
Trust-Oriented Protocol for Continuous Monitoring of Stored Files in Cloud

Alexandre Pinheiro
1
, Edna Dias Canedo

2
, Rafael Timóteo de Sousa Júnior

1
 and Robson de Oliveira Albuquerque

1
Electrical Engineering Department

2
Faculdade UnB Gama

University of Brasília, UnB

Brasília - DF, Brazil

E-mail: tenpinheiro@dct.eb.mil.br, ednacanedo@unb.br, desousa@unb.br, robson@redes.unb.br

Abstract — The speed, availability, scalability and low cost are

main attractive of cloud services. However, building safe storage

services from a customer point of view, mainly when this service

is being hosted on public cloud infrastructure, whose service

providers are not fully trustworthy, it is an obstacle to be

overcame. There are common situations, where owners of large

data amount need to store them for a long time, but they will not

necessarily need to access them. This time can vary from few

years to decades, in accordance with applicable laws of each

country. In these cases, important aspects as integrity,

availability and privacy must be considered when making

decision on adoption of cloud services. Considering the damage

whose information loss or its leakage may cause, this paper

presents a protocol, which through an independent checker,

allows a periodic monitoring on stored files in cloud using trust

and cryptography concepts to ensure data integrity. Moreover,

this paper also presents a protocol reference implementation and

the performed tests results.

Keywords-protocol; trust; cloud data storage; integrity; data

monitoring.

I. INTRODUCTION

Companies, institutions and government agencies generate
large amounts of information in digital format, such as
documents, projects, transactions records etc., every day. For
legal or business reasons, this information needs to remain
stored for a long period of time and this has become an issue
for IT managers.

The use of cloud services for storing sensitive information
started to gain relevance, along with its popularization, cost
reductions and an ever-growing supply of Cloud Storage
Services (CSS). However, ensuring integrity and
confidentiality still has to be evaluated in such services in order
to protect information.

CSS for data storage are fast, cheap, and almost infinitely
scalable. However, reliability can be an issue, as even the best
services sometimes fail [1].

A considerable number of organizations consider security
and privacy as obstacles to the acceptance of public cloud
services [2].

Data integrity is defined as the accuracy and consistency of
stored data. This condition indicates that the data has not
changed and has not been broken [2]. CSS should provide
mechanisms to confirm data integrity, while still ensuring user
privacy.

Considering these perspectives, this paper proposes a
protocol based in outsourced service which provides the CSS
customers the constant assurance of the existence and integrity

of their files without the need to keep copies of the original
files or expose its contents.

This paper is structured as follows: Section II reviews
works related to data integrity in the cloud. Then, Section III
proposes a new protocol named Trust-Oriented Protocol for
Continuous Monitoring of Stored Files in Cloud
(TOPMCloud). A detailed analysis of the TOPMCloud is
shown in Section IV. The Section V shows a TOPMCloud
implementation. A resume of obtained results are presented in
Section VI. Section VII ends this paper with some conclusions
and outlines future works.

II. RELATED WORK

In order to try to guarantee the integrity of data stored in
CSS, many research works suggested solutions with both
advantages and disadvantages regarding the domain analysed
in this paper.

The protocol proposed by Juels and Kaliski [3] enables the
CSS to prove a file subjected to verification was not corrupted.
To that end a formal and secure definition of proof of
retrievability was presented and introduced the use of sentinels.
Sentinels are special blocks, hidden in the original file prior
being encrypted and then used to challenge the CSS. In the
work of Kumar and Saxena [4], a scheme was presented, based
on [3] where one does not need to encrypt all the data, but only
a few bits per data block.

George and Sabitha [5] proposed a solution to improve
privacy and integrity. The solution was designed to be used in
tables and it was divided in two parts. The first, called
‘anonymisation’ is used to identify fields in records that could
identify their owners. Anonymisation uses techniques such as
generalisation, suppression, obfuscation, and addition of
anonymous records to enhance data privacy.

