
Toward Automatic Performance Testing for REST-based Web Applications

Chia Hung Kao

Department of Applied Mathematics
National Taitung University

Taitung, Taiwan
Email: chkao@nttu.edu.tw

Chun Cheng Lin

CloudCube Co., Ltd
Taipei, Taiwan

Email: jimlin@cloudcube.com.tw

Hsin Tse Lu

DATA, Institute for Information Industry
Taipei, Taiwan

Email: oliu@iii.org.tw

Abstract—Nowadays, more and more web applications are devel-
oped to provide their services over the Internet. In addition to
functionalities, performance characteristics, including response
time, throughput, latency, stability etc., are key factors when
selecting appropriate web applications. However, complex archi-
tectures, fast changing requirements, strict quality criteria and
time to market pressure all impose difficulties and complexities
on testing activities. Therefore, for software testers, how to
evaluate and ensure performance characteristics systematically
and efficiently becomes a critical challenge. In this paper, an
approach for automatic performance testing for Representational
State Transfer (REST)-based web applications is introduced.
Based on Application Programming Interface (API) document
and test cases, the proposed approach employs natural language
processing (NLP) to parse, match and generate test scripts for
performance testing tool automatically. It not only eases the
burden of test scripts design, implementation and maintenance
efforts on software testers, but also facilitates the execution of
performance testing tasks.

Keywords–Performance testing; web application; software test-
ing.

I. INTRODUCTION

Software companies and service providers develop more
and more web applications to provide their services over the
Internet. In addition to functionalities, potential users will
consider performance characteristics, including response time,
throughput, latency, stability, etc. when selecting appropriate
web applications for their tasks [1]. Nowadays, in order to
fulfill various functional and quality requirements from users,
the complexity of web applications is increasing dramatically.
Multi-tier considerations, the composition of different soft-
ware components, architecture concerns, distributed or cluster
designs, and data processing mechanisms, all impose design
and implementation complexities on web applications. Thus,
the difficulties of testing activities arise correspondingly [2].
Furthermore, fast changing requirements and time to market
pressure could worsen the situation. In such circumstances,
software testers need to frequently create or refine test cases,
redesign and implement corresponding test scripts, and execute
test scripts to acquire results for further actions. Therefore, how
to evaluate and ensure the performance characteristics of web
applications systematically and efficiently is a critical issue for
software testers [3].

In this paper, an approach for automatic performance
testing for REST-based web applications is introduced. It
aims to provide software testers with an integrated process
from test cases design, automatic test scripts generation, to

test execution. Two major software artifacts, including APIs
document and test cases, generated from the software de-
velopment process are used in the proposed approach. APIs
document describes information about functionalities provided
by specific web application. On the other hand, test cases
depict the test scenarios designed by software testers. Through
the composition of necessary APIs, the test scenario can be
achieved for testing tasks. Based on APIs document and test
cases, the proposed approach uses NLP [4] to parse and match
corresponding test cases and API, and then generate test scripts
for performance testing tool automatically. On the one hand,
it eases the burden of test scripts design, implementation
and maintenance efforts on software testers. On the other
hand, software testers can focus more on the design of test
cases and the analysis of test results. Finally, it facilitates the
execution of performance testing tasks through automation.
Thus, the performance characteristics of web applications can
be identified efficiently for further actions on development,
operation and maintenance tasks.

The remainder of this paper is organized as follows. Section
II reviews related studies. Section III describes the design of
the proposed architecture and Section IV presents the usage
of the architecture. Finally, Section V presents conclusion and
future works.

II. RELATED WORK

In this Section, related studies about automatic test
cases generation are introduced. Nébut, Fleurey, Traon, and
Jézéquel [5] proposed an approach for automating the gener-
ation of test scenarios from use cases. Through the developed
transition system, the approach synthesized and generated
test cases based on use cases extended with contracts. Jiang
and Ding [6] also designed a framework for automatically
generating test cases from textual use cases. By using use cases
in specific format, the framework built an activity table for
constructing EFSM (Extended Finite State Machine), which is
the base for test cases generation. Lipka et al. [7] presented a
method for semi-automated generation of test scenarios based
on textual use cases. The method derived the scenarios from
use cases with annotations and then generated the sequence of
method invocations for testing. Landhäußer and Genaid [8]
proposed the usage of ontology to present the relationship
among source code, natural language elements of user stories
and test scripts. Through the ontology, the test steps and
related artifacts (e.g., APIs and test scripts) can be identified
and reused for testing new user stories. Wang et al. [9]
proposed an approach that automatically generates executable

68Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Figure 1. Overview of the automatic performance testing architecture.

system test cases from use case specifications and a domain
model. NLP is also used in the approach to extract behavioral
information from use cases for test automation. Chen and
Miao [10] presented an automatic approach to generate test
scripts automatically against JavaScript. The study parsed test
cases in XML format and generated Java code for Selenium
to execute testing tasks.

