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Abstract — The speed, availability, scalability and low cost are 

main attractive of cloud services. However, building safe storage 

services from a customer point of view, mainly when this service 

is being hosted on public cloud infrastructure, whose service 

providers are not fully trustworthy, it is an obstacle to be 

overcame. There are common situations, where owners of large 

data amount need to store them for a long time, but they will not 

necessarily need to access them. This time can vary from few 

years to decades, in accordance with applicable laws of each 

country. In these cases, important aspects as integrity, 

availability and privacy must be considered when making 

decision on adoption of cloud services. Considering the damage 

whose information loss or its leakage may cause, this paper 

presents a protocol, which through an independent checker, 

allows a periodic monitoring on stored files in cloud using trust 

and cryptography concepts to ensure data integrity. Moreover, 

this paper also presents a protocol reference implementation and 

the performed tests results.  

Keywords-protocol; trust; cloud data storage; integrity; data 

monitoring. 

I.  INTRODUCTION 

Companies, institutions and government agencies generate 
large amounts of information in digital format, such as 
documents, projects, transactions records etc., every day. For 
legal or business reasons, this information needs to remain 
stored for a long period of time and this has become an issue 
for IT managers. 

The use of cloud services for storing sensitive information 
started to gain relevance, along with its popularization, cost 
reductions and an ever-growing supply of Cloud Storage 
Services (CSS). However, ensuring integrity and 
confidentiality still has to be evaluated in such services in order 
to protect information. 

CSS for data storage are fast, cheap, and almost infinitely 
scalable. However, reliability can be an issue, as even the best 
services sometimes fail [1].  

A considerable number of organizations consider security 
and privacy as obstacles to the acceptance of public cloud 
services [2]. 

Data integrity is defined as the accuracy and consistency of 
stored data. This condition indicates that the data has not 
changed and has not been broken [2]. CSS should provide 
mechanisms to confirm data integrity, while still ensuring user 
privacy. 

Considering these perspectives, this paper proposes a 
protocol based in outsourced service which provides the CSS 
customers the constant assurance of the existence and integrity 

of their files without the need to keep copies of the original 
files or expose its contents.  

This paper is structured as follows: Section II reviews 
works related to data integrity in the cloud. Then, Section III 
proposes a new protocol named Trust-Oriented Protocol for 
Continuous Monitoring of Stored Files in Cloud 
(TOPMCloud). A detailed analysis of the TOPMCloud is 
shown in Section IV. The Section V shows a TOPMCloud 
implementation. A resume of obtained results are presented in 
Section VI. Section VII ends this paper with some conclusions 
and outlines future works. 

II. RELATED WORK 

In order to try to guarantee the integrity of data stored in 
CSS, many research works suggested solutions with both 
advantages and disadvantages regarding the domain analysed 
in this paper.  

The protocol proposed by Juels and Kaliski [3] enables the 
CSS to prove a file subjected to verification was not corrupted. 
To that end a formal and secure definition of proof of 
retrievability was presented and introduced the use of sentinels. 
Sentinels are special blocks, hidden in the original file prior 
being encrypted and then used to challenge the CSS. In the 
work of Kumar and Saxena [4], a scheme was presented, based 
on [3] where one does not need to encrypt all the data, but only 
a few bits per data block. 

George and Sabitha [5] proposed a solution to improve 
privacy and integrity. The solution was designed to be used in 
tables and it was divided in two parts. The first, called 
‘anonymisation’ is used to identify fields in records that could 
identify their owners. Anonymisation uses techniques such as 
generalisation, suppression, obfuscation, and addition of 
anonymous records to enhance data privacy.  

The second, called ‘integrity checking’, uses public and 
private key encryption techniques to generate a tag for each 
record on a table. Both parts are executed helped by trusted 
third party called ‘enclave’ that saves all the data generated that 
will be used for deanonymisation and integrity verification. 

A new encrypted integrity verification method is proposed 
by Kavuri et al. [6]. The proposed method uses a new hash 
algorithm, the Dynamic User Policy Based Hash Algorithm. 
Hashes on data are calculated for each authorised cloud user. 
For data encryption, an Improved Attribute-Based Encryption 
algorithm is used. Encrypted data and its hash value are saved 
separately in CSS. Data integrity can be verified only by an 
authorized user and it is necessary to retrieve all the encrypted 
data and its hash. 
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Another proposal to simultaneously achieve data integrity 
verification and privacy preserving is found in the work of Al-
Jaberi and Zainal [7]. Their work proposed the use of two 
encryption algorithms for every data upload or download 
transaction.  

