
A New Algorithm to Parse a Mathematical Expression and its Application to Create
a Customizable Programming Language

Vassili Kaplan
Zurich, Switzerland

e-mail: vassilik@gmail.com

Abstract—This paper presents an algorithm to parse a string
containing a mathematical expression. This algorithm
represents an alternative to other parsing algorithms, e.g., the
Dijkstra “shunting-yard” algorithm. The algorithm presented
here, has the same time complexity, but in our point of view it
is easier to implement and to extend. As an example of
extending this algorithm, we also present how it can be used to
implement a fully customizable scripting programming
language. The reference implementation language will be C++.

Keywords: software development; software engineering;
algorithm; parsing; scripting language; programming language.

I. INTRODUCTION
There are already a few parsing algorithms. E. Dijkstra

invented his “shunting-yard” algorithm to parse a
mathematical expression in 1961 [1]. The Look-Ahead Left-
to-Right (LALR) parser was invented by F. DeRemer in
1969 [2]. It is based on the so called “bottom-up” parsing.
The LALR parser can be even automatically generated by
YACC [3]. There are also a few algorithms for the “top-
down” parsers, e.g., a Recursive Descent Parser [4], which is
based on the LL(k) grammar (Left-to-right, Leftmost
derivation) [5]. The ANTLR [6] is a widely used tool to
automatically generate parsers based on the LL(*) grammar.
In particular, the ANTLR can even generate the Recursive
Descent Parser.

Why would we want to develop yet another parsing
algorithm if there are so many around, including even the
parser generating tools? Aside from its own interest, we
believe that it is much easier to implement in an object-
oriented language. It is also much easier to extend, i.e., to
add your own functionality. As an example of extending the
language, we will show how one can implement a scripting
language from scratch, without using any external libraries.
One can add new functions to the language on the fly. One
can also add programming language keywords in any human
language with just a few configuration changes, which we
will also illustrate in this article.

We have presented an alternative to this algorithm in [7]
[8][9]. We call this alternative algorithm the “split-and-
merge” algorithm, because, analogous to other parsing
algorithms, it consists of two steps. In the first step, we split
the whole expression into the list of so called “cells”. Each
cell consists of a number and an “action” to be applied to that
cell. In the second step, we merge all the cells together
according to the priorities of the “actions”. In this article, we
extend this work and show a more generalized parsing
algorithm.

There is already a reference implementation of a
scripting language using the split-and-merge algorithm in C#
[10]. But the language described there was not very mature.
In particular, there is a section towards the end of the article
that mentions some of the missing features. Here, we are
going to show how to implement those features, and a few
more.

For simplicity, we will continue calling the parsing
algorithm as the “split-and-merge” algorithm and the
scripting language created by using that algorithm as
Customized Scripting in C++ using the Split-and-merge
algorithm (“CSCS”).

The rest of this paper is organized as follows. Section II
presents the split-and-merge algorithm. Section III shows
how to register variables and functions with the parser.
Section IV addresses writing of custom functions in CSCS.
Section V describes the try, throw and catch control flow
statements. Section VI shows how to provide CSCS
keywords in any human language. Summary and conclusions
appear in Section VII.

II. THE SPLIT-AND-MERGE ALGORITHM
Here, we are going to generalize the split-and-merge

algorithm described in [7][8][9]. The algorithm can parse not
only a mathematical expression but any language statement.
A separation character must separate all the statements. We
define this separation character as a semicolon, “;”.

The algorithm consists of two steps.
In the first step, we split the given string into the list of

objects, called “Variables”. Each “Variable” consists of an
intermediate result (a number, a string, or an array of other
Variables) and an “action” that must be applied to this
Variable. In in [1][2][3], we called this “Variable” a “Cell”
and it could have only a numerical result.

The last element of the created list of Variables has a so
called “null action”, which, for convenience, we denote by
the character “)”. It has the lowest priority of 0.

For numbers, an action can be any of “+”, “-“, “*”, “/”,
“%”, “&&”, “||”, and some others. For strings, only “+”
(concatenation) and logical operators “<”, “<=”, “>”, “>=”,
“==”, “!=” are defined.

