
A Concise Classification of Reverse Engineering Approaches for Software
Product Lines

Rehman Arshad,Kung-Kiu-Lau
School of Computer Science, University of Manchester

Kilburn House, Oxford Road, Manchester, United Kingdom
e-mail: rehman.arshad, kung-kiu.lau @manchester.ac.uk

Abstract—Reverse engineering in product lines means identification
of feature locations in the source code or formation of the non-redundant
feature model from descriptive documents. The feature identification can
be represented by feature to code trace, graphical notations or tools based
view. For adopting a specific approach, it is very important to know how
it works, the kind of expertise needed to use it, the kind of tool support
that is there, the format of the required input for using that approach, the
output notation that it can provide, the related shortcomings that cannot
be avoided and the kind of pre-requisite work each approach demands.
Based on these parameters, this paper provides a classification of the
reverse engineering approaches related to software product lines. Such
classification can help the product line engineers or relevant researchers
to narrow down the practical options for their implementation and to
obtain the better understanding of reverse engineering in product lines.

Keywords: Product Line Engineering; Reverse Engineering;
Static Analysis; Dynamic Analysis; Textual Analysis; Hybrid Anal-
ysis; Feature Location.

I. INTRODUCTION

”The output of a reverse engineering activity is synthesized,
higher-level information that enables the reverse engineer to better
reason about the system and to evolve it in an effective manner”
[1]. Usually, the result of reverse engineering is in higher notation of
abstraction in order to understand the system. Output can be a model,
graphical chart, re-structured code or some notation that can express
the system in a feasible way.

The idea behind a software product line is to make different cus-
tomized software products by using same platform that can support
different variations in all the products. The process of constructing
and managing such common platform (product line) is known as
product line engineering [2].

A product line is usually composed of features ranging from
few dozens to several hundreds [2]. These features are related to
each other by well-defined constraints [3]. Without very extensive
documentation and trace, it is almost impossible for product line
engineers to understand the composition of code in terms of features.
The process of reverse engineering in product lines is used for finding
the feature locations in the code or for constructing a non-redundant
feature model from descriptive documentation. With the evolution of
the product line, the major purpose of reverse engineering is to keep
code and variability modelling synchronised and understandable.

One of the concerns for product line practitioners and pro-
grammers is to know the difference in applicability of different
reverse engineering approaches according to domain, available in-
house expertise, tool support and required notation of extraction after
reverse engineering. This short survey provides a basic classification
for software product line engineers and programmers to know the
difference between reverse engineering approaches for product lines,
the tools that come with some approaches, kind of output provided
by each approach, kind of input needed by each approach, associated
shortcomings to each approach, prerequisites for implementing an
approach and kind of expertise needed in order to implement an
approach. Such comparison between these approaches will help in
the selection of an approach over others on the basis of compatibility

with all such parameters. This classification can also help novices
to understand what it takes to do reverse engineering for software
product lines.

The term technique and approach should not be confused in this
survey. One approach can use various well-defined techniques for its
implementation where as an approach is the way in which a process
uses many techniques in order to get the results, e.g., Language
Independent Approach [4] is an approach of reverse engineering
that is based on techniques of Formal Concept Analysis (FCA)
and Latent Semantic Indexing (LSI). Similarly, Static Analysis is a
kind of analysis technique in reverse engineering and this technique
can be used by multiple software product line reverse engineering
approaches. The presented classification in this paper can help the
product line engineers and relevant researchers to narrow down the
practical options for their implementation instead of wasting time on
comparing all such options.

The remainder of this paper is organised as follows. Section
2 explains the related work. Section 3 includes the framework of
classification. Section 4 includes the classified approaches based on
the framework. Section 5 provides available tool support for each
approach and major shortcomings of approaches. Section 6 is the
final section that includes conclusion.

II. RELATED WORK

There are hundreds of approaches in the reverse engineering but
most of them are not applicable in the domain of product lines. In this
paper only the approaches that meet the following criteria have been
selected: they are for product lines in particular, related to product
variants, relevant to feature identification/formation in the complex
system families and tackle the variability of the product variants.
Therefore, many well-known general reverse engineering techniques
like LSI [5], Probabilistic Latent Semantic Indexing (PBLSI) [6] and
NL-Queries [7] are not part of this paper. These techniques can be
part of complex reverse engineering approaches related to software
product lines but as standalone techniques they are not relevant. This
is because a product line is constructed in terms of features and
their variations, and general techniques cannot produce results in
terms of features and variants. It is not the intention of this paper
to include the approaches that use (reuse) artefacts to construct a
product line. Approaches with the sole purpose of reverse engineering
are considered only, therefore approaches like clone and own are not
part of this classification because they are mainly used to reuse not
to reverse engineer.