The Advanced Encryption Standard (AES) algorithm is 
used to encrypt client’s’ data which will be saved in a CSS, and 
a RSA-based partial homomorphic encryption technique is 
used to encrypt AES encryption keys that will be saved in a 
third party together with a hash of the file. Data integrity is 
verified only when a client downloads one’s file. 

In the work of Kay et al. [8], a data integrity auditing 
protocol that allows the fast identification of corrupted data 
using of homomorphic cipher-text verification and recoverable 
coding methodology was proposed. Due the methodology 
adopted, both the total auditing time and the communication 
cost could be reduced. Checking the integrity of outsourced 
data is done periodically by a trusted or untrusted entity. 

In the work of Wang et al. [9], it is presented a security 
model for public verification for storage correctness assurance 
that supports dynamic data operation. The model guarantees 
that no challenged file blocks should be retrieved by the 
verifier during the verification process and no state information 
should be stored at the verifier side between audits. A Merkle 
Hash Tree (MHT) is used to save the hashes of authentic data 
values and both the values and positions of data blocks are 
authenticated by the verifier. 

In the work of Jordão et al. [10], an approach was presented 
that allows inserting large volumes of encrypted data in non-
relational databases hosted in the cloud and after that performs 
queries on inserted data without the use of a decryption key. 
Although not the main focus of the work, this approach could 
be used to verify the integrity of stored content in the cloud 
through the evaluation of responses to queries with previously 
calculated results. 

The proposed solutions in [5][7][8][9] are using asymmetric 
cryptographic algorithms which are admittedly slow compared 
to symmetric algorithms. The solution proposed by Kavuri et 
al. [6] needs to retrieve whole file to check it. In the work of 
Juels and Kaliski [3], and in the work of Kumar and Saxena 
[4], small changes in the file can remain unnoticed until the 
whole file to be recovered.  

Thus, unlike the works cited above, this paper presents a 
protocol that only uses symmetric encryption to check file 
integrity. Furthermore, it uses a challenge/response-based 
technique for checking the integrity without download the file. 
Finally, our solution checks all file bytes so that any change, no 
matter how small, will be identified quickly. 

III. PROTOCOL OBJECTIVES 

The main objective of protocol is to make possible 
utilization of an outsourced service allowing client to 
constantly monitor the integrity of their stored files in CSS, 
without having to keep copies from original files or reveal its 
contents. 

A. Protocol requirements 

One of the main requirements of this protocol is to prevent 
the CSS provider from offering and charging a client for a 
storage service that in practice is not being provided. Other 

premises are low bandwidth consumption, quick identification 
of a misbehaving service, providing strong defenses against 
fraud, avoiding the overloading of CSS, ensuring data 
confidentiality and also giving utmost predictability to the 
Integrity Check Service (ICS). 

B. Protocol operating principle 

The basic operating principle of the protocol begins with 
the encryption of the original file, followed by its division into 
4096 small chunks, which in turn are grouped randomly to 
form each data block with distinct 16-chunks. Hashes will be 
generated from these data blocks and together with the 
addresses of the chunks which formed the data block are sent to 
the ICS.  

The selection and distribution of chunks used to assemble 
the data blocks is done in cycles. The number of cycles will 
vary according to the file storage period. Each cycle generates 
256 data blocks without repeating chunks.  

The data blocks generated in each cycle contains all of the 
chunks of the encrypted file (256 * 16 = 4096). 

Each hash and its chunk addresses will be used only once 
by the ICS to send an integrity verification challenge to the 
CSS provider. On receiving a challenge with the chunk 
addresses, the CSS reads the chunks from stored file, assembles 
the data block, generates a hash from data block and sends the 
hash as answer to the ICS.  

Chunks number per file as well as chunks number to 
compose each data block was chosen through mathematical 
simulations. These simulations seek to find small numbers that 
minimize the required time to fully check a file, but large 
enough to make it impossible to save hashes from all possible 
data blocks without taking up more disk space than the original 
file. 

