
Modeling and Formal Specification Of Multi-scale Software Architectures

Ilhem Khlif1,2,3, Mohamed Hadj Kacem1, Khalil Drira2,3 and Ahmed Hadj Kacem1

1 University of Sfax, ReDCAD Research Laboratory, Sfax, Tunisia
2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France
ikhlif@laas.fr, mohamed.hadjkacem@isimsf.rnu.tn, khalil.drira@laas.fr, ahmed.hadjkacem@fsegs.rnu.tn

Abstract—Modeling correct complex systems architecture is a
challenging research direction that can be mastered by providing
modeling abstractions. For this purpose, we provide an iterative
modeling solution for a multi-scale description of software archi-
tectures. We define a step-wise iterative process starting from a
coarse-grained description, and leading to a fine-grained descrip-
tion. The refinement process involves both system-independent
structural features ensuring the model correctness, and specific
features related to the expected behavior of the modeled domain.
We provide a visual notation extending the graphical UML
(Uniform Modeling Language) notations to represent structural
as well as behavioral features of software architectures. The
proposed approach mainly consists of two steps. In the first step,
the architecture is modeled graphically according to the UML
notations. In the second step, the obtained graphical models are
formally specified using the Event-B method. We implement the
resulting models describing structural and behavioral properties
using the Rodin platform and prove their correctness. We apply
our approach for a methodological design of a smart home
scenario for the homecare monitoring of disabled and elderly
persons.

Keywords–Software; Architecture; multi-scale; iterative; model-
ing; UML; formal; specification; structural; behavioral; refinement;
Event-B.

I. INTRODUCTION

Software architecture design has become the key factor
for the success of the development of large and complex
software systems, for mastering the costs and the quality of
their development. The design of a software architecture is a
complex task. On the one hand, we have to describe the system
with enough details for understanding without ambiguity and
implementing in conformance with architects requirements and
users expectations. On the other hand, we have to master
the complexity induced by the increasing model details both
at the human and automated processing levels. Some high
level properties can be expressed on informal descriptions
with a high level of abstractions and checked on simple
formal descriptions. Some other properties need more detailed
descriptions to be expressed and deep specifications to be
elaborated. Description details may be application-independent
and mainly structural such as component decomposition, or
system-specific and mainly behavioral, such as message or-
dering in interaction protocols. An iterative modeling process
that helps architects to elaborate complex but yet tractable
and appropriate architectural models and specifications can be
implemented by successive refinements. Different properties
of correctness and traceability have to be maintained between
the models and the specifications at the different levels of
iterations. Providing Rules for formalizing and conducting
such a process is our objective, which we implemented in

visual modeling notations and formally specified in a formal
description technique. For this purpose, we propose to con-
sider different architecture descriptions with different levels
of modeling details called “the scales”. We define a step-wise
iterative process starting from a coarse-grained description and
leading to a fine-grained description. The proposed approach
mainly consists of two steps. In the first step, multi-scale
architectures are modeled graphically using UML notations.
In the second step, the obtained models are formalized with
the Event-B method, and validated by its supporting Rodin
platform [11]. In order to illustrate our solution, we experiment
our approach with a case study dedicated to the smart home
system for the homecare monitoring of elderly and disabled
persons. The remainder of the paper is organized as follows.
We describe the UML modeling approach in Section II. In
Section III, we present the generated Event-b specifications.
Section IV presents the case study. In Section V, we present
a survey of related work. We conclude and outline some
perspectives in Section VI.

II. ITERATIVE MODELING

At the level of abstraction, a software architecture is repre-
sented as a collection of interconnected components, and it is
at this level that the structural and behavioral properties of soft-
ware systems are addressed. We define multi-scale modeling
as an incremental process where we constantly refine software
systems descriptions. We propose to illustrate UML notations
for describing software architectures at different description
levels. In the first iteration, an abstract model is defined.
At each iteration, design modifications are made and new
details are added. We consider both structural and behavioral
descriptions. In model-driven engineering, traceability links are
established from the application requirements. The traceability
links specify which parts of the design contribute to the
satisfaction of each requirement [9].