This paper covers more than thirty approaches of reverse
engineering in the field of software product lines. Each approach
uses many techniques of reverse engineering. Techniques like LSI,
FCA, etc., do not belong to a specific domain. The way an approach
uses these techniques determines whether the approach is suitable for
product lines or not. Few surveys have classified reverse engineering
techniques but none have done it solely for software product lines
and their angle of interest is quite different, e.g., Bogdan Dit’s
survey [8] is the closest one because it covers the identification of

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

feature locations. Work of Michael L. Nelson [9] covers automation
of reverse engineering in legacy system. Purpose of M. Spiros and
K. Moshe’s survey [10] is to classify the tool support for specific
operating systems. Such classifications and surveys cannot help in
the domain of software product lines. They cannot help in deciding
the applicability of reverse engineering because they do not discuss
the classification parameters with respect to software product lines.
A classified tool of reverse engineering may be great from operating
system’s point of view but can be useless for software product lines
at the same time. Overall, no such survey exists at the moment that
has discussed the reverse engineering from software product line’s
point of view.

III. FRAMEWORK OF CLASSIFICATION

Table I. shows the framework of classification in terms of
different parameters. The parameters used for classification are;

• Analysis Technique
• Required input notation
• Generated output notation
• Phase Compatibility
• Required Expertise
• Pre-Requisite Implementation

These parameters are selected by considering their importance for
applicability of practical implementation. Analysis techniques define
the type of analysis used by an approach for reverse engineering.
Required input notation classifies the approaches based on the input
they require for execution. Generated output notation classifies the
approach based on the type of output produced by each approach.
Phase compatibility means whether an approach is suitable for con-
struction or maintenance of a product line. Required expertise groups
the approaches based on the kind of techniques they use and pre-
requisite implementation classifies the approaches based on the kind
of work they require before implementation. Further classification of
these parameters is presented in Table I.

IV. CLASSIFICATION OF REVERSE ENGINEERING APPROACHES

FOR SOFTWARE PRODUCT LINES

This section will classify the reverse engineering approaches for
software product lines based on analysis technique, input notation
required by each approach, output notation, phase compatibility, pre-
requisite implementation required by each approach and expertise
required by each approach. All these classification parameters are
presented in the following sections.

A. Classification based on Analysis Technique

Analysis techniques in reverse engineering are classified as
follows: [8]

• Static Analysis Techniques
• Textual Analysis Techniques
• Dynamic Analysis Techniques
• Hybrid Analysis Techniques

1) Static Analysis Techniques: Static feature location tech-
niques are based on structural information of the code. They consider
control flow, data flow and dependencies in the code to identify
features. These techniques work by building a model of states of
the program and then determine all possible routes of the program
at each step. To design such approach one has to keep the balance
between preciseness and granularity and some abstraction is used to
consider which steps should be added in the static analysis model
[11].

These techniques are based on the control structure of the

TABLE I. REVERSE ENGINEERING: FRAMEWORK OF
CLASSIFICATION

Parameter of Classifi-
cation

Classification

Analysis Technique

Static
Textual
Dynamic
Hybrid

Req. Input Notation
Source Code
Feature Set
Description

Output Notation

Feature Model
Code

View Based
Concept
Lattices and
Graphs
Feature to
Code Trace

Phase Compatibility Construction
Maintenance

Required Expertise

Profiling
FCA
LSI
Vector Space
Modelling
(VSM)
Domain
Knowledge
Natural
Language
Processing
(NLP)

Pre-Requisites

Profiling (Code
Instrumenta-
tion)
Approach Cen-
tric

source code, hence their result has very good recall but the major
drawback is lack of precision. False positive results are very common
in static techniques as these techniques work on user-defined model of
control flow rather than the actual trace of the program. The biggest
advantage is the future re-usability.

The output of such techniques can be a configuration matrix, a
dependency graph or re-formation of the actual source code. Usually,
these techniques are used to extract a dependency matrix between the
source code and features in order to understand the relation between
code and the variability model composed by features. RecoVar [12],
Language Independent Approach [4], Dependency Graph [13], Con-
cern Graph [14], Automatic Generation [15], Concern Identification
[16] and Semi-Automatic Approach [17] are some of the approaches
related to the product line engineering based on static analysis.

2) Textual Analysis Techniques: Few researchers [18] referred
textual as a static technique but it is quite different from a standard
static technique. Textual analysis does not need any abstraction model
and uses the query-based input to match the words with identifiers
and comments in the code.

Most textual analysis reverse engineering techniques produce
feature locations as an output. These code locations are displayed
either by concept lattices (if Formal Concept Analysis is used) or
by dependency graphs. Examples of such approaches are Combining

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

FCA with IR [18] and Source Code Retrieval [19]. Few approaches
produce feature models from the provided description or the feature-
set as description. Examples of these approaches include Evolutionary
Algorithms [20], Reverse Engineering Feature Models [40] and
Feature Models from Software Configurations [21]. Few textual based
approaches also extract and show the code in terms of variability,
e.g., Product Variants [22] and few represent domain concepts after
extracting them from the code in order to provide understanding of
the code in simple domain terms, e.g., Natural Language Parsing [23].

The biggest problem is the user designed queries that are
responsible for almost the whole analysis and quality or accuracy of
the output. Another problem is polysemy and implicit implementation
of the feature across many locations.