The second, called ‘integrity checking’, uses public and
private key encryption techniques to generate a tag for each
record on a table. Both parts are executed helped by trusted
third party called ‘enclave’ that saves all the data generated that
will be used for deanonymisation and integrity verification.

A new encrypted integrity verification method is proposed
by Kavuri et al. [6]. The proposed method uses a new hash
algorithm, the Dynamic User Policy Based Hash Algorithm.
Hashes on data are calculated for each authorised cloud user.
For data encryption, an Improved Attribute-Based Encryption
algorithm is used. Encrypted data and its hash value are saved
separately in CSS. Data integrity can be verified only by an
authorized user and it is necessary to retrieve all the encrypted
data and its hash.

295Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Another proposal to simultaneously achieve data integrity
verification and privacy preserving is found in the work of Al-
Jaberi and Zainal [7]. Their work proposed the use of two
encryption algorithms for every data upload or download
transaction.

The Advanced Encryption Standard (AES) algorithm is
used to encrypt client’s’ data which will be saved in a CSS, and
a RSA-based partial homomorphic encryption technique is
used to encrypt AES encryption keys that will be saved in a
third party together with a hash of the file. Data integrity is
verified only when a client downloads one’s file.

In the work of Kay et al. [8], a data integrity auditing
protocol that allows the fast identification of corrupted data
using of homomorphic cipher-text verification and recoverable
coding methodology was proposed. Due the methodology
adopted, both the total auditing time and the communication
cost could be reduced. Checking the integrity of outsourced
data is done periodically by a trusted or untrusted entity.

In the work of Wang et al. [9], it is presented a security
model for public verification for storage correctness assurance
that supports dynamic data operation. The model guarantees
that no challenged file blocks should be retrieved by the
verifier during the verification process and no state information
should be stored at the verifier side between audits. A Merkle
Hash Tree (MHT) is used to save the hashes of authentic data
values and both the values and positions of data blocks are
authenticated by the verifier.

In the work of Jordão et al. [10], an approach was presented
that allows inserting large volumes of encrypted data in non-
relational databases hosted in the cloud and after that performs
queries on inserted data without the use of a decryption key.
Although not the main focus of the work, this approach could
be used to verify the integrity of stored content in the cloud
through the evaluation of responses to queries with previously
calculated results.

The proposed solutions in [5][7][8][9] are using asymmetric
cryptographic algorithms which are admittedly slow compared
to symmetric algorithms. The solution proposed by Kavuri et
al. [6] needs to retrieve whole file to check it. In the work of
Juels and Kaliski [3], and in the work of Kumar and Saxena
[4], small changes in the file can remain unnoticed until the
whole file to be recovered.

Thus, unlike the works cited above, this paper presents a
protocol that only uses symmetric encryption to check file
integrity. Furthermore, it uses a challenge/response-based
technique for checking the integrity without download the file.
Finally, our solution checks all file bytes so that any change, no
matter how small, will be identified quickly.

III. PROTOCOL OBJECTIVES

The main objective of protocol is to make possible
utilization of an outsourced service allowing client to
constantly monitor the integrity of their stored files in CSS,
without having to keep copies from original files or reveal its
contents.

A. Protocol requirements

One of the main requirements of this protocol is to prevent
the CSS provider from offering and charging a client for a
storage service that in practice is not being provided. Other

premises are low bandwidth consumption, quick identification
of a misbehaving service, providing strong defenses against
fraud, avoiding the overloading of CSS, ensuring data
confidentiality and also giving utmost predictability to the
Integrity Check Service (ICS).

B. Protocol operating principle

The basic operating principle of the protocol begins with
the encryption of the original file, followed by its division into
4096 small chunks, which in turn are grouped randomly to
form each data block with distinct 16-chunks. Hashes will be
generated from these data blocks and together with the
addresses of the chunks which formed the data block are sent to
the ICS.

The selection and distribution of chunks used to assemble
the data blocks is done in cycles. The number of cycles will
vary according to the file storage period. Each cycle generates
256 data blocks without repeating chunks.