A. Structural modeling
We propose structural modeling for describing software

architectures using a visual notation based on UML. To de-
scribe the structure of a multi-scale architecture, we model the
first scale by a given coarse-grained description using a UML
component diagram. This model is refined until reaching a
fine-grained description representing the necessary modeling
details. We define a vertical description scale “Sv+1.h” as
a model that provides additional details of the design, that
pertain to “Sv.h” and more abstraction related to “Sv+2.h”.
A vertical scale can be further refined into several horizontal
description scales (“Sv.h”, “Sv.h+1”,...) thus providing more
details. We consider that v, resp. h, represents the vertical and

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

C0
S0.0

S1.1

C0
C1 C2

C0
C1 C2

S1.2

S2.1

C0

C2

C2.1

C1.1 C2.2

C1

C1.2

S2.4

« Publish-Subscribe »

C0 «Producer-Consumer»

C2

C2.1C1.1

«Event-Dispatcher»

C1V
er

ti
ca

l
It

er
a
ti

o
n

s

…

Horizontal Iterations

C2.2C1.2

Figure 1. Structural modeling

horizontal iterations (v,h ≥ 0). We, first, elaborate an initial
abstract architecture description from the user requirements.
At the first scale S0.0, application requirements are specified
(a unique component C0 is identified). This is the beginning
of the traceability. A first vertical iteration from S0.0 to S1.1

is required in order to provide details on the application, and
refine it with several components. In Figure 1, two components
named C1 and C2 are added. At the same scale, an hori-
zontal iteration is needed to specify the interactions between
components. We represent a link between C1 and C2 in the
scale S1.2. A second vertical iteration is helpful for refining
components with new sub-components, and checking that at
the scale S2.1, the components identification is preserved, as
we keep traceability of a component from one scale to another.
This notation is used for identifying a component: Cm where
m represents a cursor on the current component (m ≥ 0). It can
be decomposed in the next scale. The component C1, is refined
with two sub-components identified as C1.1, C1.2, etc. The
component C2 is refined with two sub-components (C2.1 and
C2.2). Several horizontal iterations are needed in the second
vertical scale to show more specific details (related to the UML
description). An horizontal iteration called S2.2 adds details
on data relating to the components: roles are associated with
components such as “Event-Dispatcher”, “Producer”, “Con-
sumer”, “Producer-Consumer”, “Client”, “Service”, etc. The
scale S2.2 is inserting communication ports and more details;
the scale S2.3 allows the addition of component interfaces.
Finally, we obtain the model S2.4 where connections are
established between components to define the architectural
style of the application. In the illustrated example, we are
limited on three vertical iterations to show the necessary
details. However, the iterative process continues while there are
still components to refine. The number of iterations depends on
the application requirements. Each new iteration does not only
include new sub-components but also adds necessary design
details on the information flow between components. In the
scale S2.4, we propose to refine the interaction (link) between
the two components C1 and C2 illustrated at the scale S1.2

with respect to the following traceability constraints: if the
component C1 performs the role of an “Event-Dispatcher” and
the component C2 is a “Producer-Consumer”, the link between
C1 and C2 in S2.1 will be decomposed into a double assembly
connection in the scale S2.4 connecting (C1.1 and C2.1). We

preserve the model traceability from one scale to another by
decomposing links, at the abstract scale, and refining them,
at the next scale, to show possible connections established
between components. Traceability is a desired characteristic
for software management. However, it is not always possible
to trace every design (or architectural) component back to
requirements. To ensure this property, we check during the
iterative process that the interface compatibility is preserved
in the multi-scale architecture: First, we verify through added
details on component roles that each required interface is asso-
ciated with a producer component and each provided interface
is associated with a consumer component. The main issue
is to ensure the well-typed and the well-connected in UML
component diagram. For this purpose, we have implemented
a tool supporting our approach in visual modeling notation
as an Eclipse plug-in to providethe designerwith an editor for
UML modeling architecture. Using this editor, we make sure
that refined models are correct by design. Second, we check
the interface compatibility through constraints on different
scales using the OCL (Object Constraint Language) interactive
console associated with the Eclipse.

B. Behavioral modeling
To specify behavioral features, we use UML sequence

diagram that provides a graphical notation to describe dynamic
aspects of software architectures [7]. The application is ini-

S2.4

S1.2

S0 .0

C2C1

M1. Transmit Message M 1

M2. Return ACK Message M 2

C2.1C1.1 C1.2 C2.2

par

par

M1.1. Transmit Message M 1.1

M1.2. Transmit Message M 1.2

M2.1 Return ACK Message M 2.1

M2.2. Return ACK Message M 2.2

C0

Figure 2. Behavioral modeling

tialized (at the first scale), and after successive iterations, the
sets of components and interactions among them are identified
in a way that supports the required behavior of the abstract
application level. We describe the specified behavior of an
application using the UML sequence diagram in Figure 2.
The sequence diagram is helpful for describing the message
ordering in interaction protocols during the iterative modeling.
In the first scale, the whole application is presented as a
black box to illustrate the System Sequence Diagram (SSD)
named “C0”. The main issue here is to secure the message
transmission and how elements cooperate to ensure correct
information propagation. Several events may refine an abstract
event: The single message (M1) between actors in the scale
(S1) is refined with a set of messages (M1.1, M1.2, M2.1, and

56Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

M2.2) in the scale (S2), or the content of translated messages
depends on earlier received message. The sequence diagram,
represented in Figure 2, specifies the behavioral features of the
publish-subscribe architecture. When the Producer-Consumer
component C1 sends a message (M1) to the Event dispatcher
component C2 at the scale S1, the Event-dispatcher tracks this
message and, it replies to the Event-dispatcher by sending an
acknowledgement message (M2). At the next scale S2, the two
messages will be refined into a parallel sequence of messages
while keeping track of the type of message sent or received in
the abstract scale.

Our approach is based on a multi-scale modeling that helps
to automate the construction of correct design architectures.
So, we need to specify the software architecture model that
describes the software components and their composition. In
fact, each model is represented as a set of scales, and each
scale denotes a set of architectures. Following our approach,
the designer starts by modeling the first scale architecture
which is refined to give one or many architectures for the next
scale. Then, these architectures are refined in turn to give the
following scale architectures and so on until reaching the last
scale. The transition between scales is ensured by applying
specific rules defined using the Event-B specifications. After
constructing the architectures of software architecture model,
we apply the relation between the two models in order to obtain
model-based architectures with different description levels.

III. EVENT-B FORMAL SPECIFICATION

The aim of formal modeling is to achieve a precise specifica-
tion of the intended structures and behaviors in the design [1].
The advantage of such specifications is to determine whether
a modeled structure can successfully satisfy a set of given
properties derived from the user requirements. We consider
here specifying a multi-scale architecture using the refinement-
based formal method: the Event-B [11]. We use the Event-
B method and its event based definition to formalize UML
models. Our approach facilitates layering and mapping the
informal requirements to traceable formal models. An Event-
B model is made of two types of components: contexts and
machines [2]. The obtained UML models are mapped to Event-
B specifications: the component diagram constitutes the static
part of the architecture, it is specified with the Event-B method
in the Context part. The sequence diagram constitutes the
dynamic part of the architecture, it is specified with the Event-
B method in the Machine part. A context describes the static
part of a model, and a machine describes the dynamic behavior
of a model. Each context has a name and other clauses like
“Extends”, “Constants”, “Sets” to declare a new data type
and “Axioms” that denotes the type of the constants and the
various predicates which the constants obey. Machines and
contexts can be inter-related: a machine can be refined by
another, can see one or several contexts, while a context can be
extended by another [8]. A multi-scale software architecture
is described with structural features and behavioral features.
Structural features are specified with one or several contexts
and behavioral features are specified with one or several
machines.

A. Structural specifications
In the component diagram we specify components that con-

stitute the architecture, their types and their connections. This

diagram constitutes the static part of the defined architecture. It
is specified in the Context part. In the first scale S0, the graph-
ical model is transformed into an Event-B specification called
Context0. In the Context0, we specify the whole application
with a Component as constants. The component, that composes
the architecture at scale S0.0, is named C0. This is specified
by using a partition in the AXIOMS clause (C0 partition).

CONTEXT
Context0

SETS
Component

CONSTANTS
C0

AXIOMS
C0 partition : partition(Component, {C0})

END

In the next scales, we use the refinement techniques to gradu-
ally add details until obtaining the final scale specification.
A new context named Context1 extends the Context0 and
specifies new components in the application. We define two
components C1 and C2 as constants and the established link
between them. Formally, links are specified with an Event-B
relation between two components (Link partition).

CONTEXT
Context1

EXTENDS
Context0

CONSTANTS
C1, C2, Link

AXIOMS
C1 partition : partition(Component, C0, {C1}, {C2})
Link partition : Link ∈ C1 ↔ C2

END

A Context2 is extending the previous Context1, and is adding
sub-components of each component. We specify the role of
each component (producers, consumers and event-dispatcher)
as constants. Connectors are specified with an Event-B relation
between two components. The set of Connectors is specified
formally with two partitions (Ct1 part, Ct2 part).

