based on modelling using
the standard UML model notations, with some variations
(action language in the case of xUML, use cases specified by
constraints in UML-RSDS), and on following a general MDA
process: Computation-independent Model (CIM) to Platform-
independent Model (PIM) to Platform-specific Model (PSM)
to code. Platform modelling is explicitly carried out in xUML
but not in UML-RSDS, which restricts developers to Java-like
languages for the executable code. Sage uses variants of UML
models oriented to reactive system definition using classes
and agents. These include environmental, design, behavioural
and runtime models. An executable system is produced by
integration of these models. MDD-SLAP maps MDD pro-
cess activities (requirements analysis and high-level design;
detailed design and code generation; integration and testing)
into three successive sprints used to produce a new model-
based increment of a system. Hybrid MDD envisages three
separate teams operating in parallel: an agile development team
hand-crafting parts of each release; a business analyst team
providing system requirements and working with a MDD team
to produce domain models. The MDD team also develops
synthesised code. MDD-SLAP and Hybrid MDD have the
most elaborated development processes. The survey of [5]
identifies that Scrum-based approaches such as MDD-SLAP
are the most common in practical use of agile MBD (5 of the
seven cases examined), with XP also often used (4 of 7 cases).
The agile MDD approach in the case of [15] used Scrum and
Kanban.

IV. CASE STUDY 1: FIXML CODE GENERATION

This case study was based on the problem described in
[15]. Financial transactions can be electronically expressed us-
ing formats, such as the Financial Information eXchange (FIX)
format. New variants/extensions of such message formats can
be introduced, which leads to problems in the maintenance
of end-user software: the user software, written in various
programming languages, which generates and processes finan-
cial transaction messages will need to be updated to the latest
version of the format each time it changes. In [15], the author
proposed to address this problem by automatically synthesising

214Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



program code representing the transaction messages from a
single XML definition of the message format, so that users
would always have the latest code definitions available. For this
case study we restricted attention to generating Java, C# and
C++ class declarations from messages in FIXML 4.4 format
[2][3].

The solution transformation should take as input a text
file of a message in XML FIXML 4.4 Schema format, and
produce as output corresponding Java, C# and C++ text files
representing this data.

The problem is divided into the following use cases:

1) Map data represented in an XML text file to an
instance model of the XML metamodel.

2) Map a model of the XML metamodel to a model
of a suitable metamodel for the programming lan-
guage/languages under consideration. This has sub-
tasks: 2a. Map XML nodes to classes; 2b. Map XML
attributes to attributes; 2c. Map subnodes to object
instances.

3) Generate program text from the program model.

In principle, these use cases could be developed independently,
although the subteams or developers responsible for use cases
2 and 3 need to agree on the programming language meta-
model(s) to be used.

The problem was set as the assessed coursework (counting
for 15% of the course marks) for the second year undergradu-
ate course “Object-oriented Specification and Design” (OSD)
at King’s College in 2013. It was scheduled in the last four
weeks at the end of the course. OSD covers UML and MBD
and agile development at an introductory level. Students also
have experience of team working on the concurrent Software
Engineering Group project (SEG). Approximately 120 students
were on the course, and these were divided into 12 teams of 10
students each, using random allocation of students to teams.

The students were instructed to use UML-RSDS to develop
the three use cases of the problem, by writing specifications
using the UML-RSDS tools and generating code from these
specifications. They were also required to write a team report
to describe the process they followed, their team organisation,
and the system specification. The case study involves research
into FIXML, XML, UML-RSDS and C# and C++, and carry-
ing out the definition of use cases in UML-RSDS using OCL.
None of these topics had been taught to the students. Scrum,
XP, and an outline agile development approach using UML-
RSDS had been taught, and the teams were recommended to
appoint a team leader. A short (5 page) requirements document
was provided, and links to the UML-RSDS tools and manual.
The XML metamodel was provided, and a UML-RSDS library
to parse XML was also given to the students to use. Each week
there was a one hour timetabled lab session where teams could
meet and ask for help from postgraduate students who had
some UML-RSDS knowledge. The outcome of the case study
is summarised in Table III.

