
Towards an Open Smart City Notification Service

Luiz Cajueiro, Silvino Neto, Felipe Ferraz, Ana Cavalvanti
Recife Center for Advanced Studies and Systems (CESAR)

Recife – PE, Brazil
e-mail: {luiz.cajueiro, silvino.neto}@gmail.com, fsf@cesar.org.br, anapaula.cavalvanti@gmail.com

Abstract— Heterogeneity is a critical barrier to event
processing in Smart Cities. Over the past few years many
techniques have been proposed for message exchange between
specific domains systems. However, identifying the context for
all kinds of events is hampered due to the large number of
protocols and formats that exist. Under these circumstances,
this paper proposes a middleware for analyzing multiple events
and to infer their respective contexts, thereby providing a
flexible way of communication between distributed systems in
different domains of a Smart City. Our studies have lead us to
believe in the feasibility of the proposed approach, for it is an
approach which reduces the burden of implementing/mapping
all of the existing formats which can be activated in a given
situation.

Keywords:Middleware; CEP; Pub/Sub; Heterogeneous
Systems; Smart City; Events; Google Cloud Platform.

I. INTRODUCTION
In one of our previous works [1] we presented the

Platform for Real-Time Verification of Epidemic
Notification (PREVENT), a cloud-based message-oriented
middleware platform for real-time disease surveillance
which uses the HL7-FHIR specification. FHIR is HL7’s
new specification that comprises of a set of international
standards to exchange applications. This work originated in
the need to allow PREVENT to receive messages which
were structured in any given non-FHIR healthcare protocol.
Through this experiment we observed that the heterogeneity
problem faced by PREVENT is common to other systems in
different domains. This fact has motivated our research to
seek a common solution or framework to address this
problem.

Cities are the main centers of human and economic
activities. They have the potential to create and maintain
means which generate development opportunities for their
inhabitants. However, as cities grow they lead themselves
into a wide range of complex problems [2][3]. Through
technological innovation, the smart city concept emerges as
an approach which promises to work in favor of more
efficient and sustainable cities. Since its inception, the
concept designed to enhance the potential for smart cities
evolved from the specific projects implementation level to
global strategies aimed at addressing the broader challenges
of cities [2].

Each city is a complex ecosystem which consists of
several subsystems working together to ensure the different
services being provided (e.g., energy and water supply).

Due to the growth of each of these ecosystems, the amount
of information for decisions to be made becomes
overwhelming. As a consequence, there are neither standard
courses of action nor well-established ways to handle such a
massive amount of data.

The intelligence used for this control is, in general,
digital or analog - and almost inevitably human - pointing
towards the utility of an automated process. In the context of
smart cities, automation is a vital component for the
connections between systems [4].

Most solutions applied in cities behave monolithically
and are not interoperable [5]. Through communication
between different systems, it is possible to achieve drastic
changes in applications and services offered to citizens, thus
enabling the concept of smart cities to become a reality [6].
Each one of these heterogeneous systems works and deals
with specific functions which operate in each context.
However, such an individualized approach is usually part of
a bigger and more complex scenario, with many other
applications involved. Thus, contextualized event sharing
can provide the necessary triggers to generate a standalone
flow in the treatment of occurrences arising in cities [5][7].

Different specific domain entities usually adopt a
common domain communication protocol; but such a
consensus can remain unknown to other areas or system
domains. In a smart city there are various standards for
communication as well as an extremely high and continuous
flow of generated events. Protocols such as HL7-FHIR [1]
bring standards to a specific domain where applications can
be adapted to embrace solutions. On the other hand, trying
to adapt legacy systems to communicate with these
protocols can be too expensive in terms of cost and effort in
a way that could lead the project to impracticability.

This paper proposes a cloud middleware for analyzing
the different events arising in heterogeneous systems. It also
provides a mechanism for events to be notified to the
interested parties, considering topics of interest previously
informed through the Publish/Subscribe (Pub / Sub) design
pattern. A middleware with notification-based services
(ASN), which applies discrimination filters based on
context, may provide the required tools in order to enable
Smart City mechanisms to ensure automation and efficiency
in the treatment of events which may arise [8].

The proposed middleware adopts complex event
processing (CEP) techniques, and a set of adaptive rules is
used in order to establish the correlation between the
information content of incoming events [9].

256Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

The remainder of this paper is organized as follows:
Section 2 presents background concepts. Then, Section 3
describes adopted platform flows, processes and other
architectural aspects of the middleware. Finally, Section 4
presents conclusions and discusses possible future works.

II. BACKGROUND
This section presents the concepts required for a better

understanding of this paper.

A. Smart Cities
Smart cities have their origin in two main factors: (i) the

increase in world population, which has caused a rural
exodus and (ii) ecological awareness related to scarce
natural resources [10].

This concept represents an innovation in the
management of cities, as well as their services and
infrastructure. It is based on the use of information
technology to support the management of problems which
occur in modern cities, making them more efficient and
sustainable [2].

The smart city concept aims to provide an integrated
system in which it is possible to achieve specific goals
related to the improvement of cities management and in
bettering inhabitants’ lives, maximizing efficiency in the
implementation of these activities.

1) Features of a Smart City
Implementations for smart cities may differ significantly

depending on their focus. The Regional Science Center at
Vienna’s University of Technology [11] enumerates six
aspects that define a smart city. These aspects represent the
main challenges related to core areas:

a) SmartEconomy (Competitiveness): Based on the
economic structure of cities, it focuses on promoting
multiple sectors of the economy in order to maintain the
stability of the whole economy if any of its sectors crashes.

b) SmartGovernance (Citizen Participation): Focuses
on promoting the current governance model of co-existence
(top-down) with informal initiatives, incorporating the
format (bottom-up) for its functioning.

c) SmartEnviroment (Healthcare): Applied by
reducing land consumption in the city’s expanse and aiming
for a more efficient use of the environment already used. It
highlights the concern with natural conditions, pollution,
environmental protection and resources for sustainable
management.

d) Smart People (Social and Human Capital):
Promotes initiatives in order to solve high unemployment
levels, taking into account all citizens, regardless of age,
gender, culture or social status.

e) SmartMobility (Transport and ICT):Aims at
reducing pollution and congestion through alternative
transport for cars and the provision of sustainable public
transport, available to all citizens.

f) Smart Living (Quality of life): Promotes social
cohesion, better health and a decrease in crime rates
[10][12][13].

2) Projects:
Over recent years, many initiatives (public and private)

have been proposed around the world in order to adapt
urban areas to smart city issues. New initiatives propose the
creation of new cities, projecting their smart infrastructure
from the beginning of their construction. Some initiatives to
achieve smart cities include:

• Amsterdam, Europe: Created by the merging of
many organizations and companies. Named
Amsterdam Smart City (ASC), it focuses on the
application of smart city concepts for achieving three
objectives: economic growth, a change in
inhabitants’ perception and a focus on improving
quality of life [10].

• Shanghai, China: It is one of the first pilot cities in
China to apply smart cities concepts. It aims to
achieve gains in areas such as security and the
development of information technology in city
systems [12].

• Rio de Janeiro, Brazil [13]: A partnership with IBM
has resulted in the construction of the Rio De Janeiro
city center of operations. It aims to improve the
monitoring and control of events in the city through
cameras and a better integration between the city’s
service providers [10][11].

B. Publish/Subscribe
Publish/subscribe design pattern - or pub/sub - is widely

used by services which work with interest-based
notification. Due to its asynchronous decoupling property, it
provides an elegant technique for the implementation of an
infrastructure capable of providing a significant level of
many-to-many communication. Such a feature enables
independence between the entities involved. The pattern is
widely used as a main component in projects from various
fields, e.g., medical applications [14], air traffic
management and industrial production [15].

1) Pub/Sub Based Services
Pub/sub services are composed of three main

components: (i) the publisher, (ii) the subscriber and (iii) a
notification service (named broker) which will make the

Figure 1. Publish/Subscribe Diagram

257Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

interconnection between subscribers and publishers. This
architecture is based on the object-oriented design pattern
Subject-Observer.

A pub/sub service starts when the publisher sends a
message to the notification service, containing specific
information, called an event. This event is evaluated using
some fixed condition as a basis within the service and it is
extracted as information and/or topic of interest. The service
maintains a list of subscribers, which may be linked to one
or more points of interest. Thus, the service retrieves
subscribers that are interested in the event content and sends
a notification to each one through the endpoint informed
during the subscription process. Fig. 1 presents the topic-
based subscription flow. A system may perform both
publisher and subscriber roles, and the distinction between
these roles is determined by whether or not it has sent an
event, or just subscribed to a topic of interest [15][16].