3) Dynamic Analysis Techniques: Dynamic analysis uses exe-
cution trace of the program to follow and identify the feature locations
by following running code. Test scenarios or profiling is needed in
order to design an execution trace with respect to some feature.
Profiling is instrumentation of the code and it is a difficult task.
Usually one scenario can only involve one feature, hence in case
of hundreds of features, dynamic analysis becomes more complex.
For every new profiling, old results are useless whereas in static we
can reuse the rules of abstraction as many times as we want with
continuous refinement.

Dynamic analysis output is always a trace that shows feature
locations in the code. This relation is represented either as concept
lattices or view-based tools. The abstraction level of code in the
trace varies from approach to approach. Dynamic Feature Traces
[24], Feature to code trace [25], Focused views on Execution Traces
[26], Software evolution Analysis [27], Trace Dependency Analysis
[28], Featureous [29], Embedded Call-Graphs [30], Scenario-Driven
Dynamic Analysis [31] and Concept Analysis [32] are examples of
product line approaches based on dynamic analysis.

4) Hybrid Analysis Techniques: A hybrid analysis in reverse
engineering can be a combination of Dynamic-Static, Dynamic-
Textual, Textual-static or Dynamic-Textual-static analysis. Hybrid
analysis can join recall of static and precision of dynamic analysis.
Recall is required in order to make dynamic analysis reusable in
the future. So a static analysis can obviate the collection of certain
information and dynamic can run over that collection in order to
get better results. Also, many approaches like [33] use one analysis
technique just to rank the elements of the code so this ranking of
feature relevancy will be considered in the final results in order to
increase accuracy.

Hybrid techniques provide feature locations either by using
concept lattices or graphs. Static and Dynamic Analysis [34], Cer-
berus [33], Sniafl [35], Locating Features in Source Code [36], Using
Landmarks and Barriers [37] and A Heuristic-Based Approach [38]
are examples of reverse engineering approaches based on hybrid
analysis.

Few approaches that cannot be fit in the classification are
the ones that are dependent on pure data mining in order to cor-
relate product variants to dependency graphs in order to predict
the influence of one feature on others, e.g., [39]. The selection of
analysis technique is based on many parameters like availability of
the abstraction model, trade-off between false positive and accuracy,
availability of profiling to run every feature and most importantly the
kind of reverse engineering needed. The whole classification of this
section is summarised in Table II.

B. Classification based on Input and Output

After selecting an appropriate analysis technique on grounds
of compatibility and associated shortcomings, it is very important to

TABLE II. REVERSE ENGINEERING:CLASSIFICATION OF REVERSE
ENGINEERING APPROACHES BASED ON ANALYSIS

Reverse Engineering
Approaches

Analysis Classifica-
tion

RECoVar [12], Language Indepen-
dent Approach [4], Dependence
Graph [13], Concern Graphs [14],
Concern Identification [16], Au-
tomatic Generation [15], Semi-
Automatic Approach for Extraction
[17]

Static

Product Variants [22], Natural lan-
guage Parsing [23], Evolutionary Al-
gorithms [20], Software Configurations
using FCA [21], Source Code Retrieval
[19], Combining FCA with IR [18],
Reverse Engineering Feature Models
[40]

Textual

Dynamic Feature Traces [24],
STRADA [25], Call-Graphs [30],
Focused views on Execution Traces
[26], Concept Analysis [32], Trace
Dependency Analysis [28], Scenario
Driven Dynamic Analysis [31],
Featureous [29], Software Evolution
Analysis [27]

Dynamic

Static and Dynamic Analysis [34], Cer-
berus [33], Heuristic-Based Approach
[38], Landmarks and Barriers [37], Lo-
cating Features in Source Code [36],
SNIAFL [35]

Hybrid

know about required input notation and generated output notation
of each approach. Some input notations are not compatible with
some product lines implemented form and a lot of work is needed
in order to transform code into specific input notation. To avoid
extra work, one can select an approach that is most appropriate
for the environment. The required input notation can be classified
as Source Code, Feature Set and Description Based Input. Feature
Set means configuration matrix or product-feature mapping in some
notation where Description includes user Queries, Document-Corpus
and Textual Input like natural language text etc.,

Similarly, output can also be classified into Feature Model,
Generated Code and View Based Output. View Based Output can
further be classified into concept Lattices or graphical notations and
ranked Based Mapping or Feature to Code Trace.