Examples of good practices included:

• Division of a team into sub-teams with sub-team
leaders, and separation of team roles into researchers
and developers (teams 8, 11).

• Test-driven development (teams 8, 9).

TABLE III. CASE 1 RESULTS

Teams Mark range Result
5, 8, 9, 10 80+ Comprehensive solution and testing,

well-organised team
12 80+ Good solution, but used manual

coding, not UML-RSDS
4, 7, 11 70-80 Some errors/incompleteness
2, 3, 6 50-60 Failed to complete some tasks
1 Below 40 Failed all tasks, group split into two.

• Metamodel refactoring, to integrate different versions
of program metamodels for Java, C# and C++ into a
single program metamodel.

Exploratory and evolutionary prototyping were used by most
teams as their main development process. However, most teams
experienced substantial obstacles in the project, due to (i)
problems with the interface of the UML-RSDS tools, which
did not conform to the usual style of development environment
(such as NetBeans) which the students were familiar with; (ii)
problems understanding and using the MBD executable model
concept. Only four teams managed to master the development
approach, others either reverted to manual coding or produced
incomplete solutions. The total effort expended by successful
MBD teams was not in excess of that expended by the suc-
cessful manual coding team, which suggests that the approach
can be feasible even in adverse circumstances.

V. CASE STUDY 2: ELECTRONIC HEALTH RECORDS
(EHR) ANALYSIS AND MIGRATION

This case study was the OSD assessed coursework for
2014. It was intended to be somewhat easier than the 2013
coursework. Approximately 140 second year undergraduate
students participated, divided into 14 teams of 9 or 10 mem-
bers. Students were allocated randomly to teams.

There were three required use cases: (1) to analyse a dataset
of GP patient data conforming to the class diagram of Figure
2 for cases of missing names, address, or other feature values;
(2) to display information on referrals and consultations in
date-sorted order; (3) to integrate the GP patient data with
hospital patient data conforming to the class diagram of Figure
3 to produce an integrated dataset conforming to a third class
diagram (gpmm3).

Figure 2. GP patient model gpmm1

Table IV summarises the use cases and their subtasks.
As with case study 1, the teams were required to use UML-

RSDS to develop the system, and to record their organisation
and results in a report. Teams were advised to select a leader,

215Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



Figure 3. Hospital patient model gpmm2

TABLE IV. USE CASES FOR EHR ANALYSIS/MIGRATION

Use case Subtasks Models
1. Analyse data 1a. Detect missing data gpmm1

in GP dataset
1b. Detect duplicate gpmm1
patient records

2. View data 2a. Display consultations of each gpmm1
GP patient, in date order
2b. Display referrals of each gpmm1
GP patient, in date order

3. Integrate data Combine gpmm1, gpmm2 data gpmm1,
into gpmm3 gpmm2,

gpmm3

and to apply an agile development process, although a specific
process was not mandated. A short (2 page) requirements
document was provided, and links to the UML-RSDS tools
and manual. The three EHR models were provided. Each week
there was a one hour timetabled lab session where teams could
meet and ask for help from postgraduate students who had
some UML-RSDS knowledge.

A. Outcomes
Of the 14 teams, 13 successfully applied the tools and

an agile methodology to produce a working solution. Table
V shows the characteristics of the different team solutions.
Training time refers to the time needed to learn MBD using
UML-RSDS.

Typically the teams divided into subteams, with each
subteam given a particular task to develop, so that a degree
of parallel development could occur, taking advantage of the
independence of the three use cases. Most groups had a
defined leader role (this had been advised in the coursework
description), and the lack of a leader generally resulted in a
poor outcome (as in teams 1, 4, 9, 12, 14). As with case study
one, exploratory and evolutionary prototyping of specifications
was used by the teams.