To sum up, several studies discussed about the automatic
generation of test cases for testing tasks. Based on previous
studies, the gap between test scenarios and test scripts is
considered in this study through the matching of test cases
and APIs document to achieve more automatic testing. In
addition, the integrated environment and process for facilitating
automatic testing is designed and introduced in this paper.

III. ARCHITECTURE DESIGN

Fig. 1 depicts the design of the automatic performance test-
ing architecture. Major actors and components are described
as follows.

• Software Testers: Software testers are responsible
for all the testing activities throughout the software
development process. Generally, the testing activities
include (1) identify test environment, (2) identify per-
formance acceptance criteria, (3) plan and design tests,
(4) configure the test environment, (5) implement the
test design, (6) execute the test, and (7) analyze results,
report and retest [11]. In the proposed approach,
software testers can focus on the planning and the
design of test cases based on requirements or quality
criteria. The implementation and the execution of tests
can be achieved automatically.

• Software Developers: Based on specific software
development process, software developers perform re-
quirement analysis, design, implementation and main-
tenance tasks to web applications. The implementation
will be committed to code repository for version
control and continuous delivery. Besides, software
developers should update modifications to the API
Catalog in the proposed architecture correspondingly.

• Test Case: Software testers are responsible for the
design, implementation and maintenance of test cases
based on requirements and specifications. Generally,
test cases include preconditions, test steps, postcondi-
tions, and expected results. Test cases can be preserved
and managed by test case management systems. In
addition, several test case management systems (e.g.,
Testopia [12]) provide APIs for external access of
specific contents within test cases. In the architecture,
the test case will be retrieved and analyzed by a test
case parser.

• Test Case Parser: The test case parser is responsible
for analyzing the test steps written in test case. By
using NLP, major components can be analyzed and
identified, including cardinal number (CD), singular
noun (NN), plural noun (NNS), verb (VB), determiner
(DT), to (TO), etc. Basically, CD can be considered
as the configurations (e.g., number of users and work-
load) in the performance test case. NN and NNS could
be actors, specific objects and the system, respectively.
Finally, VB may indicate specific operations of the
system. The analysis result can be used to match
corresponding APIs and determine configurations in
test scripts.

• API Catalog: The API catalog helps software de-
velopers to create, update, query and maintain API
documents for software systems. Famous API cata-
logs [13] or API management services [14] include
Swagger, WSO2 API Management, Apigee, 3Scale,
etc. It is anticipated that software developers update
API documents to the API catalog once changes
happen. Thus, the API information will be kept up to
date with the committed code and the deployed test
target.

• API Parser: The API parser is responsible for ana-
lyzing components in an API document. In recent web
applications, REST has emerged as the foundation and
development principle of the web architecture [15]. A
RESTful web service contains three major aspects: the

69Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Figure 2. API catalog for web application Smart Tourism Taiwan.

URL of the service, the communication data, and the
operations supported by HTTP methods. Through the
parsed result, the information about how to invoke the
service can be identified.

• Test Script Generator: The test script generator is
used to generate corresponding test scripts based on
test case and API documents. Three major compo-
nents, the API Mapper, the Test Parameter Configu-
rator and the Test Script Builder, are included in the
test script generator. Firstly, the API mapper analyzes
the parsed result of test case, searches and maps cor-
responding APIs based on the information extracted
from API catalog. If a specific API is matched, the
information described in the API document is parsed
and obtained. Secondly, test parameter configurator
helps to identify configurations (e.g., number of users
and workload) described in test case. Finally, based
on the information extracted from test case and API
document, the performance test script conformed to
specific format of test tool is generated by the test
script builder.

• Test Tool After the generation of performance test
script, the test tool loads and executes the test script
to test the target system. In current design, Apache
JMeter [16] is selected as the test tool in the perfor-
mance testing architecture.

IV. CASE DEMONSTRATION

A web application “Smart Tourism Taiwan” [17] is used
to describe the usage of the automatic performance testing
architecture. The information of all the APIs are managed
by Swagger, and Fig. 2 depicts the screenshot of partial
API information. The test case is “1000 users find top ten
attractions.” Through NLP, “1000” can be identified and
used as the input of “ThreadGroup.num threads” for thread
configuration (number of users) in jmx for JMeter. On the
other hand, based on the information (API classification,
URL and description) from Swagger and NLP result, the
API ’/attraction/findTopTen’ can be identified. Then, the in-
formation of “Request URL” can be parsed and used as
the input of “HTTPSampler.domain,” “HTTPSampler.path,”
“Argument.name,” and “Argument.value” in jmx for JMeter.
Based on the content parsed and retrieved from test case and
API document, the test script can be built for JMeter for
performance testing tasks.

V. CONCLUSION

Performance characteristics are important factors when
users select and use web applications. Due to growing com-
plexity of web applications and the fast changing requirements,
efficient and systematic performance evaluation will be the
key for further development, operation and maintenance tasks.
In this paper, an approach for automatic performance testing
for REST-based web applications was introduced. It used
NLP to parse and match test cases and API document, and
then generate test scripts for the performance testing tool
automatically. Through the approach, the burden of software
testers can be eased and the performance testing tasks can
be facilitated efficiently. A demo case was also introduced to
describe the feasibility of the design. Future works include
the identification and modeling of test cases to better analyze
and realize the purpose of testing tasks. In addition, the API
document can be indexed (e.g., by Apache Solr [18]) for
better identification, setting and deployment for more flexible
and complex test scenarios. Furthermore, the precision of API
matching will be analyzed quantitatively and the false positive
should be handled. Finally, the overall design will be deployed
and evaluated in the development process of various REST-
based web applications.

ACKNOWLEDGMENT

This study is supported by the Ministry of Science and
Technology of the Republic of China under grant MOST 105-
2218-E-143 -001 -.

REFERENCES

[1] E. J. Weyuker and F. I. Vokolos, “Experience with Performance Testing
of Software Systems: Issues, an Approach, and Case Study,” IEEE
Transactions on Software Engineering, vol. 26, no. 12, Dec. 2000, pp.
1147–1156.

[2] A. Bertolino, “Software Testing Research: Achievements, Challenges,
Dreams,” Proceedings of the 2007 Future of Software Engineering, May
2007, pp. 85–103.

[3] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software
Performance Engineering,” Proceedings of the 2007 Future of Software
Engineering, May 2007, pp. 171–187.

[4] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. O’Reilly Media, 2009.

[5] C. Nébut, F. Fleurey, Y. L. Traon, and J. M. Jézéquel, “Automatic
Test Generation: A Use Case Driven Approach,” IEEE Transactions
on Software Engineering, vol. 32, no. 3, Mar. 2006, pp. 140–155.

70Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[6] M. Jiang and Z. Ding, “Automation of Test Case Generation From
Textual Use Cases,” Proceedings of the 4th International Conference
on Interaction Sciences, Aug. 2011, pp. 102–107.

[7] R. Lipka, T. Potuák, P. Brada, P. Hnetynka, and J. Vinárek, “A Method
for Semi-automated Generation of Test Scenarios based on Use Cases,”
Proceedings of the 41st Euromicro Conference on Software Engineering
and Advanced Applications, Aug. 2015, pp. 241–244.

[8] M. Landhäußer and A. Genaid, “Connecting User Stories and Code
for Test Development,” Proceedings of the 2012 Third International
Workshop on Recommendation Systems for Software Engineering, June
2012, pp. 33–37.

[9] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, “Automatic
Generation of System Test Cases from Use Case Specifications,”
Proceedings of the 2015 International Symposium on Software Testing
and Analysis, July 2015, pp. 385–396.

[10] R. Chen and H. Miao, “A Selenium based Approach to Automatic
Test Script Generation for Refactoring JavaScript Code,” Proceedings
of the 2013 IEEE/ACIS 12th International Conference on Computer
and Information Science, June 2013, pp. 341–346.

[11] J. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea, “Perfor-
mance Testing Guidance for Web Applications,” Microsoft Corpo-
ration, Tech. Rep., Sept. 2007, URL: https://msdn.microsoft.com/en-
us/library/bb924375.aspx[accessed: 2016-06-24].

[12] Testopia, URL: https://wiki.mozilla.org/Testopia [accessed: 2016-06-
24].

[13] Swagger, URL: http://swagger.io [accessed: 2016-06-24].
[14] A. Acharya, P. Kodeswaran, P. Dey, S. Sharma, and S. Agrawal,

“The Talking Cloud: A Cloud Platform for Enabling Communication
Mashups,” Proceedings of the 2014 IEEE International Conference on
Services Computing, July 2014, pp. 496–503.

[15] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern Web
Architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2,
May 2002, pp. 115–150.

[16] Apache JMeter, URL: http://jmeter.apache.org [accessed: 2016-06-24].
[17] Smart Tourism Taiwan, URL: http://www.vztaiwan.com [accessed:

2016-06-24].
[18] Apache Solr, URL: http://lucene.apache.org/solr [accessed: 2016-06-

24].

71Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