Few approaches produce feature models as output [20] [21]
[40]. Few transform code into core and variability parts [4] [22]. Few
approaches generate feature-code trace [15] [17] [19] [23]- [25] [28]
[31]- [36] [38]. Few generate output in the form of concept lattices
or graphs [12]- [14] [16] [18] [27] [30] [37]. Concept lattices are
different from general graphs because they are generated by defining
the FCA and can be manipulated by changing the formal contexts
whereas general graphs usually show variability models extracted
from the code.
Hybrid approaches in this category use one analysis technique to
reinforce the results and then use another technique on the generated
output of the first one. Such hybrid approaches show results in the
form of ranked based mapping where each mapping has a value based
on its validity. Ranked based mapping is also a trace but it includes
the ranking of the traces. Few approaches like [26] [29] generate both

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE III. REVERSE ENGINEERING: CLASSIFICATION BASED
ON REQUIRED INPUT

Required Input Reverse Engineering Tech-
niques

Source Code

RECoVar [12], Call-Graphs
[30], Concern Identification [16],
Scenario Driven Dynamic Analysis
[31], Featureous [29], Language
Independent Approach [4], Semi-
Automatic Approach for Extraction
[17], SNIAFL [35], Static and
Dynamic Analysis [34], Cerberus [33],
Bug Localization [19], Focused views
on Execution Traces [26], Heuristic-
Based Approach [38], Dependence
Graph [13], Software Evolution
Analysis [27], Concern Graphs [14],
Concept Analysis [32]

Feature Set

Product Variants [22], Natural lan-
guage Parsing [23], Dynamic Feature
Traces [24], Evolutionary Algorithms
[20], Software Configurations using
FCA [21], Static and Dynamic Anal-
ysis [34], STRADA [25]

Description
(Queries,
Document-
Corpus,
Textual input)

Cerberus [33], Landmarks and Barriers
[37], Locating Features in Source Code
[36], Source Code Retrieval [19], Trace
Dependency Analysis [28], SNIAFL
[35] Combining FCA with IR [18], Au-
tomatic Generation [15], Reverse Engi-
neering Feature Models [40]

trace and graphical views. Table III. and IV. show the classification
based on these parameters.

C. Classification based on Phase Compatibility, Pre-requisite Imple-
mentation and Required Expertise

Table V. shows the pre-requisites for implementing an approach.
Pre-requisites have classified into approach centric process, i.e.,
macro constant’s selection, landmarks method selection, domain con-
cepts, corpus extraction and profiling. Profiling is the most common
pre-requisite. RECoVar [12] is an approach that requires selection of
the macro constants before it can be applied. It shows code based
variability by extracting a model from the code. Users have to define
the macro constants in the code to use them in conditional compiling
while generating the model. Such macro constants can be if-def
blocks or anything that can define a variation in pre-compilation and
they are called variation points. Another approach Landmarks and
Barriers [37] demands selection of landmark methods. Landmark
methods are those that have a key role in execution of a feature.
Hence, in order to select landmark features one must have to know
that feature composition in terms of code. Barrier methods are those
methods that do not have major importance from a feature point of
view and they have to be selected in order to decrease the size of
generated variability graph. Combining FCA with IR [18] demands
generation of the document corpus by LSI. Document corpus is the
generation of the part of the code that matches the user queries and
it should be in vector space form which is a well known form in
LSI. FCA uses this notation to start matching and producing the
output in the form of concept lattices. Dependence Graph [13] needs
identification and selection of the nodes that should be included

TABLE IV. REVERSE ENGINEERING: CLASSIFICATION BASED ON
GENERATED OUTPUT

Generated Output Reverse Engineering
Techniques

Feature Model Evolutionary Algorithms
[20], Software
Configurations using FCA
[21], Reverse Engineering
Feature Models [40]

Code Product Variants [22],
Language Independent
Approach [4]

View-Based
Concept
Lattices or
Graphical
notations

Combining FCA with
IR [18], Landmarks
and Barriers [37], Call-
Graphs [30], Concern
Identification [16],
Dependence Graph
[13], Concern Graphs
[14], Software Evolution
Analysis [27], RECoVar
[12], Focused views on
Execution Traces [26],
Featureous [29]

Ranked Based
Mapping or
Feature to
Code Trace

Cerberus [33], SNIAFL
[35], Source Code
Retrieval [19], Scenario
Driven Dynamic Analysis
[31], STRADA [25],
Natural language Parsing
[23], Trace Dependency
Analysis [28], Concept
Analysis [32], Dynamic
Feature Traces [24], Static
and Dynamic Analysis
[34], Locating Features
in Source Code [36],
Heuristic-Based Approach
[38], Semi-Automatic
Approach for Extraction
[17], Focused views
on Execution Traces [26],
Featureous [29], Automatic
Generation [15]

in the search graph in order to search the implementation of a
feature. The relevant code parts cannot be selected unless one has
the knowledge and some familiarity with the domain and composition
of the features in terms of code. So some code understanding and
domain knowledge is must before executing this approach. In case
of Reverse Engineering Feature Models [40], domain knowledge is
needed because domain expert have to select the parent of each
feature at each step and correct decisions require code and domain
knowledge.