CONTEXT
Context2

EXTENDS
Context1

SETS
Role

CONSTANTS
C1.1, C1.2, C2.1, C2.2, Prod,
Cons,EventDis, Prod1, Prodn,
Cons1, Consn,ED1, EDn,Connector1, Connector2

AXIOMS
C2 partition :
partition(Component, {C1.1}, {C1.2}, {C2.1}, {C2.2})
Ct1 part : Connector1 ∈ C1.1 ↔ C2.1
Ct2 part : Connector2 ∈ C1.2 ↔ C2.2
Role part :
partition(Role, {Prod}, {Cons}, {EventDis})
Cons = {C1, .., Cn} ∧ C1 6= C2 ∧ ..∧ 6= Cn
EventDis = {ED1, .., EDn} ∧ ED1 6= ED2 ∧ ..∧ 6= EDn
Prod = {P1, .., Pn} ∧ P1 6= P2 ∧ ..∧ 6= Pn

END

B. Behavioral specifications
The Event B machine is used formally, to find structural

errors and to verify the semantic of the UML model. To specify
behavioral features, we specify the abstract description scale
with a machine at a high level of abstraction. Then, we add all

57Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

necessary details to the first machine by using the refinement
process. In the first machine, we only specify the modeled
application by extending Context0.

MACHINE
Machine0

SEES
Context0

VARIABLES
C0

INVARIANTS
inv : C0 ∈ BOOL

EVENTS
INITIALISATION

BeginAct
act : C0 := TRUE
EndAct

END

Machine1 is a refinement of the Machine0, using the context
Context1 and adding communication between the components
C1 and C2. The behavior is described as follows: the compo-
nent C1 sends a Message to the component C2. When the
component C2 becomes available, it receives the Message,
processes it and sends the Acknowledgement Message. When
the component C1 becomes available, it receives the ACK-
Message. The invariants (Send Message, Receive Ack) spec-
ifies what is the sent message, who is the sender and the
receiver. The Machine1 has a state defined by means of a
number of variables and invariants. Some of variables can be
general as the variable Send, which denotes the sent message
and the variable Receive, which denotes the received message.
The variable Send is defined with the invariant (Send Msg)
which specify that Send is a relation between two components
so that the sender, the receiver and the message are known.

MACHINE
Machine1

REFINES
Machine0

SEES
Context1

VARIABLES
Send,Receive

INVARIANTS
Send Message : Send ∈ BOOL
Receive ACK : Receive ∈ BOOL

EVENTS
INITIALISATION

BeginAct
act1 : Send := FALSE
act2 : Receive := FALSE
EndAct
EVT
init1 : Send ∈ C1 → C2
init2 : Receive ∈ C1 → C2
init3 : Transmit := C1 → True, C2 → False

END

We follow the same method to specify a second ma-
chine named Machine2 which refines Machine1, using the
context Context2 and adding communication between the
sub-components C1.1, C1.2, C2.1 and C2.2. The invariants
(SendMsg1.1 , SendMsg1.2 , ReceiveAck2.1 , ReceiveAck2.2)
are specified in the INVARIANTS clause to check that each
sub-component can’t send a message or receive an acknowl-
edgment only if it is authorised.

MACHINE
Machine2

REFINES
Machine1

SEES
Context2

VARIABLES
SendMsg1.1, SendMsg1.2, ReceiveAck2.1, ReceiveAck2.2

INVARIANTS
Send Message : SendMsg1.1, SendMsg1.2 ∈ BOOL
Receive ACK : ReceiveAck2.1, ReceiveAck2.2 ∈ BOOL

EVENTS
INITIALISATION

BeginAct
a1 : SendMsg1.1 := FALSE
a2 : SendMsg1.2 := FALSE
a3 : ReceiveAck2.1 := FALSE
a4 : ReceiveAck2.2 := FALSE
EndAct
EVT
init1 : SendMsg1.1 ∈ C1.1 → C2.1
init2 : SendMsg1.2 ∈ C1.2 → C2.2
init3 : ReceiveACK2.1 ∈ C1.1 → C2.1
init4 : ReceiveACK2.2 ∈ C1.2 → C2.2
init5 : transmit1 := C1.1 → True, C2.1 → False
init6 : transmit2 := C1.2 → True, C2.2 → False

END

The Event-B machine is used formally, to find structural errors
and to verify the semantic of the UML model. Besides, behav-
ioral properties are checked like liveness and reachability. The
reachability means that the components are able to capture all
exchanged messages. We formulate those properties as predi-
cates (INVARIANTS, AXIOMS). We check that each compo-
nent only sends a message if it is authorised. This is controlled
by the invariants (Send-Msg, Receive-ACK). Reaching the last
scale description by using refinement techniques, we guarantee
that refined models are not contradictory and we ensure that
they are correct by design. The multi-scale modeling helps to
automate the construction of correct design architectures. The
aim is to derive those UML models by applying correctness
preserving transformations, i.e. refinements, that conform to
the constraints defined by the application and by the adopted
architecture styles. The refinement techniques proposed by this
method allow to represent architectures at different abstraction
levels and are implemented using the Rodin platform.