Listing 1 contains a part of the Variable definition:

struct Variable {
 string toString() const;

 bool canMergeWith(const Variable& right);
 void merge(const Variable& right);

 void mergeNumbers(const Variable& right);
 void mergeStrings(const Variable& right);

 static int getPriority(const string& action);

 // ------------------

272Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

 double numValue;
 string strValue;
 vector<Variable> tuple;
 string action;
 string varname;
 Constants::Type type;
};

Listing 1: Variable data structure

The separation criteria for splitting the string into

Variables are: an action, an expression in parentheses, or a
function, previously registered with the parser. We are going
to describe how to register a function with the parser in the
next section. In case of an expression in parentheses or a
function, we apply recursively the whole split-and-merge
algorithm to that expression in parentheses or the function
argument in order to get a Variable object as a result. So, at
the end of the first step, we are going to have a list of
Variables, each one having an action to be applied to the next
Variable in the list. See the main parsing cycle of the first
part of the algorithm in Listing 2.

do { // Main processing cycle of the first part.
 char ch = data[from++];
 string action = Constants::EMPTY;
 bool keepCollecting = stillCollecting(data, from,
 parsingItem, to, action);
 if (keepCollecting) {
 // The char still belongs to the previous operand
 parsingItem += ch;

 if (contains(to, data[from])) {
 continue;
 }
 }
 ParserFunction func(data, from, parsingItem,
 ch, action);
 Variable current = func.getValue(data, from);

 char next = from < data.size() ? data[from] :

NULL_CHAR;

 bool done = listToMerge.empty() &&
 (action == NULL_ACTION || next == END_STATEMENT);
 if (done) { // Not a math expression.
 listToMerge.push_back(current);
 return listToMerge;
 }
 current.action = action;
 listToMerge.push_back(current);
 parsingItem.clear();
} while (from < data.size() &&
 !contains(to, data[from]));

Listing 2: The split part of the split-and-merge algorithm

The second step consists in merging the list of Variables

created in the first step, according to the priorities of their
actions. The priorities of the actions are defined in Listing 3.

unordered_map<string, int> prio;
 prio["++"] = 10;
 prio["--"] = 10;
 prio["^"] = 9;
 prio["%"] = 8;
 prio["*"] = 8;
 prio["/"] = 8;
 prio["+"] = 7;
 prio["-"] = 7;
 prio["<"] = 6;
 prio[">"] = 6;
 prio["<="] = 6;
 prio[">="] = 6;
 prio["=="] = 5;
 prio["!="] = 5;
 prio["&&"] = 4;
 prio["||"] = 3;
 prio["+="] = 2;
 prio["-="] = 2;

 prio["*="] = 2;
 prio["/="] = 2;
 prio["%="] = 2;
 prio["="] = 2;

Listing 3: Priorities of the actions

Two Variable objects can only be merged together if the
priority of the action of the Variable on the left is greater or
equal than the priority of the action of the Variable on the
right. Otherwise, we merge the Variable on the right with the
Variable on its right first, and so on, recursively. As soon as
the right Variable has been merged with the Variable next to
it, we return back to the original, left Variable, and try to re-
merge it with the newly created right Variable. Note that
eventually we will be able to merge the entire list since the
last variable in this list has a null action with the priority
zero.

The implementation of the second step is shown in
Listing 4. The function merge() is called from outside with
the mergeOneOnly parameter set to false.

Variable Parser::merge(Variable& current, size_t&
 index, vector<Variable>& listToMerge, bool mergeOne) {
 while (index < listToMerge.size()) {
 Variable& next = listToMerge[index++];

 while (!current.canMergeWith(next)) {
 merge(next, index, listToMerge,
 true/*mergeOne*/);
 }
 current.merge(next);
 if (mergeOne) {
 break;
 }
 }
 return current;
}

Listing 4: The merge part of the split-and-merge algorithm

A. Example of parsing 1 – 2*sin(0)
Let us see the algorithm in action, applying it to the “1 –

2*sin(0)” string. “1-“ and “2*” tokens are parsed and
converted into Variables directly, without any problem:

Split(1 – 2*sin(0)) à
 Variable(numValue = 1, action = “-“),
 Varaible(numValue = 2, action = “*”),
 Split-And-Merge(sin(0)).