Table VI. shows the phase compatibility classification. Phase
Compatibility shows whether an approach is suitable to use in the
construction of a product line or in the maintenance of a product
line. There are several approaches that are not designed for the
maintenance or evolution but for the construction of a product line
and hence they should be used for this purpose, e.g., approaches
that can produce Feature Models are more appropriate to use in

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE V. REVERSE ENGINEERING: PRE-REQUISITE
REQUIREMENTS

Pre-Requisite Implemen-
tation

Reverse Engineering Techniques

Profiling

Dynamic Feature Traces [24], Sce-
nario Driven Dynamic Analysis
[31] Trace Dependency Analy-
sis [28], Featureous [29], Lo-
cating Features in Source Code
[36], Static and Dynamic Analy-
sis [34], Cerberus [33], STRADA
[25], Call-Graphs [30], Focused
views on Execution Traces [26],
Concept Analysis [32], Heuristic-
Based Approach [38], Software
Evolution Analysis [27]

Macro Constants Selection RECoVar [12]
Selection of Landmark
Methods

Landmarks and Barriers [37]

Document corpus extrac-
tion for LSI

Combining FCA with IR [18]

Understanding of Domain
Concepts

Dependence Graph [13], Reverse
Engineering Feature Models [40]

constructing a product line rather than maintaining one because a
non-redundant Feature Model can be achieved from requirement text
or product lines initial product-feature documentation. Evolutionary
Algorithm [20], Software Configuration using FCA [21] and Reverse
Engineering Feature Models [40] are examples of such approaches.

Table VII. shows required expertise that are grouped as FCA,
LSI, NLP, Profiling, VSM and Domain Knowledge. Product Variants
[22], Concept Analysis [32], Combining FCA with IR [18] and Lo-
cating Features in Source Code [36] require the knowledge of FCA.
FCA demands the designing of a formal context in which objects
are defined in order to generate the model. Product Variants [22],
Cerberus [33], Combining FCA with IR [18] and Heuristic-Based
Approach [38] require the knowledge of LSI. LSI is a well known
textual technique, mostly used in search engines. Natural language
Parsing [23] requires Natural Language Processing which is a well
established research domain on its own. Dynamic Feature Traces
[24], Scenario Driven Dynamic Analysis [31], Trace Dependency
Analysis [28], Featureous [29], Locating Features in Source Code
[36], Static and Dynamic Analysis [34], Cerberus [33], STRADA
[25], Call-Graphs [30], Focused views on Execution Traces [26],
Concept Analysis [32], Heuristic-Based Approach [38] and Software
Evolution Analysis [27] require profiling. SNIAFL [35] requires
the knowledge of VSM. VSM is a special kind of LSI. Finally,
Dependence Graph [13] and Reverse Engineering Feature Models
[40] need the domain knowledge and the reasons are as stated in the
previous section.

V. AVAILABLE TOOL SUPPORT, LANGUAGE CONSTRAINT AND

SHORTCOMINGS

This section explains Primary Tool, Secondary Tool, Evaluation
Language and Major Shortcoming related to each approach. Primary
Tool attribute means tools that are specifically made for the approach
where secondary Tool means third party tools that are not designed
for the specific approach but help in implementing one. Most of the
tools are academic where Reverse Engineering Feature Models [40],
Focused views on Execution Traces [26] and Featureous [29] have
professional tools. Table VIII. and Table X. show the primary tools

TABLE VI. REVERSE ENGINEERING: PHASE COMPATIBILITY WITH
SOFTWARE PRODUCT LINES

Approaches Phase Compatibil-
ity

RECoVar [12], Dependence Graph
[13], Concern Graphs [14], Concern
Identification [16], Automatic Gener-
ation [15], Natural language Parsing
[23], Bug Localization [19], Combin-
ing FCA with IR [18], Dynamic Fea-
ture Traces [24], STRADA [25], Call-
Graphs [30], Focused views on Ex-
ecution Traces [26], Concept Analy-
sis [32], Trace Dependency Analysis
[28], Scenario Driven Dynamic Anal-
ysis [31], Featureous [29], Software
Evolution Analysis [27], Static and Dy-
namic Analysis [34], Cerberus [33],
Heuristic-Based Approach [38], Land-
marks and Barriers [37], Locating Fea-
tures in Source Code [36], SNIAFL
[35]

Maintenance

Product Variants [22], Semi-Automatic
Approach for Extraction [17], Evo-
lutionary Algorithms [20], Software
Configurations using FCA [21], Lan-
guage Independent Approach [4], Re-
verse Engineering Feature Models [40]

Construction

TABLE VII. REVERSE ENGINEERING: REQUIRED EXPERTISE

Approaches Required Exper-
tise

Product Variants [22], Concept Analy-
sis [32], Combining FCA with IR [18],
Locating Features in Source Code [36]

FCA

Product Variants [22], Cerberus
[33], Combining FCA with IR [18],
Heuristic-Based Approach [38]

LSI

Natural language Parsing [23] NLP
Dynamic Feature Traces [24], Scenario
Driven Dynamic Analysis [31], Trace
Dependency Analysis [28], Feature-
ous [29], Locating Features in Source
Code [36], Static and Dynamic Analy-
sis [34], Cerberus [33], STRADA [25],
Call-Graphs [30], Focused views on
Execution Traces [26], Concept Anal-
ysis [32], Heuristic-Based Approach
[38], Software Evolution Analysis [27]