To finalize, the answer hash and the origin hash are 
compared by ICS. If the hashes are equal, it means the content 
of evaluated chunks in the stored file is intact. 

C. Protocol architecture 

The protocol architecture is based in three components: i) 
customers; ii) storage services in the cloud; and iii) an integrity 
check service. The interaction between the architectural 
members is carried out through an exchange of asynchronous 
messages.   

The protocol consists of two distinct processes. The first, 
called “File Storage Process”, which is run on demand and has 
the client as its starting point. The second called ‘Verification 
Process’ is instantiated by an ICS and executed continuously to 
verify one CSS.  

An ICS can simultaneously verify more than one CSS 
through parallel instances of the Verification Process. An 
overview of the TOPMCloud protocol architecture is shown in 
Figure 1. 

1) File Storage Process 
File Storage Process is responsible for preparing the file to 

be sent to the CSS and for generating the information needed 
for its verification by ICS.  

In Figure 1, each stage from ‘File Storage Process’ are 
named with the prefix ‘Stage FS-’ followed by the number of 
the stage and, if necessary, by its stage sub-process number.  
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Fig. 1. TOPMCloud Protocol.

The process goes as follows. First, the user should select a 
file, a password, a number seed, and the time in years for which 
it intends to maintain the monitoring of file integrity. The 
password will be used to generate the secret key used to 
encrypt chosen file.  

The number seed will add extra entropy to the process that 
creates a random seed used to warrant an unpredictable 
selection and distribution of the data that forms the source of 
the hash codes to be used to check file integrity. 

One or more CSS should also be selected. Considering the 
need to ensure the recoverability of files, selecting more than 
one provider is important to provide redundancy, given that 
customers will not keep a copy of the original files.  

In the next stage, data blocks are generated from random 
union of 16 chunks of the original file. For this, after the split, 
each file chunk receives an address code between 0 and 4095, 
represented in hexadecimal format (000 - FFF). 

 

297Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances



An algorithm developed for this purpose will make the 
selection of chunks and permutation of their positions for each 
data block.  

The algorithm uses the number seed provided by user to 
creates the random seed which will be used to add an extra 
layer of the entropy to the pseudo-random sequence generator 
that chooses the sequences of address codes. 

 The algorithm is also responsible for grouping data blocks 
in sets called ‘cycles’. Each cycle consists of 256 data blocks 
that have all the 4096 chunks of the original file. This stage is 
shown in Figure 1 as sub-processes ‘FS-3.1’, ‘FS-3.2’, and 
‘FS-3.3’.  

Finally, in the last stage is built a data structure named 
'information table’. It contains record header made up by a file 
identifier, the chunk size in bytes, the body records amount, the 
total number of cycles, and a checksum. Each record on the 
table represents a data block and contains fields with the 
address codes of the 16 file chunks, their cycle number and 
hash code. The ‘information table’ is sent to ICS and the file 
sent to CSS is deleted from the customer. 

2) Verification Process 
This process is designed to periodically check the integrity 

of files saved in CSS. Furthermore, it assigns a trust level for 
each CSS according to the check results.  

Trust is recognized as an important aspect for decision-
making in distributed and auto-organized applications [11][12]. 
Marsh [11] provided a clarification of trust concepts, presented 
an implementable formalism for trust, and applied a trust model 
to a distributed artificial intelligence (DAI) system in order to 
enable agents to make trust-based decisions. 

Trust and security have become crucial to guarantee the 
healthy development of cloud platforms, providing solutions 
for concerns such as the lack of integrity and privacy, the 
guarantee of security and author rights.  

The verification process consists of the following stages: In 
ICS, selecting the next file to be checked, generating the 
challenge and delivering it to CSS; In CSS, receiving the 
challenge, reading the chunks from saved file according to the 
challenge, assembling the data block, generating the data block 
hash, rendering and sending the answer to ICS; and in ICS 
again, receiving and checking the answer. The sub-process 
from “Verification Process” shown in Figure 1 
follows the same previously used rules, but are prefixed with 
‘Stage V-’. 

In the first stage, the ICS verifies what next file should have 
its integrity checked in a given CSS, performing the same 
procedure in parallel with each other registered CSS.  

After selecting the file, its information table is read and the 
number of the last checked cycle is retrieved. When the file is 
new or when the last checked cycle has already been 
completed, a new and not yet checked cycle is randomly 
chosen.  