To proceed, we need to process the “sin(0)” string first,

applying the whole spilt-and-merge algorithm to it.
When the parser gets the “sin” token, it maps it to the

sine function registered earlier (we will discuss registering
functions in the next section). Then the parser evaluates the
sin(0) and returns 0 as a result.

Therefore, the result of splitting the original string “1 –
2*sin(0)” will be a list consisting of three Variables:

1. Variable(numValue = 1, action = “-“)
2. Varaible(numValue = 2, action = “*”)
3. Varaible(numValue = 0, action = “)”)

 In the second step of the algorithm, we merge the

resulting list of variables one by one.

273Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Note that we cannot merge directly the first Variable with
the second one since the priority of the action of the first
Variable “-“, is less than the priority of the action of the
second variable, “*”, according to the Listing 3. Therefore,
we need to merge first Variables 2 and 3. The priority of the
“*” action is greater than the priority of the null action “)”
(the last Variable in the list has always a “null” action). So
we can merge 2 and 0: applying the action “*”, the result will
be 2 * 0 = 0. The resulting variable will inherit the action
from the right Variable, i.e., the “null” action “)”.

Now we return back to the first Variable and merge it
with the newly created Variable(numValue = 0, “)”).
Applying action “-“ to the both variables we get the final
result: 1 – 0 = 0. Therefore, the split-and-merge(“1 –
2*sin(0)”) = 0.

Using the algorithm above with the recursion, it is
possible to parse any compound CSCS expression. The
architectural diagram of the split-and-merge algorithm and
its usage to parse a string appears in Figure 1. Here is an
example of the CSCS code:

x = sin(pi^2);
cache["if"] = -10 * x;
cache["else"] = 10 * x;
if (x < 0 && log(x + 3*10^2) < 6*exp(x) ||
 x < 1 - pi) {
 print("in if, cache=", cache["if"]);
} else {
 print("in else, cache=", cache["else"]);
}

The code above has a few functions (sin(), exp(), log(),

print()) and a few control flow statements (if, else). How
does the parser know what to do with them?

III. REGISTERING VARIABLES AND FUNCTIONS WITH THE
PARSER

All the functions that can be added to the parser must
derive from the ParserFunction class. Listing 5 contains an
excerpt from the ParserFunction class definition.

class ParserFunction {
public:
 ParserFunction(const string& data, size_t& from,
 const string& item, char ch, string& action);

 Variable getValue(const string& data, size_t& from){
 return m_impl->evaluate(data, from);
 }
protected:
 virtual Variable evaluate(const string& data,
 size_t& from) = 0;
 Variable::emptyInstance;
 static StringOrNumberFunction* s_strOrNumFunction;
 static IdentityFunction* s_idFunction;
}

Listing 5: The ParserFunction class definition

The Identity is a special function, which is called when

we have an argument in parentheses. It just calls the main
entry method of the split-and-merge algorithm to load the
whole expression in parentheses:

class IdentityFunction : public ParserFunction {
public:
 virtual Variable evaluate(const string& data,
 size_t& from) {
 return Parser::loadAndCalculate(data, from);
 }
};

The parser will call the evaluate() method on any class
deriving from the ParserFunction class as soon as the parser
gets a token corresponding to the function registered with the
parser. There are three basic steps to register a function with
the parser:

• Define the function keyword token, i.e., the name of
the function in the scripting language, CSCS, e.g.:

static const string SIN; // in Constants.h
const string Constants::SIN = "sin"; // in .cpp

• Implement the class to be mapped to the keyword
from the previous step. Basically, the evaluate()
method must be overridden. E.g., for the sin()
function:

class SinFunction : public ParserFunction {
public:
 virtual Variable evaluate(const string& data,
 size_t& from) {
 Variable arg = Parser::loadAndCalculate(
 data, from);
 return ::sin(arg.numValue);
 }
};

loadAndCalculate() is the main parser entry point,
which calculates the value of the passed expression.

• Map the object of the class, implemented in the
previous step, with the previously defined keyword
as follows:

ParserFunction::addGlobalFunction(Constants::SIN,

 new SinFunction());

The addGlobalFunction() method just adds a new entry
to the global dictionary used by the parser to map the
keywords to functions:

void ParserFunction::addGlobalFunction(const string&
 name, ParserFunction* function) {
 auto it = s_functions.find(name);
 if (it != s_functions.end()) {
 delete it->second;
 }
 s_functions[name] = function;
}

Similarly, we can register any function with the parser,

e.g., if(), while(), try(), throw(), etc.
We can also define local or global variables in the same

way. In the next section, we are going to see how to define
functions in CSCS and add passed arguments as local
variables to CSCS.