Notification Services can define different behaviors
depending on subscription models. They are:

• Channels-based: The notification service has a
number of communication channels. Events are sent
and received only by its subscribers, regardless of
the content.

• Topics-based: Publishers assign to the sent event an
identification tag with some default information.
Also, subscribers report which tags of interest should
generate notification for them, e.g., accidents,
muggings, etc. [14].

• Type-based: Subscribers report interest in events
belonging to any area of particular interest, such as
public safety or health.

• Content-based: Some rules are defined, rules which
the event content must satisfy. Events only generate
notification if the defined rules are positively
validated [17][18][19].

Such model efficiency is already well established and
proven. Its use can be noted in many frameworks, as well as
through the OMG Data Distribution Service (DDS) and Java
Messaging Service (JMS) [15]. It is also available as a
service on cloud platforms like Google Cloud Platform
(Cloud Pub / Sub) [20] and Amazon Simple Notification
Service (SNS) [21].

C. CEP (Complex Event Processing)
Complex event processing (CEP) has become important

technology for big data processing because it enables the
consumption of a lot of events in a relatively low period of
time. CEP is part of an architecture that relies on the
detection, use, analysis and generation of events. It is an
efficient way to use rules to detect correlations between
events within a certain scope of processing [9]. It has been
used by many applications ranging from medical systems to
real-time financial analysis, fault detection, and so on.

A CEP system consists of relationships between event
generators, processing server and other systems called event
consumers. Event generators can be sensors which monitor
environments or other systems which notify when a specific
scenario occurs (e.g., security vulnerabilities or price

changes in stocks). Event consumers are typically decision-
making systems that perform some action based on
notification received by the CEP server. The existence of a
server intermediating such communication is one major
advantage of using a CEP server, since it eliminates the
need for decentralized treatment in end systems for
processing events generated by different channels. Fig. 2
shows the structure of a CEP system, as well as its
relationship with its components [22].

Two categories stand out among the existing processing
models: Detection-oriented monitoring and aggregation-
oriented monitoring [23].
• Detection-oriented model: The data are analyzed from a

base, which consists of past events information. In this
model, the goal is to find patterns from the processed
content.

• Aggregation-oriented model: The data are analyzed in
real time and each event received is processed
individually [24].

Events are analyzed using a specific set of criteria.
Among the most common are:

• Time: The event timestamp is used. Events are
linked when they are in a specific range of creation.

• Location: The correlation is performed through the
place where the events occurred.

• ID: Events can embed some default identifier for its
context.

The unified analysis of temporal and geospatial data
allow the identification of heterogeneous events in a Smart
City, enabling information sharing between domain-specific
systems for processing events.

After the analysis step, a further evaluation is performed
in order to determine whether any action will be taken. This
kind of trigger is widely used in applications that require to
run a procedure in response to external events.

Unlike other client/server approaches (in which the
client typically sends a request to the server and expects its
completion before sending a new one), in CEP systems
communication is made in a single direction. The event
generator sends requests continuously and does not wait for
an answer. When a consumer system wants to change or
create specific criteria, it must send a message to the server,
and then it will be notified whenever that new rule is
identified [20]. This flow can be seen in Fig. 2 [22].

Figure 2. CEP System Structure

258Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

III. MIDDLEWARE
Heterogeneity is a major barrier for processing events

generated in smart cities. There are several standards on the
market, such as FHIR [1] (specified for medical use), FIX
[25] and ISO 8583 [26] (specified for the financial
industry). However, due to the amount of existing protocols
and formats, the ability to recognize, in a simple way, the
context for all kinds of events generated in a smart city is
compromised [13].

Aiming to mitigate the impact of mapping and
implementing all the possibilities of existing formats, this
middleware is designed for analyzing and inferring in which
category a received event will be categorized.

This section discusses the flows, processes and other
architectural aspects of the middleware. The middleware is
designed with a division into three layers. The
communication layer is responsible for managing
information exchanged with stakeholders. The processing
layer performs context analysis and, finally, a layer for
persistent data control (Fig. 3). The middleware composition
is conducted by independent modules, which can be
replicated on multiple servers, thus promoting scalability to
meet a lot of requests. The proposed structure is based on
events, and, in this model, other systems and entities will
provide inputs for the middleware.