Profiling

SNIAFL [35] Vector Space Mod-
elling

Dependence Graph [13], Reverse En-
gineering Feature Models [40]

Domain
Knowledge

and secondary tools availability for each approach.
Evaluation language shows the language in which an approach

has been experimented and validated. Approaches that generate
feature models and require description based documents as input are
language independent, e.g., Evolutionary Algorithms [20] and Soft-
ware Configurations using FCA [21]. Few approaches like RECoVar

35Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE VIII. REVERSE ENGINEERING: PRIMARY TOOL SUPPORT

Approach Primary
Tool

RECoVar [12], Evolutionary Algo-
rithm [20], Feature Models from Soft-
ware Configurations [21], CERBERUS
[33], Source Code Retrieval [19], Com-
bining FCA with IR [18], Heuristic-
Based Approach [38], Dependence
Graph [13], SNIAFL [35], Trace De-
pendency Analysis [28], Locating Fea-
tures in Source Code [36], Scenario-
Driven Dynamic Analysis [31]

NA

Product Variants [22] Progmodel
Natural Language [23] Patch Tool
Language Independent [4] ExtractorPL
Semi Automatic Approach [17] CIDE
Dynamic Feature Traces [24] DFT
Static and Dynamic Analysis [34] Customised

BIT
STRADA [25] STRADA
Focused Views on Execution Traces [26] CGA-LDX
Concept Analysis [32] Customised

GCC
Software Evolution Analysis [27] Trace Scrapper
Concern Graphs [14] FEAT
Automatic Generation [15] EclipsePlug-

in
Concern Identification [16] CoDEx
Featureous [29] Featureous
Using Landmarks and Barriers [37] Prototype Tool
Embedded Call Graphs [30] Call Graph

Prototype
Reverse Engineering Feature Models [40] CDT

TOOLS
(LVAT)

[12] are methodologies and hence they can be applied in any language
but the approaches like Focused views on Execution Traces [26],
Featureous [29] and Call Graph [30] are language dependent as their
tools are dependent on the programming language they have designed
for. Table IX. shows the evaluation language of each approach.

One major shortcoming is the inability of an approach to con-
sider cross cutting constraints (CTC), e.g., Semi-Automatic Approach
for Extraction [17] and Language Independent Approach [4]. Few
approaches like Software Configurations using FCA [21] consider
CTC but they cannot produce feature model beyond two levels of
hierarchy. Results of Dynamic Feature Traces [24], STRADA [25],
Source Code Retrieval [19], Concept Analysis [32], Combining FCA
with IR [18], Heuristic-Based Approach [38] and Trace Dependency
Analysis [28] are highly dependent on the user defined input. This
input is approach centric and can be code knowledge, profiling, test
scenarios or setting the formal context. More detail is expressed
in Table XI. Language constraint, availability of tool and relevant
shortcomings are the primary factors to consider one approach over
the others.

VI. CONCLUSION

This paper has presented a concise classification of reverse
engineering approaches in software product lines. Individual reverse

TABLE IX. REVERSE ENGINEERING: EVALUATION LANGUAGE OF
APPROACHES

Approach Evaluation
Language

Product Variants [22], RECoVar [12], Evolu-
tionary Algorithm [20], Feature Models from
Software Configurations [21]

Language Inde-
pendent

Natural Language [23], Language Independent
[4], Semi Automatic Approach [17], Dynamic
Feature Traces [24], Static and Dynamic Anal-
ysis [34], CERBERUS [33], STRADA [25],
Source Code Retrieval [19], Combining FCA
with IR [18], Heuristic-Based Approach [38],
Software Evolution Analysis [27], Concern
Graph [14], Automatic Generation [15], Con-
cern Identification [16], Featureous [29], Using
Landmarks and Barriers [37]

JAVA

Concept Analysis [32], Embedded Call-Graphs
[30], Locating Features in Source Code [36],
SNIAFL [35], Dependence Graph [13]

C

Source Code Retrieval [19], Focused Views
on Execution Traces [26], Reverse Engineer-
ing Feature Models [40], Scenario-Driven Dy-
namic Analysis [31], Embedded Call-Graphs
[30], Trace Dependency Analysis [28]

C++

TABLE X. REVERSE ENGINEERING: SECONDARY TOOL SUPPORT

Approach Secondary
Tool

Product Variants [22], Natural Language [23],
Language Independent [4], Semi Automatic
Approach [17], Dynamic Feature Traces [24],
STRADA [25], CERBERUS [33], Focused
Views on Execution Traces [26], Dependence
Graph [13], Software Evolution Analysis [27],
Concern Graphs [14], Automatic Generation
[15], Locating Features in Source Code [36],
Featureous [29], Concern Identification [16],
Embedded Call Graphs [30], Using Landmarks
and Barriers [37], Reverse Engineering Feature
Models [40]