IV. WRITING FUNCTIONS IN CSCS
To write a custom function in the scripting language, two

functions had to be introduced in C++, FunctionCreator and
CustomFunction, both deriving from the ParserFunction base
class. As soon as the Parser gets a token with the “function”
keyword, it will call the evaluate() method on the
FunctionCreator object, see Listing 6.

Variable FunctionCreator::evaluate(const string& data,

 size_t& from) {
 string funcName = Utils::getToken(data,

274Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

 from, TOKEN_SEPARATION);
 vector<string> args =

 Utils::getFunctionSignature(data, from);
 string body = Utils::getBody (data, from, ‘{‘, ‘}’);
 CustomFunction* custFunc = new CustomFunction(
 funcName, body, args);
 ParserFunction::addGlobalFunction(
 funcName, custFunc);
 return Variable(funcName);
}

Listing 6: The function creator class

Basically, it just creates a new object, CustomFunction,
and initializes it with the extracted function body and the list
of parameters. It also registers the name of the custom
function with the parser, so the parser maps that name with
the new CustomFunction object, which will be called as soon
as the parser encounters the function name keyword.

So all of the functions that we implement in the CSCS
code correspond to different instances of the
CustomFunction class. The custom function does primarily
two things, see Listing 7. First, it extracts the function
arguments and adds them as local variables to the Parser
(they will be removed from the Parser as soon as the function
execution is finished or an exception is thrown). It also
checks that the number of actual parameters is equal to the
number of the registered ones (this part is skipped for
brevity).

Variable CustomFunction::evaluate(const string& data,
 size_t& from) {
 vector<Variable> args = Utils::getArgs(data, from,

 START_ARG, END_ARG);
 // 1. Add passed arguments as locals to the Parser.
 StackLevel stackLevel(m_name);

 for (size_t i = 0; i < m_args.size(); i++) {

stackLevel.variables[m_args[i]] = args[i];
 }
 ParserFunction::addLocalVariables(stackLevel);

 // 2. Execute the body of the function.
 size_t funcPtr = 0;
 Variable result;

 while (funcPtr < m_body.size() - 1) {

result = Parser::loadAndCalculate(m_body, funcPtr);
Utils::goToNextStatement(m_body, funcPtr);

 }
 // 3. Return the last result of the execution.
 ParserFunction::popLocalVariables();
 return result;
}

Listing 7: The custom function class

Secondly, the body of the function is evaluated, using the

main parser entry point, the loadAndCalculate() method.
If the body contains calls to other functions, or to itself,

the calls to the CustomFunction can be recursive.
Let us see this with an example of a function

implemented in CSCS. It calculates the so called Catalan
numbers (named after a Belgian mathematician Eugène
Catalan), see Listing 8.

// Catalan numbers function implemented in CSCS.
// C(0) = 1, C(n+1) = Sum(C(i) * C(n - i)), i: 0-> n
// for n >= 0. Equivalent to:
// C(n) = 2 * (2*n - 1) / (n + 1) * C(n-1), n > 0
function catalan(n) {
 if (!isInteger(n)) {

exc = "Catalan is for integers only (n="+ n +")";
throw (exc);

 }
 if (n < 0) {

exc = "Negative number (n="+ n +") supplied";
throw (exc);

 }
 if (n <= 1) {

return 1;
 }
 return 2 * (2*n - 1) / (n + 1) * catalan(n - 1);
}

Listing 8: Recursive calculation of Catalan numbers implemented in
CSCS

The Catalan function above uses an auxiliary isInteger()

function:

function isInteger(candidate) {
 return candidate == round(candidate);
}

isInteger() function calls yet another, round() function.

The implementation of the round() function is already in the
C++ code and is analogous to the implementation of the sine
function that we saw in the previous section.

