
A Synchronous Agile Framework Proposal Combining Scrum

and TDD

Marcia Maria Savoine 1, Vanessa França Rocha 1, Carlos Andrew Costa Bezerra 1,

André Magno Costa de Araújo 2, Joyce Karoline Maciel Matias 1

ITPAC – President Antonio Carlos Tocantinense Institute Araguaina, Brazil 1, Federal University of Pernambuco

Recife, Brazil 2

e-mail: savoine@gmail.com, vanfranrocha@gmail.com, andrew@r2asistemas.com.br,

amcaraujo@gmail.com, joycekarolpaz@gmail.com

Abstract — Optimizing processes in software development are

becoming increasingly more popular. For that reason, the

consuming market demands more efficiency and quality. To

achieve that, some methodologies are adopted in order to ensure

that real value will be delivered to the customer. This paper

relates a series of good practices based on team management

features described in Scrum, and the development and source

code testing covered in the TDD methodology. By specifying a

framework structure with such features, this work allows

software factories use a lean model, facing the reality of their

projects in several aspects (e.g., team management, code

development and testing).

Keywords- Software Development; Methodologies; Scrum; TDD.

I. INTRODUCTION

The continuous improvement in productivity and
organizational processes depend on the use of software as a
competitive advantage [1].

Therefore, new methodologies and techniques are adopted
to handle processes in software production quality as well as
providing training to professionals, aiming to manage and
develop products efficiently and in short time.

In harmony with such fast-paced world, Agile
methodologies propose structured practices and organized
steps throughout the software development cycle. More
specifically, Scrum aims to manage all the processes that take
place within each project event to obtain a detailed and
complete overview of the features developed and their
deadlines.

On the other hand, in Test-Driven Development (TDD),
the process is apparently simple - tests are written before
writing the code itself, not only in order to address
shortcomings, but to meet the features in a reliable and
predictable manner [2].

Considering the Agile methodologies, it is noticed that
small and medium-sized software factories usually find it
substantially difficult to fully employ Agile practices, as the
size and complexity of the project, possible lack of control,
poor staff training and difficult conciliation with existing
processes are some of the points that hinder the adoption of
these methodologies [3].

This work aims to determine the features offered by both
agile methodologies (Scrum and TDD) and asserts when

software factories should use each one as a model according
to the reality of each project.

This paper presents a theoretical and practical framework
for systematic association of Scrum and TDD combining the
strengths of both (i.e., responsive management and agile
development, respectively) through an exploratory research
carried out in the documentation and guidelines of the
investigated methodology. It is also dedicated to compare both
methodologies to raise similarities and differences towards
proposing a method using an association of both to a
conceptual framework throughout the software development
cycle.

This paper is structured as follows: Section 2 presents the
related work; Section 3 presents Agile methodologies
concepts, for Scrum and TDD respectively. Section 4 presents
a comparative analysis of the studied methodologies. Section
5 shows a framework with the proposed combination and use
of both methodologies. Last but not least, Section 6 presents
conclusions and future work.

II. RELATED WORK

This research focused mainly on finding works in which
the main concern was assessing the use of the Scrum
framework to manage activities and the team, and the use of
code management in TDD. The main point those works had
in common was indicating that the use of TDD with Scrum
provided benefits to the software development and design.
Sinialto and Abramhamsson [4] show that there is an
improvement in the code and application test coverage.
However, Janzen and Saiedian [5] show that TDD makes
developers more confident during code maintenance, hence
leading to higher productivity and possibility of delivery on
time.

Puleio [6] points out that for a new project that was meant
to replace an existing legacy service with a new one after long
meetings, the team opted to use Scrum for project
management, TDD and pair programming. Soon after, they
decided to fully embrace XP (Extreme Programming)
practices. After several difficulties encountered and solved,
the project was successful, leading the team to conclude that
the code tests could be done following agile methods.

Despite the growing popularity of Agile methodologies,
there is a limited amount of literature that combines Agile
methodologies and software testing, especially concerning

337Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

how to perform the tests and integrate with Scrum. For this
reason, Van den Broek et al. [7] performed an analysis based
on a case study on the use of tests in a Scrum team.
Afterwards, the authors proposed a visual model that
integrates testing and some Scrum activities.

Our research relates to the work in Van den Broek et al.
[7] since they propose a visual model that integrates testing
activities and Scrum. However, we noticed that there are
factors affecting the adoption of Scrum and TDD, as the latter
is only used to test the practices in Scrum. Our work used
practices, characteristics, Scrum roles and artifacts from both
Scrum and TDD equally, in order to improve processes where
one fails and another completes.

III. AGILE METHODOLOGIES

Agile methodologies aim to accelerate software
development and delivery, as a means to make pieces of new
software more frequently available to clients and improving
the participation of all stakeholders. Therefore, Agile
methodologies have specific characteristics, but maintain the
same core principles throughout the life cycle of software
development [8]. These principles are customer engagement,
incremental delivery, people over process, accepting changes,
and keeping it simple.