The key difficulties encountered by most teams were:

• Lack of prior experience in using UML.
• The unfamiliar style of UML-RSDS compared to

tools such as Visual Studio, Net Beans and other
development environments.

• Conceptual difficulty with the idea of MBD and the
use of OCL to specify system functionality.

TABLE V. OUTCOMES OF EHR CASE STUDY

Team Training Technical Agile Activities, issues,
time outcome process process

1 > 1 week 8/10 8/10 Disorganised and
individual working

2 1 week 9/10 8/10 No experience
of large teams

3 > 1 week 8/10 9/10 Used pair modelling,
proactive time planning

4 1 week 7/10 8/10 No leader.
Parallel working

5 1 week 9/10 8/10 Lead
developers

6 1 week 8/10 9/10 Used Scrum, subteam
modelling, model
refactoring

7 1 week 8/10 9/10 Risk analysis,
paired
modelling

8 1 week 9/10 9/10 Small team
modelling. Lead
developers
trained team

9 > 1 week 7/10 7/10 No leader,
disorganised

10 1 week 8/10 8/10 Detailed planning,
scheduling. Lead
developers
trained team

11 1 week 9/10 9/10 Used XP
12 > 1 week 7/10 5/10 Team split

into 2
13 2 weeks 8/10 8/10 Strong

leadership
14 2 weeks 0/10 0/10 Failed to work

as a team

• Inadequate user documentation for the tools – in
particular students struggled to understand how the
tools were supposed to be used, and the connection
between the specifications written in the tool and the
code produced.

• Team management and communication problems due
to the size of the teams and variation in skill levels
and commitment within a team.

Nonetheless, in 12 of 14 cases the student teams overcame
these problems. Two teams (12 and 14) had severe manage-
ment problems, resulting in failure in the case of team 14.

The teams were almost unanimous in identifying that they
should have committed more time at the start of the project
to understand the tools and the MBD approach. This is a
case where the agile principle of starting development as soon
as possible needs to be tempered by the need for adequate
understanding of a new tool and development technique.

Factors which seemed particularly important in overcoming
problems with UML-RSDS and MBD were:

• The use of ‘lead developers’: a few team members
who take the lead in mastering the tool/MBD concepts
and who then train their colleagues. This spreads
knowledge faster and more effectively than all team
individuals trying to learn the material independently.
Teams that used this approach had a low training time
of 1 week, and achieved an average technical score of
8.66, versus 7.18 for other teams. This difference is
statistically significant at the 4% level (removing team
14 from the data).

• Pair-based or small team modelling, with subteams

216Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



of 2 to 4 people working around one machine. This
seems to help to identify errors in modelling which
individual developers may make, and additionally,
if there is a lead developer in each sub-team, to
propagate tool and MBD expertise. Teams using this
approach achieved an average technical score of 8.25,
compared to 7.2 for other teams. This difference is
however not statistically significant if team 14 is
excluded.

Teams using both approaches achieved an average technical
score of 9, compared to those using just one (8.2) or none
(6.9).

Another good practice was the use of model refactoring
to improve an initial solution with too complex or too finely-
divided use cases into a solution with more appropriate use
cases.

The impact of poor team management and the lack of a
defined process seems more significant for the outcome of a
team, compared to technical problems. The Pearson correlation
coefficient of the management/process mark of the project
teams with their overall mark is 0.91, suggesting a strong
positive relation between team management quality and overall
project quality. Groups with a well-defined process and team
organisation were able to overcome technical problems more
effectively than those with poor management. Groups 3, 5, 7,
11 and 13 are the instances of the first category, and these
groups achieved an average of 8.4/10 in the technical score,
whilst groups 1, 4, 9, 12 and 14 are the instances of the second
category, and these groups achieved an average of 5.8/10 in
the technical score. An agile process seems to be helpful in
achieving a good technical outcome: the correlation of the agile
process and technical outcome scores in Table V is 0.93.