The data blocks generated in each cycle contains all of the
chunks of the encrypted file (256 * 16 = 4096).

Each hash and its chunk addresses will be used only once
by the ICS to send an integrity verification challenge to the
CSS provider. On receiving a challenge with the chunk
addresses, the CSS reads the chunks from stored file, assembles
the data block, generates a hash from data block and sends the
hash as answer to the ICS.

Chunks number per file as well as chunks number to
compose each data block was chosen through mathematical
simulations. These simulations seek to find small numbers that
minimize the required time to fully check a file, but large
enough to make it impossible to save hashes from all possible
data blocks without taking up more disk space than the original
file.

To finalize, the answer hash and the origin hash are
compared by ICS. If the hashes are equal, it means the content
of evaluated chunks in the stored file is intact.

C. Protocol architecture

The protocol architecture is based in three components: i)
customers; ii) storage services in the cloud; and iii) an integrity
check service. The interaction between the architectural
members is carried out through an exchange of asynchronous
messages.

The protocol consists of two distinct processes. The first,
called “File Storage Process”, which is run on demand and has
the client as its starting point. The second called ‘Verification
Process’ is instantiated by an ICS and executed continuously to
verify one CSS.

An ICS can simultaneously verify more than one CSS
through parallel instances of the Verification Process. An
overview of the TOPMCloud protocol architecture is shown in
Figure 1.

1) File Storage Process
File Storage Process is responsible for preparing the file to

be sent to the CSS and for generating the information needed
for its verification by ICS.

In Figure 1, each stage from ‘File Storage Process’ are
named with the prefix ‘Stage FS-’ followed by the number of
the stage and, if necessary, by its stage sub-process number.

296Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Fig. 1. TOPMCloud Protocol.

The process goes as follows. First, the user should select a
file, a password, a number seed, and the time in years for which
it intends to maintain the monitoring of file integrity. The
password will be used to generate the secret key used to
encrypt chosen file.

The number seed will add extra entropy to the process that
creates a random seed used to warrant an unpredictable
selection and distribution of the data that forms the source of
the hash codes to be used to check file integrity.

One or more CSS should also be selected. Considering the
need to ensure the recoverability of files, selecting more than
one provider is important to provide redundancy, given that
customers will not keep a copy of the original files.

In the next stage, data blocks are generated from random
union of 16 chunks of the original file. For this, after the split,
each file chunk receives an address code between 0 and 4095,
represented in hexadecimal format (000 - FFF).

297Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

An algorithm developed for this purpose will make the
selection of chunks and permutation of their positions for each
data block.

The algorithm uses the number seed provided by user to
creates the random seed which will be used to add an extra
layer of the entropy to the pseudo-random sequence generator
that chooses the sequences of address codes.

 The algorithm is also responsible for grouping data blocks
in sets called ‘cycles’. Each cycle consists of 256 data blocks
that have all the 4096 chunks of the original file. This stage is
shown in Figure 1 as sub-processes ‘FS-3.1’, ‘FS-3.2’, and
‘FS-3.3’.

Finally, in the last stage is built a data structure named
'information table’. It contains record header made up by a file
identifier, the chunk size in bytes, the body records amount, the
total number of cycles, and a checksum. Each record on the
table represents a data block and contains fields with the
address codes of the 16 file chunks, their cycle number and
hash code. The ‘information table’ is sent to ICS and the file
sent to CSS is deleted from the customer.

2) Verification Process
This process is designed to periodically check the integrity

of files saved in CSS. Furthermore, it assigns a trust level for
each CSS according to the check results.

Trust is recognized as an important aspect for decision-
making in distributed and auto-organized applications [11][12].
Marsh [11] provided a clarification of trust concepts, presented
an implementable formalism for trust, and applied a trust model
to a distributed artificial intelligence (DAI) system in order to
enable agents to make trust-based decisions.

Trust and security have become crucial to guarantee the
healthy development of cloud platforms, providing solutions
for concerns such as the lack of integrity and privacy, the
guarantee of security and author rights.