Having the core principles in mind, in subsections A and
B the specificities of the Scrum framework and TDD
methodology addressed in this work are described in detail.

A. Scrum

Scrum is used for managing Agile software projects
iteratively and incrementally. In this sense, Sutherland [9],
states that the Scrum framework aims to capture the way the
teams really work, giving them the tools to organize
themselves and, most importantly, quickly improve the speed
and quality of their work.

In Fig.1, one may notice that, initially the Product Owner
and Stakeholders set the Product Backlog, which is followed
by prioritization of the sprints (Sprint Backlog). At the end of
the Sprint a product increment is delivered to the customer.

Figure 1. Scrum Cycle. [10]

Scrum consists of three roles that are responsible for
executing events and building artifacts. They are:

 Product Owner: responsible for prioritizing the
Product Backlog (list of requirements) and getting
important information from the stakeholders.

 Scrum Master: ensures that all the work occurs
smoothly and in an organized fashion without
interruptions, acts as a facilitator or conductor in
Scrum meetings and assists the interaction between
the Product Owner and the development team.

 Team Members: people who carry out development
and testing. The team must be organized and have
deep product knowledge.

Scrum implements an iterative and incremental skeleton
through fully decentralized roles and responsibilities [11]. In
Scrum, Events and Artifacts are:

 Product Backlog: List of requirements, design features,
extracted from user history.

 Release Backlog: The product is set to be developed in
parts (Sprints). In the end of each Sprint, the delivery
of completed increments is called Release Backlog.

 Sprint Backlog: each Sprint aims to add an important
part of the Release Backlog.

 Daily Scrum: At the end of each day of development
all members in the team come together for the Daily
Scrum, a short meeting lasting around 15 minutes.

Despite Scrum’s goal being to deliver value to the
customer in the form of relevant features in the final product,
members of a Scrum project team should use some artifacts to
support the decentralized and simple management [12].

The great advantage of Scrum is achieving the delivery of
a functional product with higher quality and lower cost, with
a team that works in less time. Unlike other methods, it
consists in a pre-determined time-box to verify and validate
whether what is being done is what was actually established
and whether it is adaptable to the format and type of project.

Scrum proposes a new software management framework,
which is based on self-organization, motivation, ownership
and pride of a team in carrying out their acquisitions. As it is
adaptable, Scrum provides the right support for the team, and
accommodates phases that are important to the quality of the
software production, such as testing activities that are a trend
among renowned software factories [13].

B. TDD

TDD is a methodology focused on software quality, in
particular the quality of implementation and testing. TDD
increases the reliability of the system and raises the assurance
that what was executed is in accord with the proposed
requirements [14].

According to Aniche [15], TDD is a software development
methodology that is based on the repetition of a small cycle of
activities. First, the developer writes a test that fails. Then, the
developer fixes what is missing and makes the test passes,
implementing the desired functionality. Finally, they perform
the refactoring of the code to remove any duplication of data
or code generated in the process, as shown in Fig. 2.

These three rules of TDD bring immediate benefits when
applied: class design with very low linkage; software
documentation on tests; flexibility; and debugging time
reduction.

Conditions that should be tested are loops, operations and
polymorphisms; however, tests should be applied only to
those conditions written by the developer himself. This allows

338Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

the testing to be compatible with the logic used in the
development, covering all the code characteristics [16].

The main reasons for the adoption of TDD according to
Kaufmann and Janzen [17] are presented below: the
development is set by first considering the objectives, then
thinking about the possible solutions; the understanding of the
system can be achieved by reading the tests; unnecessary code
is not developed; there is no piece of code without test; once
a test is working, it is known that it will always work and it
also serves as a regression test; tests allow progress to be made
in the software, because they ensure that the changes do not
alter the operation of the system.

The feedback provided by TDD promotes significant
improvement in the design of classes, helping the programmer
to encode more cohesive and less coupled classes, reducing
the occurrence of errors and software maintenance costs.

IV. COMPARATIVE ANALYSIS BETWEEN THE AGILE

METHODOLOGIES SCRUM AND TDD

We held a comparative analysis described aiming to
highlight the similarities and weaknesses in both
methodologies, and trying to identify where the
inconsistencies of a method could be complemented by
practices of the other. This was done after realizing that the
use of Scrum focuses on management of software projects
which had great feedback from self-manageable and self-
organized teams, with a strong contribution from the Scrum
Master. In this way, Scrum and TDD have different
applications, as the latter focuses on software quality by
building code based on programming and testing standards.