The outcomes of this case study were better than for the
first case study: the average mark was 79% in case study 2,
compared to 67.5% for case study 1. This appears to be due to
three main factors: (i) a simpler case study involving reduced
domain research and technical requirements compared to case
study 1. In particular there was no need to understand and use
an external library such as the XML parser; (ii) improvements
to the UML-RSDS tools; (iii) stronger advice to follow an
agile development approach.

In conclusion, this case study illustrated the problems
which may occur when industrial development teams are
introduced to MBD and MBD tools for the first time. The
positive conclusions which can be drawn are that UML-
RSDS appears to be an approach which quite inexperienced
developers can use successfully for a range of tasks, even
with limited access to tool experts, and that the difficulties
involved in learning the tools and development approach are
not significantly greater than those that could be encountered
with any new SE environment or tools.

VI. CASE STUDY 3: COLLATERALIZED DEBT
OBLIGATIONS RISK ESTIMATION

This case study concerns the risk evaluation of multiple-
share financial investments known as Collateralized Debt Obli-
gations (CDO), where a portfolio of investments is partitioned
into a collection of sectors, and there is the possibility of
contagion of defaults between different companies in the
same sector [1][6]. Risk analysis of a CDO contract involves

computing the overall probability P(S = s) of a financial loss
s based upon the probability of individual company defaults
and the probability of default infection within sectors.

Both a precise (but very computationally expensive) and an
approximate version of the loss estimation function P(S = s)
were required. The case study was carried out in conjunction
with a financial risk analyst, who was also the customer of
the development. Implementations in Java, C# and C++ were
required.

The required use cases and subtasks are given in Table VI.
Use case 3 depends upon tasks 2a and 2b of use case 2. Unlike

TABLE VI. USE CASES FOR CDO RISK ANALYSIS

Use case Subtasks Description
1. Load data Read data from

a .csv spreadsheet
2. Calculate Poisson 2a Calculate probability
approximation of of no contagion
loss function 2b. Calculate probability

of contagion
2c. Combine 2a, 2b

3. Calculate precise
loss function
4. Write data Write data to

a .csv spreadsheet

case studies 1 and 2, team management was not a problem
because this was a single-developer project. In addition the
developer was an expert in UML-RSDS. Therefore the focus of
interest in this case study is how effectively agile development
with UML-RSDS can be used for this domain.

First, a phase of research was needed to understand the
problem and to clarify the actual computations required. Then
tasks 2a, 2b and 2c were carried out in a first development
iteration, as these were considered more critical than use cases
1 or 4. Exploratory and evolutionary prototyping were used.
Then, the use case 3 was performed in development iteration
2, and finally use cases 1 and 4 – which both involved use
of manual coding – were scheduled to be completed in a
third development iteration. A further external requirement was
introduced prior to this iteration: to handle the case of cross-
sector contagion. This requirement was then scheduled in the
third iteration, and tasks 1 and 4 in a fourth iteration.

Figure 4 shows the class diagram of the solution produced
at the end of the first development iteration.

Figure 4. CDO version 1 system specification

The following agile development techniques were em-
ployed:

217Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



• Refactoring: the solutions of 2a and 2b were initially
expressed as operations nocontagion, contagion of the
CDO class (Figure 4). It was then realised that they
would be simpler and more efficient if defined as
Sector operations. The refactoring Move Operation
was used. This refactoring did not affect the external
interface of the system.

• Customer collaboration in development: the risk ana-
lyst gave detailed feedback on the generated code as
it was produced, and carried out their own tests using
data such as the realistic dataset of [6].

It was originally intended to use external hand-coded
and optimised implementations of critical functions such as
the combinatorial function comb(int n, int m). However, this
would have resulted in the need for multiple versions of these
functions to be coded, one for each target implementation
language, and would also increase the time needed for system
integration. It was found instead that platform-independent
specifications could be given in UML-RSDS which were of
acceptable efficiency.