A. Composition
This work adopts the Google Cloud Platform (GCP), a set
of cloud-based scalable services. This platform does not
directly address the heterogeneity problem, but it provides
the necessary infrastructure and, in addition, facilitates the
creation of similar instances. Among the services provided
by the platform, Google App Engine (GAP) has been
chosen to deploy the application, since it provides automatic
resizing as the number of requests increases. GAP also
provides automatic resources management if the number of
requests increases. Moreover, the application is held in a
container which can be replicated and run on multiple
servers, providing high scalability for the middleware.

For data storage, the proposed middleware adopts
Google Cloud SQL for events information maintenance and
other system persistence requirements. Message-oriented
modeling has been adopted in order to promote
communication with subscribers, through the use of the
Google Pub/Sub platform, which provides mechanisms for
sending and receiving messages asynchronously. Fig. 4
illustrates the middleware structure in the cloud platform.
System processing flow consists of three general steps,
which are: (i) subscription step, in which systems of
interest subscribe to the topics of interest. Next, there is (ii),
the analysis and processing step, in which the events are
caught and handled, and, finally, (iii) sending notification to
subscribers. These steps are further detailed as follows:

B. Subscription Step
The proposed middleware implements the design pattern

publish/subscribe, adapting underwriting issues by topic,
type and content-based analysis (Section 2). In order to
perform the signature process, the system provides a REST
service and a GET method called "subscribe", through
which the subscribers must specify a list of topics (or areas)
of interest, as well as an endpoint to be triggered as to when
a notification should be sent, due to its processing result
(Fig. 5 - A).

Figure 3. Interaction Class Diagram of the Layers

Figure 4 - Middleware Deployment Architecture

259Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Furthermore, the application also provides a protocol for
batch registration. Thus, governance agencies can manage
entity groups to be notified whenever a given event type
occurs. Therefore, the application provides a method called
"subscribeForm", which should contain a list of endpoints
return as well as information for filtering interests (Fig. 5 -
B). The system returns an ID to subscribers in application
methods, and such an ID can be used by authorities updating
or canceling its subscription. Such an identifier can also be
used if the source system wants to inform any event to the
system.

C. Event Arrival and Analysis
Whenever a new event arrives it is saved in the database

and attached to the source system ID. Also, the event
content is forwarded to the analysis module.

The review process attempts to discover in the event
message one or more key tokens which are content and
syntax identifiers. Therefore, all the received and interpreted
messages are stored in database records. This database
contains references to the messages source systems, as well
as finding tokens which made the interpretation possible, so
that data can be used for future message interpretation. The
middleware performs a three-step process in order to make a
structural analysis of the received text message.

Each step performs a different type of search, and if any
step is successful, no other needs to be performed. The
middleware must be trained before it can run the analysis.
The precondition of training reflects the need to enter a set
of rules and known message formats into the database, as
well as a token list attached to specific contexts. Such
information is taken in the following steps:

1) Known Patterns Analysis: The system searches for a
known format identifier in the message. In Fig. 6, for
example, search terms are "ICD10", "ResourceType" and
"Diagnostics Report". Identifiers recognition is achieved by
comparing message structure with the patterns previously
registered in the middleware training phase. Whenever the
number of combinations meets a specific threshold, the
system sets the message topics of interest.

2) History Recovery: Whenever a message does not
contain a known pattern identifier the system verifies if it
fulfills a set of tokens for historically interpreted messages.
Thus, it is possible to assess whether a pattern has already
been used and accepted previously, thereby ensuring greater
reliability in the results. In the example of Fig. 7 the terms
"occurrences", "casualites" and "periodoInDays" have been
classified as tokens for the context of a previous analysis.

3) Sundry tokens-based analysis: In the case that no
pattern has been identified in a message, the system uses a
set of predefined tokens which are already linked to some

Figure 6. FHIR-Based Message	

Figure 5 - Subscriptions JSON Format

Figure 7. Message Analysis Flow

260Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

context and which have been stored in the training process.
Whenever the amount of combinations meets a defined
threshold, the system will consider the message and token
group as a new pattern, storing them in the database. In Fig.
6, the terms: "Diagnostic" and "Hospital" have been added
to the training stage and linked to the health context. All
data saved at that step is used for future history recovery.
Fig. 7 illustrates the flow described in the preceding steps.