The verification process consists of the following stages: In
ICS, selecting the next file to be checked, generating the
challenge and delivering it to CSS; In CSS, receiving the
challenge, reading the chunks from saved file according to the
challenge, assembling the data block, generating the data block
hash, rendering and sending the answer to ICS; and in ICS
again, receiving and checking the answer. The sub-process
from “Verification Process” shown in Figure 1
follows the same previously used rules, but are prefixed with
‘Stage V-’.

In the first stage, the ICS verifies what next file should have
its integrity checked in a given CSS, performing the same
procedure in parallel with each other registered CSS.

After selecting the file, its information table is read and the
number of the last checked cycle is retrieved. When the file is
new or when the last checked cycle has already been
completed, a new and not yet checked cycle is randomly
chosen.

After that, the next not-verified record that belongs to the
selected cycle is selected from information table. The challenge
is assembled using the address codes obtained from selected
record, the file chunk length, the file identifier and a challenge
identifier. When ready, the challenge is sent to CSS and the
pool of challenges that are waiting for an answer is updated.

In the second stage, the CSS receives the challenge and
concurrently retrieves all chunks from saved file. Chunks are

retrieved according to address codes and length received in the
challenge. All chunks retrieved are concatenated forming a data
block, and from it, a hash is generated. This hash is packaged
together with the challenge identifier and sent as response to
the ICS.

In the third stage, the ICS receives the answer, finds the
challenge in the pool, reads the original record from the
information table and compares the received hash with the hash
that gave rise to the challenge. If they do not match, a message
is sent to client reporting the error. Whenever a file verification
process fails, the CSS trust level is immediately downgraded.
The sub-processes from ‘V-3.1’ to ‘V-3.6’ show this stage in
Figure 1.

When the ICS does not receive an answer from the CSS on
a challenge, after the wait time has expired, the original
challenge is re-sent and the wait time is squared. After the 10th
unsuccessful attempt, the challenge is considered failed and the
same procedures described in the third stage are adopted.

If the response hash and the original hash are equal, then a
flag will be saved in the information table record, indicating
that the data block represented by its hash was successfully
verified. After that, case there is no other record in the current
cycle to be checked, this means that all of data blocks of the
file saved in CSS have already been successfully verified and
the CSS trust level must be raised.

To end the stage, the trust level classification process will
be done. Upon completion of this stage, the process is re-
executed from the first stage.

3) Trust Level Classification Process
Whenever a verification process fails, the trust level of the

CSS verified will be downgraded. When the current trust level
value is greater than zero, it is set to zero, when the trust value
is in the range between 0 and -0.5, it is reduced by 15%.
Otherwise, it is calculated the value of 2.5% from the
difference between the current trust level value and -1, and the
result is subtracted from trust level value. These calculations
are shown in the source code below.

IF (TrustLevel > 0) THEN
 TrustLevel = 0
ELSE IF (TrustLevel >= -0.5) THEN
 TrustLevel = TrustLevel - (TrustLevel * -0.15)
ELSE
 TrustLevel = TrustLevel - {[(-1) - TrustLevel] * -0.025}

However, whenever a checking cycle is completed without
failures (all the data blocks of a file have been checked without
errors), the CSS trust level is raised. If the current trust level
value is less than 0.5, then the trust level value is raised by
2.5%. Otherwise, it is calculated the value of 0.5% from the
difference between 1 and the current trust level value, and the
result is added to trust level value. These calculations are
shown in the source code below.

IF (TrustLevel < 0.5) THEN
 TrustLevel = TrustLevel + (TrustLevel * 0.025)
ELSE
 TrustLevel = TrustLevel + {[1 - TrustLevel] * 0.005}

298Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

The trust level in a CSS will affect the verification
periodicity of its files and the time needed to get a complete file
cycle. When the verification of all the data blocks in a cycle
has been successfully concluded, this means that all the chunks
of the original file were tested.