A. Specific Features

The presented features were selected based on the
theoretical framework of Section II, paying attention to their
relevance and degree of understanding, and also considered
specificities to indicate essential activities found in software

projects and executed by a software factory. These
characteristics must objectively state individual and similar
points of methodologies that make direct reference to the core
Agile principles and the structure of the methodologies in the
study. Thus, we selected the following:
• Self-organizing team: team organization and work among

members who can, for the most part, find the best solution
to manage and carry out their work.

• Project supervisor: responsible for monitoring the team
giving the necessary support, supervising the work done
and what remains to be done;

• Results of the development report: measures the evolution
of product development and is presented periodically;

• Setting steps: Breaking the project into phases or stages;
• Quality code: code analysis based on the architecture and

coding standards;
• Small steps: Process in which the project has its phases

broken into smaller parts;
• Time reduction: Gain of time based on an architecture

without design;
• Cost reduction: Savings generated by the use of the

methodology;
• Simplicity: Doing only what is necessary;
• Feedback: Returning information to the team and

customer;
• Project delivery: All increments are fully tested,

guaranteeing they work together and providing a quality
delivery.

• Adaptable to change: Product is flexible for adjustments
and redesigns;

• Testing responsible: Team person who assumes the
function of tester;

• Format test: How the tests are applied to software.

By observing the behavior of each methodology in each

pinpointed feature, we analyzed the individual weaknesses
and characteristics that are complementary or overlapping, as
well specific practices, roles and artifacts (Table 1), which are
indicators that help and guide teams through the development
process. For example, practices 6 and 7 are complete when
executed together; on the other hand, item 8 in "Roles"
highlights that such a feature does not exist in the TDD
methodology; however, it exists in Scrum, and the Scrum
Master benefits if he decides to adopt both methodologies.
Likewise, the item 10 in "Artifacts" shows there are no
structures in TDD to address progress besides tests, and Scrum
complements it.

The final analysis highlights the strongest features,
structure and procedures of each method. Thus, although those
are meant for different segments – in the software
development context where there is a close attention scenario
for good practice that values quality, scalability and effective
results - the application of both methodologies in a
synchronized and adjusted fashion, maintaining their
individual characteristics, may contribute for better results.

Figure 2. TDD Cycle. [16]

339Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE I. ESSENTIAL CHARACTERISTICS OF THE AGILE

METHODOLOGIES OF SCRUM AND TDD

 AGILE METHODOLOGY

N° INDICATORS SCRUM TDD

1

Practices

Self-
Organizing

Teams

The team self-
organizes

activities

Not specified

2 Setting Steps Sprints Test Cycle

3 Small Steps

Division in

sprints for

development of
releases

Baby Steps

guarantee features
are broken in as

many parts as

needed

4 Simplicity
Produce only

the necessary

Simplification of
procedures and

code

5 Feedback
The staff and

customer

Continuous
feedback to the

team

6
Adaptable to

Change

Changes in the

project and its
project type

Test suite ensuring
changes without

loss of performance

and functionality

7 Format test
Parallel-
running

implementation

Written test before
implementing

functionality

8
Roles

Project
Supervisor

Scrum Master Not specified

9
Testing

responsible
Developer Developer

10

Artifacts

Evolution
report on the

results

Daily Scrum
and Burn

Down

Automatized tests

11
Project

Delivery

Whenever it is

all done
Not specified

12 Code Quality Not specified

Compliance with

Object Oriented

Programming

13
Time

Reduction

Deliver
something

functional for

the customer in
a short time

Development and
maintenance since

it optimizes the

process and reduces
errors

14
Cost

Reduction

The less time,

less charges

will be applied

Software

maintenance error
correction or

projection errors

V. PROPOSED SYNCHRONOUS USE OF SCRUM

AND TDD

We developed a proposal based on the analysis performed
with the purpose of exploring characteristics and attaining
better comprehension of possible coexisting use of both
methods in the form of a synchronous framework that
exemplifies the interaction of Scrum and TDD as Agile
methodologies and how their integration can be made so they
may coexistence in harmony.

 According to the framework structure shown in Fig. 3, the
integration of Scrum and TDD is applicable to a self-
organizing team (item 1) which values the simplicity in the
processes and also in the code (item 2) and follows the lead of
a Scrum Master. Setting out small steps for each Sprint (item

3), the organization achieves in reductions in time and
cost (items 4 and 5), as the team produces only the

necessary and minimizes errors and do-overs. The developer
(item 9) is responsible for coding and testing following the
standards established by TDD (items 7 and 8), and presents its
findings to the Scrum Master and the team at every Daily
Scrum. The code documentation that comes down to testing
as set out in TDD is available to be evaluated and improved
by the team, therefore enabling the Scrum Master to measure
(item 10), not only what is being done, but how it is being
done, ensuring quality to the team and to the end customer. At
this point of the framework, we stress the ability to adapt to
change (item 11), with documented and tested code and a self-
organizing team ending the cycle with continuous feedback
with the customer and the team (items 12 and 13); this
guarantees that, when the software is considered ready (item
14), it will have high quality levels, ensuring the adaptation
and survival of the project even when facing changes to the
original delivery.