D. Notification dispatch to subscribers
Through topics of interest information derived in the

previous step, the system searches for signatures callback
information in the database. Such information is submitted
to the pub/sub communication module. Due to the pub/sub
adopted engine, all notifications are sent through multiple
asynchronous threads. Notification messages are targeted to
endpoints reported in the registration step, either for
individual subscribers or forms submitted by third parties, to
receive a notification message. The sent message's body
incorporates in textual representation the original received
message in the processed event.

IV. CONCLUSION AND FUTURE WORK
This paper has presented and discussed aspects related to

the requirements for information sharing over multiple
domains. The information is derived from events of
heterogeneous systems that are spread across different
systems which comprise a Smart City.

Besides these aspects, many obstacles and difficulties
have been raised, resulting from the existence of the
numerous communication protocols and formats which are
used by each one of these systems. It is believed that the
development of the proposed middleware can lead to a
complete solution in order to perform the identification and
dissemination of events/occurrences in smart city
environments.

It is important to mention that this work is currently in
progress. In order to clarify the next objectives, a list of
targeted milestones has been introduced, as follows:

1) Implementation: Developing the proposed
architecture, promoting the adoption of the chosen Cloud
Platform framework.

2) Case Study: The simulation of a heterogeneous
environment uses the PREVENT framework as a subscriber
to receive reports through our middleware. To validate the
capacity of analysis and conversion, messages in a non-
FHIR format will be delivered to our middleware. As the
main expected output our middleware should be able to
convert, process and send the messages received(using the
knowledge it has been trained for) as events which are
understood by the PREVENT plataform.

3) Training Data: As discussed in Section 3, the
proposed middleware requires an initial loading of data in
order to identify the default messages in the event. This step
consists of collecting required data for training the pattern
recognition engine adopted by the middleware.

As the output for the listed items, in addition to the
success rate obtained for context inference this technique
also aims to extract metrics related to middleware
performance; for example, the response time for processing
and delivering notifications for processed events.

REFERENCES
[1] S. Neto, M. Valéria, P. Manoel, and F. Ferraz,

“Publish/subscribe cloud middleware for real-time disease
surveillance,” ICSEA 2015 Tenth Int. Conf. Softw. Eng. Adv.,
no. c, pp. 150–157, 2015.

[2] M. Andres, “Smart Cities Concept and Challenges: Bases for
the Assessment of Smart City Projects,” Transp. Res. Centre,
Univ. Politécnica Madrid, Prof. Aranguren s/n, Madrid,
Spain, pp. 11–21.

[3] S. P. Pawar, “Smart City with Internet of Things (Sensor
networks) and Big Data,” Academia.edu, no. 9860027825, p.
10.

[4] M. Jung, J. Weidinger, W. Kastner, and A. Olivieri, “Building
Automation and Smart Cities: An Integration Approach Based
on a Service-Oriented Architecture,” Adv. Inf. Netw. Appl.
Work., pp. 1361–1367, 2013.

[5] S. Wahle, T. Magedanz, and F. Schulze, “The OpenMTC
framework - M2M solutions for smart cities and the internet
of things,” 2012 IEEE Int. Symp. a World Wireless, Mob.
Multimed. Networks, WoWMoM 2012 - Digit. Proc., pp. 2–4,
2012.

[6] J. Wan, D. Li, C. Zou, and K. Zhou, “M2M communications
for smart city: An event-based architecture,” Proc. - 2012
IEEE 12th Int. Conf. Comput. Inf. Technol. CIT 2012, pp.
895–900, 2012.

[7] A. Elmangoush, H. Coskun, S. Wahle, and T. Magedanz,
“Design aspects for a reference M2M communication
platform for Smart Cities,” 2013 9th Int. Conf. Innov. Inf.
Technol. IIT 2013, no. MARCH 2013, pp. 204–209, 2013.

[8] A. Chanda, K. Elmeleegy, A. L. Cox, and W. Zwaenepoel,
“Composite Subscriptions in Content-Based
Publish/Subscribe Systems,” vol. 3790, no. December, pp.
42–59, 2005.