The minimum percentages of stored files on each service
that will be verified per day, as well as the minimum
percentage of data blocks that will be checked by file and per
day, according to trust level, are shown in Table I. The values 1
and -1 that respectively represent blind trust and complete
distrust are incompatible with the object of classification and
will not be considered.

TABLE I. CLASSIFICATION OF THE TRUST LEVELS

Trust Level Value Range Files

verified

by day

% from file

verified by

day

Data

Blocks

verified by

day

Very high trust]0.9, 1[15% ~ 0.4% 1

High trust]0.75, 0.9] 16% ~ 0.8% 2

High medium trust]0.5, 0.75] 17% ~ 1.2% 3

Low medium trust]0.25, 0.5] 18% ~ 1.6% 4

Low trust]0, 0.25] 19% ~ 2.0% 5

Low distrust]-0.25, 0] 20% ~2.4% 6

Low medium distrust]−0.5, −0.25] 25% ~ 3.2% 8

High medium distrust]−0.75, −0.5] 30% ~ 4.0% 10

High distrust]−0.9, −0.75] 35% ~ 4.8% 12

Very high distrust]-1, -0.9] 50% ~5.6% 14

Whenever the value of the trust is zero, a fixed value is
assigned to determine the initial trust. Thus, if the last check
resulted in a ‘positive assessment’, a value of +0.1 is assigned
for trust; otherwise, if a fault has been identified, the assigned
value is -0.1.

IV. PROTOCOL ANALYSIS

As a prerequisite to define the characteristics of the
proposed protocol we took into consideration the following
assumptions: low consumption of network bandwidth;
predictability and economy in consumption of ICS resources;
fast identification of misbehaving services; privacy; resistance
against fraud, and no overloading of the CSS.

Thus, the proposed logical division of the file into 4096
chunks, grouped into blocks of 16 chunks each, aims at
minimizing the storage service overhead by reducing the
amount of data to be read for each verification, and enabling
the parallel execution of searching and recovering each data
chunk.

Fast identification of badly behaved services also helped to
determine the proposed values. The protocol uses a random
selection of 16 file chunks in the data block, to allow checking
the integrity of various parts of the file in a single verification
step.

Privacy is attained with the use of 256-bit hash codes to
represent each data block, regardless of their original size. The
hash codes allow the ICS to perform the validation of files
hosted in storage services, without necessarily knowing their
contents.

Furthermore, the use of hash codes in combination with a
fixed amount of data blocks, providing predictability and low
usage of the network bandwidth. It is possible to pre-determine

the computational cost required to verify the integrity of a file,
the whole time foreseen for its storage, regardless of its size.

There is also the possibility to predict the total number of
data blocks, as it varies according to the time predicted for the
file storage, so that each hash code and the chunk addresses
that formed the data are used only once, uniquely and
exclusively as a challenge to the CSS. Calculations were made
based on a worst-case scenario, i.e., the hypothetical situation
where the CSS remains throughout the file storage period rated
as ‘Very High Distrust’.

According to Table 1, in a CSS rated as ‘Very High
Distrust’, it is necessary to check at least 14 data blocks of each
file a day. As the data blocks generation is performed in cycles
with 256 blocks each, to determine the total number of data
blocks to be generated (2), it is necessary to first calculate the
total number of cycles (1).



  

  

From the definition of the number of blocks, it is possible
to determine the size of the ‘information table’ and, therefore,
the computing cost to transfer and store it in an ICS.

Finally, fraud resistance is obtained by means of a selection
and swapping algorithm that assigns the entropy needed to
render as impracticable any attempt to predict which chunks
are in each data block, as well as the order in which these
chunks were joined. A brute force attack, generating hash
codes for all possible combinations of data blocks, is not
feasible as the number of possible combinations for the
arrangement of 4096 file chunks in blocks with 16 chunks each
is of about 6.09 × 10⁵⁷ blocks (3). Consequently, to generate
and store 256-bit hash codes for all possible combinations of
data blocks would need about 1.77 × 10⁴⁷ TB in disk space (4).