After that, the next not-verified record that belongs to the 
selected cycle is selected from information table. The challenge 
is assembled using the address codes obtained from selected 
record, the file chunk length, the file identifier and a challenge 
identifier. When ready, the challenge is sent to CSS and the 
pool of challenges that are waiting for an answer is updated.  

In the second stage, the CSS receives the challenge and 
concurrently retrieves all chunks from saved file. Chunks are 

retrieved according to address codes and length received in the 
challenge. All chunks retrieved are concatenated forming a data 
block, and from it, a hash is generated. This hash is packaged 
together with the challenge identifier and sent as response to 
the ICS. 

In the third stage, the ICS receives the answer, finds the 
challenge in the pool, reads the original record from the 
information table and compares the received hash with the hash 
that gave rise to the challenge. If they do not match, a message 
is sent to client reporting the error. Whenever a file verification 
process fails, the CSS trust level is immediately downgraded. 
The sub-processes from ‘V-3.1’ to ‘V-3.6’ show this stage in 
Figure 1. 

When the ICS does not receive an answer from the CSS on 
a challenge, after the wait time has expired, the original 
challenge is re-sent and the wait time is squared. After the 10th 
unsuccessful attempt, the challenge is considered failed and the 
same procedures described in the third stage are adopted. 

If the response hash and the original hash are equal, then a 
flag will be saved in the information table record, indicating 
that the data block represented by its hash was successfully 
verified. After that, case there is no other record in the current 
cycle to be checked, this means that all of data blocks of the 
file saved in CSS have already been successfully verified and 
the CSS trust level must be raised. 

To end the stage, the trust level classification process will 
be done. Upon completion of this stage, the process is re-
executed from the first stage. 

3) Trust Level Classification Process 
Whenever a verification process fails, the trust level of the 

CSS verified will be downgraded. When the current trust level 
value is greater than zero, it is set to zero, when the trust value 
is in the range between 0 and -0.5, it is reduced by 15%. 
Otherwise, it is calculated the value of 2.5% from the 
difference between the current trust level value and -1, and the 
result is subtracted from trust level value. These calculations 
are shown in the source code below. 

 
IF  (TrustLevel > 0) THEN 
      TrustLevel = 0 
ELSE IF (TrustLevel >= -0.5) THEN 
      TrustLevel = TrustLevel - (TrustLevel * -0.15) 
ELSE 
      TrustLevel = TrustLevel - {[(-1) - TrustLevel] * -0.025} 

 

However, whenever a checking cycle is completed without 
failures (all the data blocks of a file have been checked without 
errors), the CSS trust level is raised. If the current trust level 
value is less than 0.5, then the trust level value is raised by 
2.5%. Otherwise, it is calculated the value of 0.5% from the 
difference between 1 and the current trust level value, and the 
result is added to trust level value. These calculations are 
shown in the source code below. 

 
IF (TrustLevel < 0.5) THEN 
     TrustLevel = TrustLevel + (TrustLevel * 0.025) 
ELSE 
     TrustLevel = TrustLevel + {[1 - TrustLevel] * 0.005} 
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The trust level in a CSS will affect the verification 
periodicity of its files and the time needed to get a complete file 
cycle. When the verification of all the data blocks in a cycle 
has been successfully concluded, this means that all the chunks 
of the original file were tested.  

The minimum percentages of stored files on each service 
that will be verified per day, as well as the minimum 
percentage of data blocks that will be checked by file and per 
day, according to trust level, are shown in Table I. The values 1 
and -1 that respectively represent blind trust and complete 
distrust are incompatible with the object of classification and 
will not be considered. 