NA

RECoVar [12] Treeviz,
Orange

Feature Models from Software Configurations [21] FAMA,
SPLOT

Source Code Retrieval [19] Gibbs,
LDA++

Combining FCA with IR [18] SrcML,
Columbus

Trace Dependency Analysis [28] Rational
Coverage

Scenario-Driven Dynamic Analysis [31] JGraph
Evolutionary Algorithm [20] BETTY
Static and Dynamic Analysis [34] SA4J
Concept Analysis [32] Graphlet
Heuristic-Based Approach [38] MoDeC
SNIAFL [35] SMART

36Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE XI. REVERSE ENGINEERING: MAJOR SHORTCOMING OF
APPROACHES

Approach Major Shortcoming
Language Independent Ap-
proach [4], Semi Auto-
matic Approach [17]

CTC not considered

Dynamic Feature Traces
[24], STRADA [25],
Source code Retrieval
[19], Concept Analysis
[32], Trace Dependency
Analysis [28], Heuristic-
Based Approach [38],
Combining FCA with IR
[18]

Result dependency on user
defined input

RECoVar [12], Reverse
Engineering Feature
Models using Landmarks
and Barriers [37],
Dependence Graph [13]

Require code understand-
ing

Natural Language [23],
Evolutionary Algorithm
[20]

High computation cost

Product Variants [22] Non-re-usability if feature
set changes

Feature Models from Soft-
ware Configurations [21]

Extract Feature Model for
two levels of hierarchy

Static and Dynamic Analy-
sis [34]

Work for only one feature
at a time

CERBERUS [33], Locating
Features in Source Code
[36]

No tool support

Focused Views on Execu-
tion Traces [26]

Only work for C/C++ code

Software Evolution Anal-
ysis [27], SNIAFL [35],
Scenario-Driven Dynamic
Analysis [31]

Method implementation
neglected

Concern Graphs [14], Con-
cern Identification [16]

Intra-method flow of calls
neglected

Automatic Generation [15] Implicit features neglected
Featureous [29] JAVA tool dependency
Embedded Call-Graphs
[30]

C/C++ tool dependency

engineering techniques that cannot produce results in terms of fea-
tures and variants of a product line were not considered. The primary
aim of this short guide is to present such information that can narrow
down the practical options of implementation for the product line
engineers so they can discard the non-feasible options of reverse
engineering. The reverse engineering in product lines is considered
as extraction of artefacts from the code of a product line. However,
current approaches do not propose to extract something architectural
or in a component notation. Reverse engineering is focused on
variability management and features locations at the moment. Future
work in this domain can include the approaches that can extract
executable architecture from a product line code in order to reuse
it across many systems. Hence, the concept of reverse engineering in
software product lines should consider the architectural extraction in
future.

REFERENCES

[1] A. C. Telea, “Reverse engineering–recent advances and applications,”
Ed. Intech 2012.

[2] K. Pohl, G. Böckle, and F. Van Der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer, 2005.

[3] F. vd Linden, K. Schmid, and E. Rommes, “Software product lines
in action: The best industrial practice in product line engineering.
secaucus.”

[4] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and Y. Le Traon, “Towards
a language-independent approach for reverse-engineering of software
product lines,” in Proceedings of the 29th Annual ACM Symposium on
Applied Computing, pp. 1064–1071, ACM, 2014.

[5] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, p. 391, 1990.

[6] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 50–57, ACM, 1999.

[7] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of nl-queries for software maintenance and reuse,”
in Proceedings of the 31st International Conference on Software Engi-
neering, pp. 232–242, IEEE Computer Society, 2009.

[8] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[9] M. L. Nelson, “A survey of reverse engineering and program compre-
hension,” arXiv preprint cs/0503068, 2005.

[10] J. Raymond, J. Canzanese, O. Matthew, M. Spiros, and K. Moshe, “A
survey of reverse engineering tools for the 32-bit microsoft windows
environment,” Drexel University, 2005.

[11] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in
WODA 2003: ICSE Workshop on Dynamic Analysis, pp. 24–27, Citeseer,
2003.

[12] B. Zhang and M. Becker, “Recovar: A solution framework towards
reverse engineering variability,” in Product Line Approaches in Software
Engineering (PLEASE), 2013 4th International Workshop on, pp. 45–48,
IEEE, 2013.

[13] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph.,” in IWPC, pp. 241–247, Citeseer, 2000.

[14] M. P. Robillard and G. C. Murphy, “Concern graphs: finding and describ-
ing concerns using structural program dependencies,” in Proceedings of
the 24th international conference on Software engineering, pp. 406–416,
ACM, 2002.

[15] M. P. Robillard, “Automatic generation of suggestions for program
investigation,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 11–20, ACM, 2005.

[16] M. Trifu, “Improving the dataflow-based concern identification ap-
proach,” in Software Maintenance and Reengineering, 2009. CSMR’09.
13th European Conference on, pp. 109–118, IEEE, 2009.

[17] M. T. Valente, V. Borges, and L. Passos, “A semi-automatic approach
for extracting software product lines,” Software Engineering, IEEE
Transactions on, vol. 38, no. 4, pp. 737–754, 2012.