  



  

V. IMPLEMENTATION

The implementation of TOPMCloud protocol was divided
in three stages. At first stage, all processes of customer
responsibility were implemented. At second stage, all processes
of ICS responsibility were implemented, and finally, at third
stage, all processes of CSS responsibility were implemented.

For each stage, we developed an application, all of them
using components of Java EE technology as JPA, EJB and
CDI. For the client, we developed a desktop application,
whereas for ICS and CSS, we developed Web Service (WS)
applications. The utilized application server was Glassfish and,
as Database Management System (DBMS), we chose
PostgreSQL.

The main customer application tasks are: encrypting the
file; dividing it into equal chunks; assembling data blocks;
generating their hashes and joining them in cycles; generating
the information table and sending it to the ICS; and, finally,
sending the encrypted file to CSS. For task of encrypting file,

299Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

we chose the AES-256 algorithm using Cipher-Block Chaining
(CBC) operation mode.

Raffle process of file chunks to compose each data block
was implemented using the SHA1PRNG algorithm, a pseudo-
random number generator. Due to its high speed, security, and
simplicity, we adopted the algorithm Blake2 [13] as
cryptographic hash function for this work.

At second stage, we implemented all necessary routines for
ICS provider executing the file monitoring using WSs. The
main tasks implemented by ICS application are: receiving
information tables and saving them in your database;
generating challenges and sending them to CSSs; monitoring
and receiving answers about challenges; and ranking trust level
from monitored CSSs.

At third and last stage, as well as in previous stage, we
implemented all necessary routines to the CSS answering the
challenges to ICS using WSs. The main tasks in CSS
application are: receiving and saving challenges in your
database; processing challenges; and sending response to ICS.
Challenges reception, their processing and responses delivery
are carried out in parallel and asynchronously.

VI. RESULTS

The scenario used to test the application and to verify
TOPMCloud efficiency was composed of three Virtual
Machines (VM) (a customer, a ICS and a CSS). These VMs
shared resources from a computer equipped with an Intel core
i7 2.4 GHz, 12GB of RAM memory, and a 1TB SATA Hard
Disk 5400 RPM.

Five tests were performed with three different large file
sizes. The average results are presented in Table II.

TABLE II. TEST RESULTS

File size

Times spent to:

encrypt

file

compute

file hash

compute

data block hashes

(for 1 year)

check one

data block

5 GB 4.0 min 23.4 s 32.0 min 0.11 s

9 GB 7.1 min 91.1 s 71.8 min 0.88 s

14 GB 10.6 min 137.0 s 108.6 min 1.20 s

In order to simulate a file integrity breakdown and
determine the number of days required to identify the fault,
tests were performed on a CSS classified as 'low trust'. The
same three previously tested files were monitored, however
only the 5 GB file had changed its contents. The characteristics
and results of each test are presented in Table III.

TABLE III. FAULT SIMULATION TESTS

Bytes

changed

File

percentage
Location

Affected

chunks

Days required to find fault

T1 T2 T3 T4 T5 Aver

age

4688 0.000085%
random

choice
1 or 2 10 9 22 12 15 ~14

55006658 1.0%
end of

file
41 3 7 6 6 3 5

With the aim to determine the maximum number of days

required to complete a file check cycle (all its data blocks

being checked at least once) on each trust level, we did

simulations using the percentages defined for each trust level

in Table I. The results are presented in Figure 2.

Fig. 2. Number of days required to complete a file check cycle.

This time variation is intended to reward services with

fewer failures, minimizing consumption of resources such as

processing and bandwidth. Moreover, it allows prioritizing the

protocol for checking files that are stored in services that have

already failed, reducing the time required to determine if there

are any corrupted or lost files.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a protocol to ensure the integrity
of stored files in CSS through an ICS hosted by a third party.
The protocol named TOPMCloud allows periodic and qualified
monitoring of file integrity using trust concepts without
confidentiality compromising.

Based on CSS behaviour, the checking frequency can
increase or decrease, reducing overload on services that never
fail or checking more quickly all stored files in CSSs that have
already failed.