TABLE I.  CLASSIFICATION OF THE TRUST LEVELS 

Trust Level Value Range Files 

verified 

by day 

% from file 

verified by 

day 

Data 

Blocks 

verified by 

day 

Very high trust ]0.9, 1[ 15% ~ 0.4% 1 

High trust ]0.75, 0.9] 16% ~ 0.8% 2 

High medium trust ]0.5, 0.75] 17% ~ 1.2% 3 

Low medium trust ]0.25, 0.5] 18% ~ 1.6% 4 

Low trust ]0, 0.25] 19% ~ 2.0% 5 

Low distrust ]-0.25, 0] 20% ~2.4% 6 

Low medium distrust ]−0.5, −0.25] 25% ~ 3.2% 8 

High medium distrust ]−0.75, −0.5] 30% ~ 4.0% 10 

High distrust ]−0.9, −0.75] 35% ~ 4.8% 12 

Very high distrust ]-1, -0.9] 50% ~5.6% 14 

 

Whenever the value of the trust is zero, a fixed value is 
assigned to determine the initial trust. Thus, if the last check 
resulted in a ‘positive assessment’, a value of +0.1 is assigned 
for trust; otherwise, if a fault has been identified, the assigned 
value is -0.1. 

IV. PROTOCOL ANALYSIS 

As a prerequisite to define the characteristics of the 
proposed protocol we took into consideration the following 
assumptions: low consumption of network bandwidth; 
predictability and economy in consumption of ICS resources; 
fast identification of misbehaving services; privacy; resistance 
against fraud, and no overloading of the CSS. 

Thus, the proposed logical division of the file into 4096 
chunks, grouped into blocks of 16 chunks each, aims at 
minimizing the storage service overhead by reducing the 
amount of data to be read for each verification, and enabling 
the parallel execution of searching and recovering each data 
chunk.  

Fast identification of badly behaved services also helped to 
determine the proposed values. The protocol uses a random 
selection of 16 file chunks in the data block, to allow checking 
the integrity of various parts of the file in a single verification 
step. 

Privacy is attained with the use of 256-bit hash codes to 
represent each data block, regardless of their original size. The 
hash codes allow the ICS to perform the validation of files 
hosted in storage services, without necessarily knowing their 
contents. 

Furthermore, the use of hash codes in combination with a 
fixed amount of data blocks, providing predictability and low 
usage of the network bandwidth. It is possible to pre-determine 

the computational cost required to verify the integrity of a file, 
the whole time foreseen for its storage, regardless of its size. 

There is also the possibility to predict the total number of 
data blocks, as it varies according to the time predicted for the 
file storage, so that each hash code and the chunk addresses 
that formed the data are used only once, uniquely and 
exclusively as a challenge to the CSS. Calculations were made 
based on a worst-case scenario, i.e., the hypothetical situation 
where the CSS remains throughout the file storage period rated 
as ‘Very High Distrust’. 

According to Table 1, in a CSS rated as ‘Very High 
Distrust’, it is necessary to check at least 14 data blocks of each 
file a day. As the data blocks generation is performed in cycles 
with 256 blocks each, to determine the total number of data 
blocks to be generated (2), it is necessary to first calculate the 
total number of cycles (1). 

              
               

   
    

                            

From the definition of the number of blocks, it is possible 
to determine the size of the ‘information table’ and, therefore, 
the computing cost to transfer and store it in an ICS.  

Finally, fraud resistance is obtained by means of a selection 
and swapping algorithm that assigns the entropy needed to 
render as impracticable any attempt to predict which chunks 
are in each data block, as well as the order in which these 
chunks were joined. A brute force attack, generating hash 
codes for all possible combinations of data blocks, is not 
feasible as the number of possible combinations for the 
arrangement of 4096 file chunks in blocks with 16 chunks each 
is of about 6.09 × 10⁵⁷ blocks (3). Consequently, to generate 
and store 256-bit hash codes for all possible combinations of 
data blocks would need about 1.77 × 10⁴⁷ TB in disk space (4). 

      
  

      
            

     

          
              

                  
                  

       
              

V. IMPLEMENTATION 

The implementation of TOPMCloud protocol was divided 
in three stages. At first stage, all processes of customer 
responsibility were implemented. At second stage, all processes 
of ICS responsibility were implemented, and finally, at third 
stage, all processes of CSS responsibility were implemented. 

For each stage, we developed an application, all of them 
using components of Java EE technology as JPA, EJB and 
CDI. For the client, we developed a desktop application, 
whereas for ICS and CSS, we developed Web Service (WS) 
applications. The utilized application server was Glassfish and, 
as Database Management System (DBMS), we chose 
PostgreSQL. 

The main customer application tasks are: encrypting the 
file; dividing it into equal chunks; assembling data blocks; 
generating their hashes and joining them in cycles; generating 
the information table and sending it to the ICS; and, finally, 
sending the encrypted file to CSS. For task of encrypting file, 
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we chose the AES-256 algorithm using Cipher-Block Chaining 
(CBC) operation mode. 