To execute the Catalan function with different
arguments, we can use the following CSCS code:

try {
 c = catalan(n);
 print("catalan(", n, ")=", c);
} catch(exc) {
 print("Caught: " + exc);
}

It gets the following output for different values of n:

Caught: Catalan is for integers only (n=1.500000) at
 catalan()
Caught: Negative number (n=-10) supplied at
 catalan()
catalan(10)=16796

Since the exception happened at the global level, the

exception stack printed consisted only of the catalan()
function itself.

The CSCS code above contains try(), throw(), and catch()
control flow statements. How are they implemented in C++?

V. THROW, TRY, AND CATCH CONTROL FLOW
STATEMENTS

The throw() and try() control flow statements can be
implemented as functions in the same way you saw the
implementation of the sine function above. The catch() is not
implemented as a separate function but is processed right
after the try() block.

Both implementations derive from the ParserFunction
class as well. First we show the more straightforward one,
the throw() function:

Variable ThrowFunction::evaluate(const string& data,
 size_t& from) {
 // 1. Extract what to throw.
 Variable arg = Utils::getItem(data, from);

 // 2. Convert it to string.
 string result = arg.toString();

 // 3. Throw it!
 throw ParsingException(result);
}

275Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

The try() function requires a bit more work. Here is an
excerpt:

Variable TryStatement::evaluate(
 const string& data, size_t& from) {
 size_t startTryCondition = from - 1;
 size_t stackLevel =
 ParserFunction::currStackLevel();

 ParsingException exception;
 Variable result;
 try {
 result = processBlock(data, from);
 }
 catch(ParsingException& exc) {
 exception = exc;
 }

First, we note where we started the processing (so later

on we can return back to skip the whole try-catch block).
Then, we simply process the try block, and if the exception is
thrown, we catch it. In the parser code, we throw only
exceptions of type ParsingException, which is a wrapper
over the C++ std::exception.

If there is an exception, then we need to skip the whole
catch block. For that, we go back to the beginning of the try
block and then skip it.

if (!exception.msg().empty()) {
 from = startTryCondition;
 skipBlock(data, from);
}

 After the try block, we expect a catch token and the

name of the exception to be caught, regardless if the
exception was thrown or not:

string catch = Utils::getNextToken(data, from);
if (CATCH_LIST.find(catch) == CATCH_LIST.end()) {
 throw ParsingException("Expected a catch but got ["+
 catch +"]");
}
string excName = Utils::getNextToken(data, from);

The reader may have noticed that when checking if the

“catch” keyword was following the try-block or not, we
didn’t compare the extracted token with the “catch” string,
but with a CATCH_LIST. The reason is that the
CATCH_LIST contains all possible translations of the
“catch” keyword to any of the languages that the user may
supply in the configuration file. How is a keyword
translation added to the parser?

VI. PROVIDING KEYWORDS IN DIFFERENT LANGUAGES
One of the main advantages of writing a custom

programming language is the possibility to have the
keywords in any language (besides the “base” language,
understandably chosen to be English).

 Here is how we can add the custom keyword
translations to the CSCS language.

First, we define them in a configuration file. Here is an
incomplete example of a configuration file with Russian
translations:

function = функция
include = включить
if = если
else = иначе

elif = иначе_если
return = вернуться
print = печать
size = размер
while = пока

The same configuration file may contain an arbitrary

number of languages. After reading the keyword translations,
we add them to the parser one by one:

void addTranslation(const string& originalName,
 const string& translation) {

 ParserFunction* originalFunction =
 ParserFunction::getFunction(originalName);
 if (originalFunction != 0) {
 ParserFunction::addGlobalFunction(

 translation, originalFunction);
 }

 tryAddToSet(originalName, translation, CATCH,

 CATCH_LIST);
 tryAddToSet(originalName, translation, ELSE,

 ELSE_LIST);
 // other sets
}

First, we try to add a translation to one of the registered

functions (like sin(), cos(), round(), try(), throw(), etc.).
Then, we try to add them to the sets of additional keywords,
that are not functions (e.g., the “catch” is processed only
together with the try-block, the “else” and “else if” are
processed only within the if-block, etc.

The tryAddToSet() is an auxiliary template function that
adds a translation to a set in case the original keyword name
belongs to that set (e.g., CATCH = “catch” belongs to the
CATCH_LIST).