As it can be seen in Section VI, TOPMCloud provides a
efficient control over file integrity. Even on very large files,
time spent checking each data block does not overload the
CSS. Variation in number of days required to identify the same
fault, which was purposely inserted in the file, obtained in
subsequent tests, confirms the randomness of the selection
process of each data block sent as a challenge to CSS.

Another important result obtained was the speed to identify
a fault, even interfering in only 2 from 4096 file chunks, the
average period for its identification was only two weeks.

As part of future works, we intend to formalize and validate
the protocol using Petri nets. We will conduct tests simulating
the protocol behaviour with CSSs classified in all trust levels.
Furthermore, we want to add a mechanism to ensure that, only
when authorized by a customer, a ICS could send challenges to
CSS.

REFERENCES

[1] S. T. Tandel, V. K. Shah, and S. Hiranwal, "An implementation of
effective XML based dynamic data integrity audit service in cloud," in
International Journal of Societal Applications of Computer Science, vol.
2, issue 8, pp. 449-553, 2014.

300Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[2] P. Dabas and D. Wadhwa, "A recapitulation of data auditing approaches
for cloud data," in International Journal of Computer Applications
Technology and Research (IJCATR), vol. 3, issue 6, pp. 329-332, 2014.

[3] A. Juels and B. S. Kaliski, "Pors: proofs of retrievability for large files"
in 14th ACM Conference on Computer and Comunication Security
(CCS), Alexandria, VA, pp.584-59, 2007.

[4] R. S. Kumar and A. Saxena, "Data integrity proofs in cloud storage," in
Third International Conference on Communication Systems and
Networks (COMSNETS), Bangalore, pp. 138-146, 2011.

[5] R. S. George and S. Sabitha, "Data anonymization and integrity
checking in cloud computing," in Fourth International Conference on
Computing (ICCCNT), Communications and Networking Technologies,
Tiruchengode, pp. 758-769, 2013.

[6] S. K. S. V. A. Kavuri, G. R. Kancherla, and B. R. Bobba, "Data
authentication and integrity verification techniques for trusted/untrusted
cloud servers," in International Conference on Advances in Computing,
Communications and Informatics (ICACCI), New Delhi, pp. 2590-2596,
2014.

[7] M. F. Al-Jaberi and A. Zainal, "Data integrity and privacy model in
cloud computing," in International Symposium on Biometrics and
Security Technologies (ISBAST), Kuala Lumpur, pp. 280-284, 2014.

[8] H. Kay, H. Chuanhe, W. Jinhai, Z. Hao, W. Xi, L. Yilong, Z. Lianzhen,
and W. Bin, "An efficient public batch auditing protocol for data
security in multi-cloud storage," in 8th ChinaGrid Annual Conference
(ChinaGrid), Changchun, pp. 51-56, 2013.

[9] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, "An enabling public
verifiability and data dynamics for storage security in cloud computing,"
in 14th European Symposium on Research in Computer Security
(ESORICS), Saint-Malo, pp. 355-370, 2009.

[10] R. Jordão, V. A. Martins, F. Buiati, R. T. Sousa Jr, and F. E. Deus,
"Secure Data Storage in Distributed Cloud Environments," in IEEE
International Conference on Big Data (IEEE BigData), Washington DC,
pp. 6-12, 2014.

[11] S. P. Marsh, “Formalising Trust as a Computational Concept”, Ph.D.
Thesis, University of Stirling, 1994.

[12] T. Beth, M. Borcherding, and B. Klein, “Valuation of trust in open
networks,” in 3Th European Symposium on Research in Computer
Security (ESORICS), Brighton, pp. 1-18, 1994.

[13] J. Aumasson, S. Neves, W. O’Hearn, and Z. Winnerlein, "BLAKE2:
Simpler, Smaller, Fast as MD5," in Applied Cryptography and Network
Security, Springer Berlin Heidelberg, pp. 119-135, 2013.

301Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