IV. APPLICATION TO THE SMART HOME

This section focuses on modeling the smart home system
for the homecare monitoring of elderly and disabled persons.
The main issue is to ensure efficient management of the
optimized comfort, and the safety of the elderly and disabled
person at home [5]. We illustrate, in Figure 3, the constituent
elements of the smart home application. The monitoring center
is composed of three systems: the Environment Control and
Comfort Management, the Emergency Surveillance Center,
and the Medical Surveillance Center. The Home Care Actor
interacts with the monitoring center, by setting medical or
emergency conditions; the Equipment includes sensors and
house devices; the emergency surveillance center controls
critical situations using the activity sensors. Activity sensors
include fall sensors, presence sensors, video camera and micro-
phone. The medical surveillance center monitors physiological
sensors. While there are problems, the center requires the med-
ical assistant intervention (the doctor, the nurse). The comfort
management and the environment control system guarantees a
comfort life for the users. This center enables communications
between users, control the environment sensors (Humidity

58Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Smart

Phone

Tablet

PC

Fall

Sensor

Presence

Sensor

Humidity

Sensor

Air Conditionner

Video

Camera

Microphone

Convector

Blood

Pressure

Sensor Oximeter

Pulse

WeightScale

sensor

Temperature

Sensor

Doctor Nurse

HomeCare Actor

Medical Surveillance

Center

Environment Control &

Comfort Management

Monitoring CenterEquipement

Wifi
Device

Physiological Sensor
Medical

Assistant

Emergency

Service

Emergency Surveillance

Center

Eldery

Person

Relatives

User

Activity Sensor

Environment Sensor

Figure 3. Smart Home application

and Temperature Sensors), and commands the house devices
(Convectors, Air conditioners).

A. Smart Home Model
We experiment our approach by applying successive iter-

ations to the smart home application. We obtained then the

SmartHome

Monitoring-

Center

HomeCare-

Actor
Equipement

SmartHome
S0.0

S1.2

S3.4

« Publish-Subscribe»

SmartHome

«Producer-Consumer»

Homecare-Actor

«Producer-Consumer»

Equipement
«Network-Dispatcher»

Monitoring-Center

User

Medical

Assistant

Emergency

Service

Doctor

Nurse

Relative

Disabled

/Eldery

Person

Emergenc

Center

Environement

Control&Comfort

Management

Medical

Surveillance

Center

Emergency

Surveillance

System

Environement

Sensor

PhysiologicalS

ActivitySensor

HouseDevice

HumidityS

TemperatureS

Convector

AirConditi

PressureS

WeightScaleS

Oximeter

Fall Sensor

PresenceS

VideoCamr

aMicrophon

« Publish-Subscribe »

SmartHome

Physiological

Sensor

ActivitySensor

Environement

Sensor

«Producer-Consumer»

Equipement

HouseDevice

«Network-Dispatcher»

Monitoring-Center

Medical

SurveillanceCentr

Emergency

Surveillance

Environement&

ComfortManagem

Medical

Assistant

Emergency

Service

«Producer-Consumer »