Raffle process of file chunks to compose each data block 
was implemented using the SHA1PRNG algorithm, a pseudo-
random number generator. Due to its high speed, security, and 
simplicity, we adopted the algorithm Blake2 [13] as 
cryptographic hash function for  this work. 

At second stage, we implemented all necessary routines for 
ICS provider executing the file monitoring using WSs. The 
main tasks implemented by ICS application are: receiving 
information tables and saving them in your database; 
generating challenges and sending them to CSSs; monitoring 
and receiving answers about challenges; and ranking trust level 
from monitored CSSs. 

At third and last stage, as well as in previous stage, we 
implemented all necessary routines to the CSS answering the 
challenges to ICS using WSs. The main tasks in CSS 
application are: receiving and saving challenges in your 
database; processing challenges; and sending response to ICS. 
Challenges reception, their processing and responses delivery 
are carried out in parallel and asynchronously.  

VI. RESULTS 

The scenario used to test the application and to verify 
TOPMCloud efficiency was composed of three Virtual 
Machines (VM) (a customer, a ICS and a CSS). These VMs 
shared resources from a computer equipped with an Intel core 
i7 2.4 GHz, 12GB of RAM memory, and a 1TB SATA Hard 
Disk 5400 RPM.  

Five tests were performed with three different large file 
sizes. The average results are presented in Table II. 

TABLE II.  TEST RESULTS 

File size 

Times spent to:  

encrypt 

file 

compute 

file hash 

compute 

data block hashes 

(for 1 year) 

check one 

data block 

5 GB 4.0 min 23.4 s 32.0 min 0.11 s 

9 GB 7.1 min 91.1 s 71.8 min 0.88 s 

14 GB 10.6 min 137.0 s 108.6 min 1.20 s 

In order to simulate a file integrity breakdown and 
determine the number of days required to identify the fault, 
tests were performed on a CSS classified as 'low trust'. The 
same three previously tested files were monitored, however 
only the 5 GB file had changed its contents. The characteristics 
and results of each test are presented in Table III. 

TABLE III.  FAULT SIMULATION TESTS 

Bytes 

changed 

File 

percentage 
Location 

Affected 

chunks 

Days required to find fault  

T1 T2 T3 T4 T5 Aver

age 

4688 0.000085% 
random 

choice 
1 or 2 10 9 22 12 15 ~14 

55006658 1.0% 
end of 

file 
41 3 7 6 6 3 5 

With the aim to determine the maximum number of days 

required to complete a file check cycle (all its data blocks 

being checked at least once) on each trust level, we did 

simulations using the percentages defined for each trust level 

in Table I. The results are presented in Figure 2. 

 

 

Fig. 2. Number of days required to complete a file check cycle. 

This time variation is intended to reward services with 

fewer failures, minimizing consumption of resources such as 

processing and bandwidth. Moreover, it allows prioritizing the 

protocol for checking files that are stored in services that have 

already failed, reducing the time required to determine if there 

are any corrupted or lost files. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a protocol to ensure the integrity 
of stored files in CSS through an ICS hosted by a third party. 
The protocol named TOPMCloud allows periodic and qualified 
monitoring of file integrity using trust concepts without 
confidentiality compromising. 

Based on CSS behaviour, the checking frequency can 
increase or decrease, reducing overload on services that never 
fail or checking more quickly all stored files in CSSs that have 
already failed. 

As it can be seen in Section VI, TOPMCloud provides a 
efficient control over file integrity. Even on very large files, 
time spent checking each data block does not overload the 
CSS. Variation in number of days required to identify the same 
fault, which was purposely inserted in the file, obtained in 
subsequent tests, confirms the randomness of the selection 
process of each data block sent as a challenge to CSS. 

Another important result obtained was the speed to identify 
a fault, even interfering in only 2 from 4096 file chunks, the 
average period for its identification was only two weeks. 

As part of future works, we intend to formalize and validate 
the protocol using Petri nets. We will conduct tests simulating 
the protocol behaviour with CSSs classified in all trust levels. 
Furthermore, we want to add a mechanism to ensure that, only 
when authorized by a customer, a ICS could send challenges to 
CSS. 
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