[9] B. Schilling, B. Koldehofe, and K. Rothermel, “Efficient and
distributed rule placement in heavy constraint-driven event
systems,” Proc.- 2011 IEEE Int. Conf. HPCC 2011 - 2011
IEEE Int. Work. FTDCS 2011 -Workshops 2011 Int. Conf.
UIC 2011- Work. 2011 Int. Conf. ATC 2011, pp. 355–364,
2011.

[10] S. Pellicer, G. Santa, A. L. Bleda, R. Maestre, A. J. Jara, and
A. G. Skarmeta, “A global perspective of smart cities: A
survey,” Proc. - 7th Int. Conf. Innov. Mob. Internet Serv.
Ubiquitous Comput. IMIS 2013, pp. 439–444, 2013.

[11] R. Giffinger, “Smart cities Ranking of European medium-
sized cities,” October, 2007. [Online]. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S02642751980005
0X 2016.07.11

[12] X. Lin, H. Quan, H. Zhang, and Y. Huang, “The 5I Model of
Smart City: A Case of Shanghai, china,” 2015 IEEE First Int.
Conf. Big Data Comput. Serv. Appl., pp. 329–332, 2015.

[13] Y. Fujiwara, K. Yamada, K. Tabata, M. Oda, K. Hashimoto,
T. Suganuma, A. Rahim, P. Vlacheas, V. Stavroulaki, D.
Kelaidonis, and A. Georgakopoulos, “Context Aware
Services: A Novel Trend in IoT Based Research in Smart City
Project,” Comput. Softw. Appl. Conf. (COMPSAC), 2015
IEEE 39th Annu., vol. 3, pp. 479–480, 2015.

[14] J. Singh, D. M. Eyers, and J. Bacon, “Disclosure Control in
Multi-Domain Publish / Subscribe Systems,” ACM Int. Conf.

261Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Distrib. event-based Syst., no. Ic, pp. 159–170, 2011.
[15] C. Esposito and M. Ciampi, “On security in publish/subscribe

services: A survey,” IEEE Commun. Surv. Tutorials, vol. 17,
no. 2, pp. 966–997, 2015.

[16] M. Corporation, “Publish/Subscribe,” 2004. [Online].
Available from: https://msdn.microsoft.com/en-
us/library/ff649664.aspx 2016.07.11

[17] A. Carzaniga, M. Papalini, and A. L. Wolf, “Content-based
publish/subscribe networking and information-centric
networking,” Proc. ACM SIGCOMM Work. Information-
centric Netw. - ICN ’11, no. 1, p. 56, 2011.

[18] R. Baldoni, L. Querzoni, and A. Virgillito, “Distributed Event
Routing in Publish / Subscribe Communication Systems : a
Survey,” Tech. Rep., pp. 1–27, 2005.

[19] J. L. Martins and S. Member, “Routing Algorithms for
Content-Based Publish / Subscribe Systems,”
Communications, vol. 12, no. 1, pp. 39–58, 2010.

[20] Google, “Google Cloud Platform,” 2015. [Online]. Available
from:
https://cloud.google.com/appengine/docs/whatisgoogleappeng
ine 2016.07.11

[21] Amazon, “Amazon Simple Notification Service (SNS),”
2016. [Online]. Available from: https://aws.amazon.com/sns/
2016.07.11

[22] H. Chai and W. Zhao, “Towards Trustworthy Complex Event
Processing,” pp. 1–4.

[23] D. B. Robins, “Complex Event Processing,” 2010 Second Int.
Work. Educ. Technol. Comput. Sci., p. 10, 2010.

[24] M. Antunes, D. Gomes, and R. Aguiar, “Semantic-Based
Publish/Subscribe for M2M,” 2014 Int. Conf. Cyber-Enabled
Distrib. Comput. Knowl. Discov., pp. 256–263, 2014.

[25] P. B. P. Tongkamonwat, “IFIX: A new information exchange
framework for financial organizations,” Adv. Informatics
Concepts, Theory Appl. (ICAICTA), 2015 2nd Int. Conf., vol.
16, pp. 1 – 5, 2015.

[26] ISO, “ISO 8583-1:2003,” 2003. [Online]. Available from:
https://www.iso.org/obp/ui/#iso:std:iso:8583:-1:ed-1:v1:en
2016.07.11

262Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