Homecare-Actor

User

S2.4

Figure 4. The Smart Home model

following results: In S0.0, we define the application named
“SmartHome”. The constituent systems of the smart home
are described (in S1.1): HomeCare-Actor, Equipment, and
MonitoringCenter). Those systems communicate with each
other via the monitoring center. Those relationships are rep-
resented (in S1.2) as links. In Figure 4, We illustrate the
iterative process applied to the smart home system. In the
next scale, the three components are refined and specified
with an associated role as shown in Figure 4. The Mon-
itoringCenter plays the role of an “EventDispatcher”. The
HomeCare-Actor and Equipment play the role of “Producer-
Consumer” in the application. We briefly describe the list of
required/provided services of the HomeCare-Actor component.
The MedicalAssistant receives information about the patient’s
situation from the MedicalSurveillanceCenter, he manages the
patient’s medical care (provides) and returns a report after the
care. The EmergencyService receives information about a crit-
ical situation EmergencySurveillanceCenter, reacts to save the
patient (provides), and returns a report after the intervention.
The User receives not only emergency and medical services
but also comfort services like online communication or house
device command provided by the EnvironementControl And
ComfortManagement component. During the iteration process,
we apply the link decomposing rule with respect to the
component role: if C1 plays the role of an “Event-dispatcher”
and C2 acts as a “Producer-Consumer”, the link in the scale
S1.2 between C2 which is related to “HomeCareActor” or
“Equipment” and C1 in the scale S1.2 will be decomposed
into a double assembly connection in the scale S2.4 between
C1.1 which is related to “MonitoringCenter” and C2.1 which
is related to ‘HomeCareActor” or “Equipment”. While there
are still components to refine in the smart home, we move
to the third scale to add more design details. We focused on
mastering the system complexity description details through
including the third scale. This scale has not only included
new sub-components but also detailed the information flow
between them. Each added sub-component (e.g. the doctor) is
important for the design process. It influences the abstract level
where smart home requirements are specified. We illustrate the
last horizontal scale S3.4 adding new sub-components (Doctor,
Emergency Service, Video Camera, etc), and their connections.

B. Smart Home system-specific properties

In Figure 5, we present one of three fragments of the
UML sequence diagram to demonstrate the behavior of con-
stituent elements. The sequence diagram shows the instances
participating in the interaction having two dimensions: the
vertical dimension represents time; the horizontal dimension
represents different objects which is related to the behavior
of the smart home components. We illustrate the first scale
S0.0 using the SSD named “Smart Home” to show the whole
system (as a black box). A vertical refinement called S1.2

allows to describe the objects HomeCare-Actor, Equipment,
and MonitoringCenter) and the exchanged messages in the
diagram “Sd Monitoring”. An object of class Equipment starts
the behavior by sending an alert message to an object of class
MonitoringCenter). This object responds by an acknowledg-
ment message to the equipment and sets the Sleep mode.
The monitoring center sends the information to the object
HomeCare-Actor that will respond immediately and send re-
turn message describing the situation after the care.

59Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

SmartHome

Sd EmergencySurveillance

User

1.1 SendAlert on an accident

EmergencyService

3.1.Send an alert to react4.1 Respond

to save 5.1 Send a report

on the patient situation

Sd Emergency Surveillance

Emergency

Center

EmergencySurveillance

Center

1.1.1 Send alert on an accident

1.1.4 Send sound alert on a detected emergency situation

Presence

Sensor

2.1.1 Send ACK & Set Sleep Mode for the Presence sensor

Eldery

person

Video

Camera
Microphone

1.1.2 Send signal on the preseence of the person in a place
1.1.3 Send video alert on a detected emergency situation

2.1.4 Send ACK & Set Sleep Mode for the microphone
4.1.1Respond

2.1.2 Send ACK & Set Sleep Mode for the Fall sensor

2.1.3 Send ACK & Set Sleep Mode for the video camera

Fall

Sensor

Sd Monitoring

HomeCareActor MonitoringCenter Equipement
1.Send Status/Alert
2.Send-ACK & set Sleep Mode3.Send Information

5.Send a report after the care
4. Respond

2.1Send-ACK & set Sleep Mode

Emergency

SurveillanceCenter

S2.4

S1.2

S0.0

S3.4

3.1.1Send an alert on an

emergency case to react

5.1.1 Send a report on the

patient situation

ActivitySensor

par

par

Figure 5. Fragment of the UML Sequence Diagram

C. Event-B specifications

We apply the Event-B refinement techniques to check the
correctness of the multi-scale architecture applied to the Smart
Home. We illustrate the Context2 that is extending the previous
Context1, and is adding all sub-components in the smart home.
They are specified with three partitions: equipment-partition,
Monitoring-partition and Actor-partition. We specify in the
Context2 the components type role (producer-consumers and
event-dispatcher) as constants. There are many connections
between components. The Connectors are specified with con-
stants in the CONSTANTS clause. The set of Connectors is
composed of all Connectors. This is specified formally with a
partition (Connector-partition).

CONTEXT
Context2

EXTENDS
Context1

CONSTANTS
ActSensor,Device, EnvSensor, PhysSensor,
EmerSurvCenter, EnvControl,MedSurvCenter,
User,MedAssistant, EmerService, Connector1, ..