The initial efficiency of the approximate solution was too
low, with calculation of P(S = s) for all values of s ≤ 20 on the
test data of [6] taking over 2 minutes on a standard Windows
7 laptop. To address this problem, the recursive operations and
other operations with high usage were given the stereotype ≪
cached ≫ to avoid unnecessary recomputation. This stereotype
means that operations are implemented using the memoisation
technique of [14] to store previously-computed results. Figure
5 shows the refactored system specification at the end of the
third development iteration.

Figure 5. CDO version 3 system specification

Table VII shows the improvements in efficiency which
memoisation provides, and the results for generated code in
other language versions. The approximate version of P(S = s)
is compared.

TABLE VII. EXECUTION TIMES FOR CDO VERSIONS

Version Execution time for first Execution time for first
20 P(S = s) calls 50 P(S = s) calls

Unoptimised Java 121s –
Optimised Java 32ms 93ms
C# 10ms 20ms
C++ 62ms 100ms

Our experiences on this case study illustrate the UML-
RSDS principles:

• Optimisation and refactoring should be carried out
at the specification level in a platform-independent
manner where possible, not at the code level.

• The scope of MBD should be extended as far as
possible across the system development, reducing the
scope of manual coding and integration wherever
possible.

In conclusion, this case study showed that a successful
outcome is possible for agile MBD in the highly demanding
domain of computationally-intensive financial applications. A
generic MBD tool, UML-RSDS, was able to produce code
of comparable efficiency to existing hand-coded and highly
optimised solutions.

VII. GUIDELINES FOR AN IMPROVED AGILE MBD
PROCESS

The case studies have identified the need for a well-defined
agile MBD process for using UML-RSDS, and some tech-
niques for improving the adoption and application of UML-
RSDS, in addition to necessary technical improvements in the
tools. In general it was found that a development approach
using exploratory prototyping (of the system specification) at
the initial stages, and evolutionary prototyping at later stages,
was effective.

The following guidelines for adoption and application of
agile MBD are proposed, on the basis of our experiences in
the presented and other case studies:

• Utilise lead developers When introducing MBD to
a team inexperienced in its use, employ a small
number of team members – especially those who
are most positive about the approach and who have
appropriate technical backgrounds – to take the lead
in acquiring technical understanding and skill in the
MBD approach. The lead developers can then train
their colleagues.

• Use paired or small team modelling Small teams
working together on a task or use case can be very
effective, particularly if each team contains a lead
developer, who can act as the technical expert. It is
suggested in [18] that such teams should also contain
a customer representative.

• Use a clearly defined process and management
structure The development should be based on a well-
defined process, such as XP, Scrum, or the MBD
adaptions of these given in this paper or by MDD-
SLAP and Hybrid MDD. A team leader who operates
as a facilitator and co-ordinator is an important factor,
the leader should not try to dictate work at a fine-
grained level, but instead enable sub-teams to be
effective, self-organised and to work together.

• Refactor at specification level Refactor models, not
code, to improve system quality and efficiency.

• Extend the scope of MBD Encompassing more of
the system into the automated MBD process reduces
development costs and time.

The first three of these are also recommended as good practices
for agile development in general [10][11][17].

A detailed agile MBD process for UML-RSDS can be
based upon the MDD-SLAP process. Each development it-
eration is split into three phases (Figure 6):

• Requirements and specification: Identify and refine
the iteration requirements from the iteration backlog,

218Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



and express new/modified functionalities as system
use case definitions. Requirements engineering tech-
niques such as exploratory prototyping and scenario
analysis can be used. This stage corresponds to the
Application requirements sprint in MDD-SLAP. Its
outcome is an iteration backlog with clear and detailed
requirements for each work item.
If the use of MBD is novel for the majority of
developers in the project team, assign lead developers
to take the lead in acquiring technical skills in MBD
and UML-RSDS.