Here is the implementation of some CSCS code using
Russian keywords. The code below just goes over the
defined array of strings in the while loop and prints every
other element of that list:

слова = {"Это", "написано", "по-русски"};
разм = размер(слова);
и = 0;
пока(и < разм) {
 если (и % 2 == 0) {
 печать(слова[и]);
 }
 и++;
}

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an algorithm to parse a string

containing an expression and then we saw how we can apply
this algorithm to parse a customized scripting programming
language, that we called CSCS.

The implementation of the sin() function and throw()
and try() control flow statements was shown. We saw that
implementing a math function and a control flow statement
is basically the same: one needs to write a new class,
deriving from the ParserFunction class, and override its
evaluate() method. Then one needs to register that function
with the parser, mapping it to a keyword. The evaluate()
method will be called by the parser as soon as the parser
extracts a keyword corresponding to this function. For the
lack of space, we didn’t show how to implement if(), while(),
break, continue, and return control flow statements but they
are all implemented analogously. The same applies to the

276Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

prefix and postfix ++ and -- operators, that we did not have
space to show.

Using the above approach of adding a new function to
the parser, anything can be added to the CSCS language as
long as it is possible to implement it in C++.

Even though the time complexity of the split-and-merge
algorithm is the same as of the Dijkstra’s algorithm (and the
split-and-merge might be a bit slower since it uses a lot of
recursions), we believe that the main advantage of the split-
and-merge algorithm is in that it is easier to extend and add
user specific code. It can be extended in two ways: one is to
add new functions or control flow statements, and the second
is to add keyword translations in any human language.

For the future, we plan to focus on extending the CSCS
language: adding more features and more functions. CSCS
already supports if-else, try-catch, throw, while, function,
return, break, continue, and include file control flow
statements; arrays with an unlimited number of dimensions
(implemented as vectors) and dictionaries (also with an
unlimited number of dimensions, implemented as unordered
maps). We plan to add a few other data structures to CSCS
as well.

We also plan to add more common operating system
functions, for example a task manager, listing processes with
a possibility to kill a process and a process scheduler system.
The challenge there is that these functions are operating
system dependent and require multiple implementations for
each operating system. One could also add some external
libraries, which hide the implementations for different
operating systems, but our goal is not to have any external
libraries at all.

Another idea is to extend CSCS towards a functional
programming language, something like F# - where a few

very short language constructs implement quite a few
language statements behind the scenes. We believe that this
is easy to implement using the split-and-merge function
implementation approach.

REFERENCES
[1] E. Dijkstra, “Shunting-yard algorithm”,

https://en.wikipedia.org/wiki/Shunting-yard_algorithm
Retrieved: June 2016.

[2] F. DeRemer, T. Pennello, "Efficient Computation of LALR(1)
Look-Ahead Sets". Transactions on Programming Languages
and Systems (ACM) 4 (4): 615–649.

[3] Yet Another Compiler Compiler, YACC,
https://en.wikipedia.org/wiki/Yacc. Retrieved: June 2016

[4] Recursive Descent Parser,
https://en.wikipedia.org/wiki/Recursive_descent_parser
Retrieved: June 2016.

[5] LL parser, https://en.wikipedia.org/wiki/LL_parser Retrieved:
June 2016.

[6] ANTNLR, https://en.wikipedia.org/wiki/ANTLR Retrieved:
June 2016.

[7] V. Kaplan, “Split and Merge Algorithm for Parsing
Mathematical Expressions”, ACCU CVu, 27-2, May 2015,
http://accu.org/var/uploads/journals/CVu272.pdf Retrieved:
June 2016.

[8] V. Kaplan, “Split and Merge Revisited”, ACCU CVu, 27-3,
July 2015, http://accu.org/var/uploads/journals/CVu273.pdf
Retrieved: June 2016.

[9] V. Kaplan, “A Split-and-Merge Expression Parser in C#”,
MSDN Magazine, October 2015,
https://msdn.microsoft.com/en-us/magazine/mt573716.aspx
Retrieved: June 2016.

[10] V. Kaplan, “Customizable Scripting in C#”, MSDN
Magazine, February 2016, https://msdn.microsoft.com/en-
us/magazine/mt632273.aspx Retrieved: June 2016.

Figure 1. The Parser Framework UML Class Diagram

277Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