AXIOMS
Eq partition :
partition(Component, {ActSensor}, {Device},

{EnvSensor}, {PhysSensor})
Eq partition :
partition(Component, {EmerSurvCenter

{EnvControl}, {MedSurCenter})
Connector = Connector1, .., Connector15>

END

To specify behavioral features, we have two steps. First,
we specify the first machine at a high level of abstraction.
Second, we add all necessary details by using the refinement
technique. We illustrate an example of machines called Ma-
chine1 that is refining the Machine0, adding communication
between the Smart Home components. The behavior is de-

scribed as follows: the Monitoring-Center sends a Message to
Equipment and then remains released from resources. When
the component Equipment becomes available, it receives the
Message, process it and sends the Acknowledgement Message.
When Monitoring-Center becomes available, it receives the
ACK-Message, process it and then becomes deactivated. The
invariants (Send Message, Receive Ack) specifies what is the
sent message, who is the sender and the receiver (The same
description for the message from the Monitoring-Center to the
HomeCare-Actor Component).

MACHINE
Machine1

REFINES
Machine0

SEES
Context1

VARIABLES
Send,Receive

INVARIANTS
Send Message : Send ∈ BOOL
Receive ACK : Receive ∈ BOOL

EVENTS
INITIALISATION
EVT
i1 : Send ∈ MonitoringCenter → Equipment
i2 : Receive ∈ MonitoringCenter → Equipment
i3 : transmit := MonitoringCenter → True,

Equipment → False
i4 : transmit := MonitoringCenter → True,

HomeCareActor → False
END

During the refinement process, we check the correct transmis-
sion of messages between actors and we prove the correctness
property using the Event-B specifications. We demonstrate
that there is no conflict problem between messages sent and
received in parallel sequence which is not possible and correct
with UML notations. Dispatchers cooperate together to route
information from the producer-consumers to the subscribed
event-dispatcher (Monitoring-Center). This interaction is gov-
erned by a principle of information dissemination requiring
that produced information have to reach all subscribed con-
sumers. This is to check the correct message transmission
between dispatchers and producer-consumers.

The Event-b specifications allow to guarantee a correct
by construction architectures. This formal method provides
three steps. At the first step, the designer describes the nec-
essary information for the software architecture model and
the relation between them. Then, the second step consists in
generating automatically all the correct design architectures
following a multi-scale modeling approach. In fact, for each
model, a scale is defined by the designer. Then, it is refined
by successively adding smaller scale details. This refinement
process is performed by applying specific rules. Finally, the
third step is the selection of the efficient architecture according
to resource constraints.

V. RELATED WORK

Considerable research studies have been proposed on the
description of software architectures. Multi-level modeling
approaches [10] have been proposed to represent the different
abstraction levels. Baresi et al. [3] presented a UML based
approach and proposed formal verification and validation of
embedded systems. The approach is implemented using the
“CorrettoUML”: a formal verification tool for UML models.
Other research studies have been proposed for the specification

60Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

of software systems using formal methods. Model verification
activity [12] is performed to ensure the correctness of model.
Formal verification means that any errors found in the design
of the system should be corrected. Ben Younes et al. [4]
proposed a meta-model transformation between UML Activity
Diagram and Event B models. A formal framework is defined
to ensure the correctness of the proposed transformations,
and the event B method is used for the formal verification
of applications. Bryans et al. [6] presented a model-based
approach to assist in the integration of new or modified con-
stituent systems into a System of Systems. The authors defined
two levels for system composition, the high-level structural
view that considers the connections within the system, and
the low-level behavioral view that deals with the behavior of
contractual specifications. They treated an industrial case study
for modeling Audio/Video system.

We can note that the research activities [3], [4], [6] deal
only with structural features during the design of the architec-
ture. They do not take into account the respect of behavioral
featuress to validate the architecture. Whereas, in our work,
we deal with both structural and behavioral features.

We analyze that several studies have been performed on
the modeling of multi-level architectures based on UML.
These semi-formal approaches did not, however, include the
concept of refinement. Although formal techniques and, more
specifically, works based on graph transformations allow the
architecture refinement, they require certain expertise in mathe-
matics for architects. Moreover, only few studies have provided
a clearly defined process that takes the compatibility between
different description levels into account, a challenging condi-
tion for the multi-level description of software architectures.
Model-based methods have addressed significant challenges
in software Engineering. Semi-formal models are used in
the architectural description of complex software systems.
This representation has advantages, mainly with regard to
comprehension, and can help to clarify areas of incompleteness
and ambiguity in specifications.