The presence of the Scrum Master (Scrum methodology)
is in evidence because they are present throughout the
framework cycle, facilitating and enhancing the work of the
entire team, ensuring that the framework is followed, and
seeking for continuous improvement.

As stated by Silva and Lemos [18], the role of the Scrum
Master is analogous to that of an orchestra conductor. Both
should provide guidance and steady leadership to a team of
talented professionals who work together to create something
that no one can do alone.

Thus, through the proposed framework, we sought to
address characteristics of the two methodologies which, by
coexisting, may further contribute to the success of the project
and the quality of software.

Figure 3. Proposed Framework for combineduse of Scrum and TDD

340Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

VI. CONCLUSION

This paper presents two aspects within the agile context:
the management team which is involved throughout the
software process with Scrum and the team that actually
develops the lines of code and performs tests using TDD. No
methodology by itself includes both strands effectively;
therefore, to address this situation we studied both
methodologies and proposed a framework which can be used
in software factories.

Based on the analysis and the framework presented, it is
clear that the differences and similarities found in both
methodologies make them more useful when used in tandem,
as they guarantee software is produced avoiding problems in
the code due to continuous testing, which prevents new errors
and corrections during future implementations, eventually
reducing time and cost. Thus, the combined use of Scrum and
TDD is strongly recommended, as it will bring clear gains to
the project by indicating the increase in staff quality, product
and codes, and then covering the whole process of
development, evolution and maintenance of software
grounded on best practices and ensuring full feedback on all
processes and practices.

In the future, we intend to develop a tool to assist in
software development by proposing a set of coexisting Scrum
and TDD methodologies, confirming the efficacy of the
proposed framework and performing its validation in a real
scenario of a software project.

REFERENCES

[1] J. Herbsleb and D. Moitra, “Global Software Development”, EUA:
IEEE Software. 2011.

[2] S. Freeman and N. Pryce, “Growing Object-Oriented Software, Guided
by Tests”.Addison-Wesley Signature Series, 2010.

[3] C. Andrade, J. Lopes, W. Barbosa and M. Costa, “Identifying
difficulties in the implementation and contract management in agile
projects in Belo Horizonte”. DOI - 10.5752/P.2316-
9451.2014v3n1p18. Abakós , v. 3, 2014, p. 18-37.

[4] M. Siniaalto, P. Abramhamsson, "A Comparative Case Study on the
Impact of Test-Driven Development on Program Design and Test
Coverage". Finland: First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007), 2010.

[5] D. Janzen, H. Saiedian, "On the Influence of Test-Driven Development
on Software Design". USA: 19th Conference on Software Engineering
Education & Training (CSEET'06), 2011.

[6] M. Puleio, "How not to do Agile Testing". USA: AGILE 2006
(AGILE'06), 2006.

[7] R. van den Broek, M. M. Bonsangue, M. Chaudron and H. van Merode.
"Integrating testing into Agile software development processes".
Lisboa: Model-Driven Engineering and Software Development
(MODELSWARD) 2nd International Conference on, 2014.

[8] I. Sommerville, “Software Engineering”, Boston: Pearson. 2007.

[9] J. Sutherland, “Scrum: The Art of Doing Twice the Work in Half the
Time”, New York: Crown Business. 2014.

[10] K. Schwaber, “Agile Project Management witch Scrum”, Reedmond:
Microsoft Press. 2013.

[11] K. Schwaber, “Scrum Guide”, Harvard Businner Review, Boston, IV,
p. 163-179., 2013.

[12] Z. Požgaj, N. Vlahović, V. Bosilj-Vukšić, "Agile Management: A
Teaching Model Based on SCRUM". MIPRO-IEEE, 26-30 May,
Opatija, Croatia. 2014.

[13] A. Pham and P. Pham, “Scrum in Action: Agile Software Project
Management and Development”, Course Technology, 2011.

[14] K. Beck, “Test-Driven Development By Example”. Estados Unidos:
Addison Wesley, 2002.

[15] M. Aniche “Real World Test-Driven Development”, São Paulo: Code
Crushing, 2013.

[16] K. Beck, “Test-Driven Development”, 1 st. ed. Addison-Wesley
Professional, 2002.

[17] R. Kaufmann, D. Janzen., “Implications of Test-Driven Development
A Pilot Study”. In: 18th Annual ACM Conference on Object-Oriented
Programming System, Languages and Application (OOPSLA 2003).
New York: ACM, 2003.

[18] W. Silva and L. Lemos “SCRUM: A New Approach to Software
Development Front of Current Competitive Scenario Demand”, Rio de
Janeiro: Fluminense Federal University. 2008.

341Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