[18] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in
Program Comprehension, 2007. ICPC’07. 15th IEEE International
Conference on, pp. 37–48, IEEE, 2007.

[19] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Source code retrieval for
bug localization using latent dirichlet allocation,” in Reverse Engineer-
ing, 2008. WCRE’08. 15th Working Conference on, pp. 155–164, IEEE,
2008.

[20] R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides, S. Segura, and
A. Egyed, “Reverse engineering feature models with evolutionary algo-
rithms: An exploratory study,” in Search Based Software Engineering,
pp. 168–182, Springer, 2012.

[21] R. Al-Msie’Deen, M. Huchard, A.-D. Seriai, C. Urtado, and S. Vauttier,
“Reverse engineering feature models from software configurations using
formal concept analysis,” in CLA 2014: Eleventh International Confer-
ence on Concept Lattices and Their Applications, vol. 1252, pp. 95–106,
2014.

[22] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in a collection of
product variants,” in Reverse Engineering (WCRE), 2012 19th Working
Conference on, pp. 145–154, IEEE, 2012.

[23] S. L. Abebe and P. Tonella, “Natural language parsing of program
element names for concept extraction,” in Program Comprehension
(ICPC), 2010 IEEE 18th International Conference on, pp. 156–159,
IEEE, 2010.

37Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[24] A. D. Eisenberg and K. De Volder, “Dynamic feature traces: Finding
features in unfamiliar code,” in Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference on, pp. 337–346,
IEEE, 2005.

[25] A. Egyed, G. Binder, and P. Grunbacher, “Strada: A tool for scenario-
based feature-to-code trace detection and analysis,” in Companion to
the proceedings of the 29th International Conference on Software
Engineering, pp. 41–42, IEEE Computer Society, 2007.

[26] J. Bohnet, S. Voigt, and J. Dollner, “Locating and understanding features
of complex software systems by synchronizing time-, collaboration-and
code-focused views on execution traces,” in Program Comprehension,
2008. ICPC 2008. The 16th IEEE International Conference on, pp. 268–
271, IEEE, 2008.

[27] O. Greevy, S. Ducasse, and T. Girba, “Analyzing feature traces to
incorporate the semantics of change in software evolution analysis,” in
Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on, pp. 347–356, IEEE, 2005.

[28] A. Egyed, “A scenario-driven approach to trace dependency analysis,”
Software Engineering, IEEE Transactions on, vol. 29, no. 2, pp. 116–
132, 2003.

[29] A. Olszak and B. N. Jørgensen, “Featureous: a tool for feature-centric
analysis of java software,” in Program Comprehension (ICPC), 2010
IEEE 18th International Conference on, pp. 44–45, IEEE, 2010.

[30] J. Bohnet and J. Döllner, “Analyzing feature implementation by visual
exploration of architecturally-embedded call-graphs,” in Proceedings of
the 2006 international workshop on Dynamic systems analysis, pp. 41–
48, ACM, 2006.

[31] M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta, “Scenario-driven
dynamic analysis for comprehending large software systems,” pp. 71–80,
IEEE, 2006.

[32] T. Eisenbarth, R. Koschke, and D. Simon, “Derivation of feature com-
ponent maps by means of concept analysis,” in Software Maintenance
and Reengineering, 2001. Fifth European Conference on, pp. 176–179,
IEEE, 2001.

[33] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc, “Cerberus:
Tracing requirements to source code using information retrieval, dy-
namic analysis, and program analysis,” in Program Comprehension,
2008. ICPC 2008. The 16th IEEE International Conference on, pp. 53–
62, IEEE, 2008.

[34] A. Rohatgi, A. Hamou-Lhadj, and J. Rilling, “An approach for mapping
features to code based on static and dynamic analysis,” in Program Com-
prehension, 2008. ICPC 2008. The 16th IEEE International Conference
on, pp. 236–241, IEEE, 2008.

[35] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “Sniafl: Towards a
static noninteractive approach to feature location,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 15, no. 2,
pp. 195–226, 2006.

[36] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source
code,” Software Engineering, IEEE Transactions on, vol. 29, no. 3,
pp. 210–224, 2003.

[37] N. Walkinshaw, M. Roper, and M. Wood, “Feature location and ex-
traction using landmarks and barriers,” in Software Maintenance, 2007.
ICSM 2007. IEEE International Conference on, pp. 54–63, IEEE, 2007.

[38] F. Asadi, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc, “A heuristic-
based approach to identify concepts in execution traces,” in Software
Maintenance and Reengineering (CSMR), 2010 14th European Confer-
ence on, pp. 31–40, IEEE, 2010.

[39] B. Zhang and M. Becker, “Reverse engineering complex feature corre-
lations for product line configuration improvement,” in Software Engi-
neering and Advanced Applications (SEAA), 2014 40th EUROMICRO
Conference on, pp. 320–327, IEEE, 2014.

[40] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse
engineering feature models,” in 2011 33rd International Conference on
Software Engineering (ICSE), pp. 461–470, IEEE, 2011.

38Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