In this study, we have considered that a given modeling
level can be described by both vertical and horizontal scales.
Our work will help the architect to design a correct and
elaborated solutions for modeling multiple different levels of
description of the same modeling level through the scales.
Thus, we applied our model-based approach for describing
multi-scale architecture , defining both the structure and the
behaviour of the complex system and interactions between
them. Event-B as a formal method support an interactive and
an automatic theorem proving so that the resulted specification
after the transformation process can be proved automatically.
With the notion of refinement, we can to perform successive
refinement to the Event-B model in order to specify different
description scales.

VI. CONCLUSION

In this paper, we have presented a multi-scale modeling
and specification approach for software architectures. We have
proposed UML notations to represent the structure and the
behavior for modeling different description scales, and second
formally specified the models with the Event-B method. The
formalisation phase allows to formally specify both structural
and behavioural features of these architectures at a high level
of abstraction using Event-B method. We implemented the

elaborated specifications under the Rodin platform. We have
also presented the application of our approach to the smart
home scenario. Finally, we have presented some research
studies discussing multi-level modeling for software architec-
tures using semi-formal and formal methods. Currently, we
are working on the improvement of the formal verification
of architectural properties, and the model transformation from
UML to Event-B. In our future work, we expect to apply the
multi-scale approach to other use-cases for modeling complex
systems architectures (e.g. System of Systems (SoS)) and
implement a tool supporting the approach.

REFERENCES
[1] Compatibility and inheritance in software architectures. Science of

Computer Programming, 41(2):105 – 138, 2001.
[2] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.

Cambridge University Press, New York, NY, USA, 1st edition, 2010.
[3] L. Baresi, G. Blohm, D. S. Kolovos, N. Matragkas, A. Motta, R. F.

Paige, A. Radjenovic, and M. Rossi. Formal verification and validation
of embedded systems: The UML-based mades approach. Softw. Syst.
Model., 14(1):343–363, Feb. 2015.

[4] A. Ben Younes, Y. Hlaoui, and L. Jemni Ben Ayed. A meta-model
transformation from uml activity diagrams to event-b models. In Com-
puter Software and Applications Conference Workshops (COMPSACW),
2014 IEEE 38th International, pages 740–745, July 2014.

[5] S. Bonhomme, E. Campo, D. Esteve, and J. Guennec. Methodology and
tools for the design and verification of a smart management system for
home comfort. In Intelligent Systems, 2008. IS ’08. 4th International
IEEE Conference, volume 3, pages 24–2–24–7, Sept 2008.

[6] J. Bryans, J. Fitzgerald, R. Payne, A. Miyazawa, and K. Kristensen.
Sysml contracts for systems of systems. In System of Systems Engi-
neering (SOSE), 2014 9th International Conference on, pages 73–78,
June 2014.

[7] S. Cı̂mpan, F. Leymonerie, and F. Oquendo. Software Architecture:
2nd European Workshop, EWSA 2005, Pisa, Italy, June 13-14, 2005.
Proceedings, chapter Handling Dynamic Behaviour in Software Archi-
tectures, pages 77–93. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005.

[8] T. S. Hoang, H. Kuruma, D. Basin, and J.-R. Abrial. Integrated
Formal Methods: 7th International Conference, IFM 2009, Düsseldorf,
Germany, February 16-19, 2009. Proceedings, chapter Developing
Topology Discovery in Event-B, pages 1–19. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009.

[9] I. Omoronyia, G. Sindre, S. Biffl, and T. Stålhane. Relating Software
Requirements and Architectures, chapter Understanding Architectural
Elements from Requirements Traceability Networks, pages 61–83.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[10] P. Petrov, U. Buy, and R. Nord. The need for a multilevel context-
aware software architecture analysis and design method with enterprise
and system architecture concerns as first class entities. In Software
Architecture (WICSA), 2011 9th Working IEEE/IFIP Conference on,
pages 147–156, June 2011.

[11] W. Su, J. Abrial, and H. Zhu. Formalizing hybrid systems with event-b
and the rodin platform. Sci. Comput. Program., 94:164–202, 2014.

[12] B. Uchevler and K. Svarstad. Assertion based verification using psl-like
properties in haskell. In Design and Diagnostics of Electronic Circuits
Systems (DDECS), 2013 IEEE 16th International Symposium on, pages
254–257, April 2013.

61Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