• Development, verification, code generation: Sub-
teams allocate developers to work items and write unit
tests for their assigned use cases. Subteams work on
their items in development iterations, using techniques
such as evolutionary prototyping, in collaboration with
stakeholder representatives, to construct detailed use
case specifications. Formal verification at the specifi-
cation level can be used to check critical properties.
Reuse opportunities should be regularly considered,
along with specification refactoring.
Daily Scrum-style meetings can be held within sub-
teams to monitor progress, update plans and address
problems. Techniques such as a Scrum board and
burndown chart can be used to manage work allocation
and progress. The phase terminates with the genera-
tion of a complete code version incorporating all the
required functionalities from the iteration backlog.

• Integration and testing: Do regular full builds, test-
ing and integration in an integration iteration, in-
cluding integration with other software and manually-
coded parts of the system.

Figure 6. UML-RSDS process

VIII. CONCLUSIONS

We have analysed the process and outcomes of three case
studies of MBD and agile development, involving a total of
over 250 developers. From these cases, we have identified

guidelines for the use of agile MBD, and an improved agile
MBD process for UML-RSDS. In future work, we will develop
a systematic evaluation framework for agile MDD application,
and investigate extensions of our agile MDD process.

REFERENCES
[1] M. Davis and V. Lo, “Infectious Defaults”, Quantitative Finance, vol.

1, no. 4, 2001, pp. 382–387.
[2] http://fixwiki.org/fixwiki/FPL:FIXML Syntax. Accessed 11.9.2015.
[3] http://www.fixtradingcommunity.org. Accessed 11.9.2015.
[4] G. Guta, W. Schreiner, and D. Draheim, “A lightweight MDSD process

applied in small projects”, Proceedings 35th Euromicro conference on
Software Engineering and Advanced Applications, IEEE, 2009, pp. 255-
258.

[5] S. Hansson, Y. Zhao, and H. Burden, “How MAD are we?: Empirical
evidence for model-driven agile development”, XM Workshop, MOD-
ELS 2014, 2014, pp. 2-11.

[6] O. Hammarlid, “Aggregating sectors in the infectious defaults model”,
Quantitative Finance, vol. 4, no. 1, 2004, pp. 64–69.

[7] J. Kirby, “Model-driven Agile Development of Reactive Multi-agent
Systems”, COMPSAC ’06, 2006, pp. 297–302.

[8] K. Lano and S. Kolahdouz-Rahimi, “Constraint-based specification of
model transformations”, Journal of Systems and Software, vol. 88, no.
2, February 2013, pp. 412–436.

[9] K. Lano, The UML-RSDS manual,
http://www.dcs.kcl.ac.uk/staff/kcl/umlrsds.pdf, 2015.

[10] L. Lavazza, S. Morasca, D. Taibi, and D. Tosi, “Applying Scrum
in an OSS Development Process: an Empirical Evaluation”, in 11th
International Conference XP 2010, 2010, pp. 147–159.

[11] R. C. Martin, “Agile Software Development: Principles, Patterns and
Practices”, Prentice Hall, 2003.

[12] R. Matinnejad, “Agile Model Driven Development: an intelligent
compromise”, 9th International Conference on Software Engineering
Research, Management and Applications, 2011, pp. 197–202.

[13] S. Mellor and M. Balcer, “Executable UML: A foundation for model-
driven architectures”, Addison-Wesley, Boston, 2002.

[14] D. Michie, “Memo functions and machine learning”, Nature, vol. 218,
1968, pp. 19–22.

[15] M. B. Nakicenovic, “An Agile Driven Architecture Modernization
to a Model-Driven Development Solution”, International Journal on
Advances in Software, vol 5, nos. 3, 4, 2012, pp. 308–322.

[16] K. Schwaber and M. Beedble, “Agile software development with
Scrum”, Pearson, 2012.

[17] D. Taibi, P. Diebold, and C. Lampasona, “Moonlighting Scrum: an agile
method for distributed teams with part-time developers working during
non-overlapping hours”, in ICSEA 2013, pp. 318–323.

[18] Y. Zhang and S. Patel, “Agile model-driven development in practice”,
IEEE Software, vol. 28, no. 2, 2011, pp. 84–91.

219Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances


